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Abstract

Let G be a graph and d(v) denote the degree of a vertex v in G. Then the zeroth-order general Randić index 0R�(G) of the graph G
is defined as

∑
v∈V (G)d(v)�, where � is a pertinently chosen real number. We characterize, for any �, the connected (n, m)-graphs

with minimum and maximum 0R�.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

For a (molecular) graph G = (V , E), the general Randić index R�(G) of G is defined as the sum of (dG(u)dG(v))�

over all edges uv of G where dG(u) denotes the degree of u ∈ V , i.e.,

R�(G) =
∑

uv∈E(G)

(dG(u)dG(v))�,

where � is an arbitrary real number.
It is well known that R−1/2 was introduced by Randić [17] in 1975 as one of the many graph-theoretical parameters

derived from the graph underlying some molecule. Like other successful chemical indices, this index has been closely
correlated with many chemical properties. The general Randić index was proposed by Bollobás and Erdös [2], and
Amic et al. [1], independently, in 1998. Then it has been extensively studied by both mathematicians and theoretical
chemists [9]. Many important mathematical properties have been established [5]. For a survey of results, we refer to
the new book written by Li and Gutman [12].

In 2004, Li and Yang [13] studied the general Randić index for general graphs, and they obtained lower and upper
bounds for the general Randić index among graphs of order n, and the corresponding extremal graphs. Later Hu et al.
[7,8] showed the trees with extremal general Randić index.

The zeroth-order Randić index defined by Kier and Hall [10] is 0R =∑
u∈V (G)d(u)−1/2. Pavlović [16] gave a graph

with the maximum value of 0R(G). In [11], Li et al. investigated the same problem for the topological index M1(G), a
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Zagreb index, which is defined as M1(G)=∑
v∈V (G) d(u)2. They gave a sufficient and necessary condition for (n, m)-

graphs with minimum Zagreb index, and a necessary condition for (n, m)-graphs with maximum Zagreb index. Later
Li and Zheng [15] defined the zeroth-order general Randić index 0R�(G) of a graph G as 0R�(G) = ∑

v∈V (G)d(u)�

for general real number �. In [14] Li and Zhao characterized trees with the first three minimum and maximum values
of zeroth-order general Randić index, with the exponent equal to m, −m, 1/m and −1/m, where m�2 is an integer.

In our another paper [6] we investigated the zeroth-order general Randić index for molecular (n, m)-graphs, i.e.,
simple connected graphs with n vertices, m edges and maximum degree at most 4. In this paper, we investigate the
zeroth-order general Randić index for general simple connected (n, m)-graphs. We characterize the simple connected
(n, m)-graphs with extremal (maximum and minimum) zeroth-order general Randić index.

2. Definitions and notations

The set of vertices and edges of a simple graph G are denoted by V (G) and E(G), respectively. The order of G is
defined by |V (G)| and the size of G is defined by |E(G)|. Denote by d(u) and N(u) the degree and neighborhood of
a vertex u, respectively. The minimum degree of G is denoted by �(G) and the maximum degree of G is denoted by
�(G). Denote by D(G) = [d1, d2, . . . , dn] the degree sequence of the graph G, where di stands for the degree of the
ith vertex of G, and d1 �d2 � · · · �dn. A vertex of degree i is also called an i-degree vertex.

A graph G is nearly regular if |�(G) − �(G)|�1, and in this case the degree sequence D(G) is called a nearly
regular degree sequence. Note that, for given order n and size m, the nearly regular graph, which, denoted by C∗(n, m),
is a class of connected graphs, but they have the same 0R�-value.

To show the existence, we can get a nearly regular graph with given order n and size m by adding edges one by one.
First, we start from a tree (m = n − 1). There must be at least two 1-degree vertices in a tree. There does not exist any
3-degree vertex, and so the nearly regular graph must be a path Pn. Next we add an edge joining the two leaves of the
path. In this way the degrees of the vertices are all equal to two, and then we get a cycle. Then we add edges one by
one, so as to maximize the number of 3-degree vertices, until there are no 2-degree vertices. We continue to add edges
in this way until we arrive at a complete graph (Fig. 1).

Let G(n, m) be a simple connected graph with n vertices and m edges. A graph G(n, m) is specially denoted by L∗
(as described in [16]) if it can be constructed as follows: for m = n − 1, it is a star. We then add a new edge for m = n

between two vertices of degree 1 in the star and get a clique on three vertices. Add one more edge for m=n+1 between
a vertex out of the clique and some vertices in the clique to increase the degree of this vertex by 1 until it is joined to
all the vertices of the clique. We get a clique on four vertices. For m = n + 2, n + 3, . . . we continue to add edges in
this way until we arrive at a complete graph (Fig. 2). Then we have m = n + k(k − 3)/2 + p, where k (2�k�n − 1)
denotes the number of vertices in the clique, and p denotes the number of vertices with degree k. It is easy to see that k
and p satisfy

k2 − 3k

2
�m − n <

(k + 1)2 − 3(k + 1)

2

and 0�p�k − 2.
For convenience, we introduce a family of graphs which is denoted by F. As described in [3], let N < n be a positive

integer, and d1, d2, . . . , dN be a sequence of positive integers. The graph G(d1, d2, . . . , dN) has vertex set defined as
the disjoint union

⋃
0� j �N

Ij ,

Fig. 1.
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Fig. 2. L∗(12, 23), k = 6, p = 2.

where I0 = {v1, v2, . . . , vN }, |Ij | = dj − dj+1 for 1�j �N − 1 and |IN | = dN − (N − 1). For 1�j �N we arrange
that

N(vj ) = (I0 − {vj }) ∪
⎛
⎝ ⋃

j �k �N

Ik

⎞
⎠ and E

⎛
⎝G

⎡
⎣ ⋃

1� j �N

Ij

⎤
⎦

⎞
⎠ = ∅,

so that d(vj )=dj for all j and e(G(d1, d2, . . . , dN))=∑N
i=1di −

(
N
2

)
. We will, of course, always have d1 �d2 � · · · �

dN �N − 1. Each of these graphs of order n, say, is the unique realization of a sequence corresponding to a vertex
of the polytope Kn of degree sequences in En. Let F denote the family of graphs of the form G(d1, d2, . . . , dN) for
d1 �d2 � · · · �dN �N − 1. From the definition of F, we have L∗ ∈ F.

Undefined notations and terminologies can be found in [4].

3. Extremal (n, m)-graphs

Note that if � = 0 then 0R�(G) = n, and if � = 1 then 0R�(G) = 2m. Therefore, in what follows we always assume
that G(n, m) is a simple connected graph and � �= 0, 1.

For convenience, we call G a minimum (maximum) (n, m)-graph, if G has the minimum (maximum) zeroth-order
general Randić index among all connected (n, m)-graphs.

If there is a graph G such that di �dj + 2, let G̃ be the graph obtained from G by replacing the pair (di, dj ) by
the pair (di − 1, dj + 1). In other words, if D(G) = [d1, d2, . . . , di−1, di, di+1, . . . , dj−1, dj , dj+1, . . . , dn], then
D(G̃) = [d1, d2, . . . , di−1, di − 1, di+1, . . . , dj−1, dj + 1, dj+1, . . . , dn].

Lemma 3.1. (Hu et al. [6]) For the graphs G and G̃, we have

(i) 0R�(G) > 0R�(G̃), for � < 0 or � > 1;
(ii) 0R�(G) < 0R�(G̃), for 0 < � < 1.

Theorem 3.2. For � < 0 or � > 1, a minimum (n, m)-graph G is a nearly regular graph C∗; whereas for 0 < � < 1, a
maximum (n, m)-graph G is a nearly regular graph C∗. The extremal value is 0R�(C

∗) = (2m − ns)(s + 1)� + [n(s +
1) − 2m]s�, where s denotes the minimum degree of C∗.

Proof. We take the case 0 < � < 1 for instance, because the proof for the other case is fully analogous. In this case we
want to determine the maximum (n, m)-graph.

A degree sequence D′ = [d ′
1, d

′
2, . . . , d

′
n] is better than D = [d1, d2, . . . , dn], if

∑n
i=1 d�

i <
∑n

i=1 d ′
i
�. It is obviously

that if there is a degree sequence D(G)=[d1, d2, . . . , di−1, di, di+1, . . . , dj−1, dj , dj+1, . . . , dn], such that di �dj +2
for some i and j, then the degree sequence D′ = [d1, d2, . . . , di−1, di − 1, di+1, . . . , dj−1, dj + 1, dj+1, . . . , dn] is
better than D.
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Let G be a maximum (n, m)-graph and D(G) = [d1, d2, . . . , dn]. If G is not a nearly regular graph, then there must
exist a pair (di, dj ) such that di �dj + 2. By replacing the pair (di, dj ) by the pair (di − 1, dj + 1), we can get another
degree sequence D′ better than D(G). We continue to replace pairs of degree sequences in this way until we arrive
at a nearly regular degree sequence D̃. Note that the nearly regular degree sequence must be graphic, i.e., there is a
connected (n, m)-graph G̃ with this nearly regular degree sequence as its degree sequence. Clearly, 0R�(G) < 0R�(G̃),
which leads to a contradiction. �

Now we will show that maximum (n, m)-graphs must belong to the family F, for � < 0 or � > 1; whereas for
0 < � < 1, minimum (n, m)-graphs must belong to the family F.

Lemma 3.3. For � < 0 or � > 1, a maximum (n, m)-graph G has at least one vertex of degree n − 1; whereas for
0 < � < 1, a minimum (n, m)-graph G has at least one vertex of degree n − 1.

Proof. Here we only consider the case 0 < � < 1. Let G be a minimum (n, m)-graph, and x0 be a vertex with maximum
degree in G and d(x0) = l < n − 1. Then there is an edge y1y2 (y1, y2 �= x0) satisfying that at least one vertex in
{y1, y2}, say y1, is not adjacent to x0 (if y1, y2 are all not adjacent to x0, let y2 be the vertex such that x0 and y2 are
in the same component of G − y1y2). Let the connected graph G′ = G − y1y2 + x0y1 and d(y2) = i� l. In other
words, G′ is obtained from G by replacing the pair (l, i) by (l + 1, i − 1). Then by Lemma 3.1,0R�(G

′) < 0R�(G), a
contradiction. �

Theorem 3.4. For 0 < � < 1, a minimum (n, m)-graph G must be in F; whereas for � < 0 and � > 1, a maximum
(n, m)-graph G must be in F.

Proof. Here we only consider the case 0 < � < 1. Suppose G is a minimum (n, m)-graph and so |V (G)| = n. We
define a sequence G = G0, G1, G2, . . . of graphs as follows. From Lemma 3.3, we know that �(G) = n − 1. Suppose
dG(x1) = n − 1. The graph G − {x1} consists of a connected graph G1 with no isolated vertices, together with a set J1
of isolated vertices. If G1 is the null graph, we are done. Otherwise, let n′ be the order of G1 (note that n′ is viewed as
a constant here). By Lemma 3.3, we claim that �(G1)=|V (G1)|− 1 =n′ − 1, since G1 is a minimum (n′, m−n− 1)-
graph. In fact, let d1, d2, . . . , dn′ be the degree sequence of G1, then 0R�(G1) = ∑n′

i=1d
�
i attains minimum if and only

if 0R�(G) = (n − 1)� + (n − n′ − 1)1� + ∑n′
i=1(di + 1)� attains minimum.

Suppose that dG1(x2) = |V (G1)| − 1. Then the graph G1 − {x2} consists of a graph G2 with no isolated vertices,
together with a set J2 of isolated vertices. If G2 is the null graph then G = G(dG(x1), dG(x2)), and we are done.
Otherwise we continue and find a sequence of vertices {x3, x4, . . .} and graphs {G3, G4, . . .}. Eventually, the process
terminates with a vertex xN ∈ V (GN−1) (where N < n is a positive integer) joined to a set JN of isolated vertices. We
then have G = G(dG(x1), dG(x2), . . . , dG(xN)) ∈ F. �

Theorem 3.5. Let G(n, m) be a simple connected graph with n vertices and m edges. If m = n + k(k − 3)/2 + p,
where 2�k�n − 1 and 0�p�k − 2, then for �� − 1,

0R�(G(n, m))�0R�(L
∗)

= (n − k − 1) · 1� + (p + 1)� + (k − p − 1)(k − 1)� + p · k� + (n − 1)�. (3.1)

4. Proof of Theorem 3.5

Firstly, we introduce some useful lemmas. And we always assume �� − 1 in this section. Denote by ni the number
of vertices of degree i.

Lemma 4.1 (Pavlović [16, Lemma 3]). If n1 �= 0 in G(n, m), then nn−1 �1. If n1 = n2 = · · · = ni−1 = 0 and ni �= 0,
then nn−1 � i.

Lemma 4.2 (Pavlović [16, Lemma 4]). If nn−1 = 1 and n1 = l (l�2) in G(n, m), then nn−l = nn−l+1 = · · · = nn−3 =
nn−2 = 0.
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Lemma 4.3. Let r, s and t be real numbers such that 0 < r �s� t . Then

(t − r)s� �(t − s)r� + (s − r)t�

and the equality holds only for s = r and t.

Proof. If s = r or s = t , it is obvious that equality holds. Denote by f (s) = (t − s)r� + (s − r)t� − (t − r)s�. Then
�2f/�s2 = −�(� − 1)(t − r)s�−2 < 0 and the upper inequality follows because the function f is strictly concave. �

Corollary 4.4. For real number s > 1, holds 2s� < (s − 1)� + (s + 1)�.

Then, we will prove that L∗ has the maximum 0R�-value for �� − 1 among (n, m)-connected graphs. It means that
the maximum (n, m) graph must have n1 = n − k − 1, np+1 = 1, nk−1 = k − 1 − p, nk = p and nn−1 = 1.

Theorem 3.5 describes the solution of the following problem (P ):

max n1 · 1� + n2 · 2� + · · · + nn−1 · (n − 1)�

under two graph constraints

n1 + n2 + n3 + · · · + nn−1 = n, (4.2)

n1 + 2n2 + 3n3 + · · · + (n − 1)nn−1 = 2m. (4.3)

It is not difficult to prove the theorem for trees, i.e., m = n − 1.

Theorem 4.5. If m = n − 1, the function 0R� attains maximum at the star.

Proof. If m = n − 1, then k = 2 and p = 0. We find n1 and nn−1 from constraints (4.2) and (4.3)

n1 = n − 1 −
(

1 − 1

n − 2

)
n2 −

(
1 − 2

n − 2

)
n3 − · · · −

(
1 − n − 3

n − 2

)
nn−2,

nn−1 = 1 − n2

n − 2
− 2n3

n − 2
− 3n4

n − 2
− · · · − (n − 3)nn−2

n − 2
.

After their substitution into 0R�, this function becomes

0R� = n − 1 + (n − 1)� +
n−2∑
j=2

(
j� − n − 1 − j

n − 2
− j − 1

n − 2
(n − 1)�

)
nj .

By Lemma 4.3, we have (n − 2)j� �(n − 1 − j)1� + (j − 1)(n − 1)� for 1�j �n − 1. We conclude that 0R�
attains maximum for nj = 0, j = 2, 3, . . . , n − 2. Then, n1 = n − 1, n2 = n3 = · · · = nn−2 = 0, nn−1 = 1 and
maxm=n−1

0R� = n − 1 + (n − 1)�. �

If we want to find extremal graphs for other values of m, we cannot use the same method because the solutions may
not correspond to graphs.

Since m = n + k(k − 3)/2 + p, where 2�k�n − 1 and 0�p�k − 2, we need to consider two cases: (1) k = n − 1
and (2) 2�k�n − 2. At first, we will prove the theorem for k = n − 1.

Case 1: k = n − 1.

Lemma 4.6. Inequality (3.1) holds for the graphs G(n, m), m=n+k(k−3)/2+p, where k=n−1 and 0�p�n−3.

Proof. The number of edges is m = (n2 − 3n + 4 + 2p)/2 = (n − 1)(n − 2)/2 + p + 1, where 0�p�n − 3.
If p�1, then n1 = n2 = n3 = · · · = np = 0 and np+1 �0. Contrary to this, if G(n, m) would have one vertex of
degree p (or less), by deleting one vertex of degree p we get the graph G′(n − 1, m − p) (not necessarily connected),
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which has more edges than the complete graph on n − 1 vertices. The fact that np+1 �0 means: np+1 �= 0 or
np+1 = 0, np+2 �= 0 or np+1 = np+2 = 0, np+3 �= 0 and so on. Denote by P (p,p+j+1) the problem for given p when

n1 = n2 = · · · = np = np+1 = np+2 = · · · = np+j = 0, np+j+1 �= 0 and by 0R
(p,p+j+1)
� the optimal value of 0R�

for the problem P (p,p+j+1). The optimal value of 0R� for given pis 0R
p
� = max0� j �n−p−4

0R
(p,p+j+1)
� . If we have

np+j+1 �= 0, then nn−1 �p + j + 1 (Lemma 4.1).
Let us solve the problem P (p,p+j+1), 0�p�n − 4, 0�j �n − p − 4. (When p = n − 3, we have only one graph,

which is the complete graph with one edge deleted.)

max np+j+1(p + j + 1)� + np+j+2(p + j + 2)� + · · · + nn−1(n − 1)�

under the constraints:

np+j+1 + np+j+2 + np+j+3 + · · · + nn−1 = n,

(p + j + 1)np+j+1 + (p + j + 2)np+j+2 + · · · + (n − 1)nn−1 = n2 − 3n + 4 + 2p,

nn−1 = p + j + 1 − �,

where 0���j . Let us solve the system of the latter three equations in nn−1, nn−2 and np+j+1:

nn−2 = n2 − n(2p + 2j + 5) + p2 + 2pj + 5p + j2 + 3j + 6

n − p − j − 3
− np+j+2

n − p − j − 3

− 2np+j+3

n − p − j − 3
− 3np+j+4

n − p − j − 3

− · · · − (n − p − j − 4)nn−3

n − p − j − 3
+ (n − p − j − 2)�

n − p − j − 3
,

np+j+1 = n − p + j − 3

n − p − j − 3
−

(
1 − 1

n − p − j − 3

)
np+j+2

−
(

1 − 2

n − p − j − 3

)
np+j+3 −

(
1 − 3

n − p − j − 3

)
np+j+4

− · · · −
(

1 − n − p − j − 4

n − p − j − 3

)
nn−3 +

(
1 − n − p − j − 2

n − p − j − 3

)
�.

After substituting np+j+1, nn−2, nn−1 back into 0R�, we have

0R� = n − p + j − 3

n − p − j − 3
(p + j + 1)� + (p + j + 1)(n − 1)�

+ n2 − n(2p + 2j + 5) + p2 + 2pj + 5p + j2 + 3j + 6

n − p − j − 3
(n − 2)�

+
n−3∑

i=p+j+2

ni

(
i� − n − i − 2

n − p − j − 3
(p + j + 1)� − i − p − j − 1

n − p − j − 3
(n − 2)�

)

+ �

(
−(n − 1)� − 1

n − p − j − 3
(p + j + 1)� + n − p − j − 2

n − p − j − 3
(n − 2)�

)
.

We have (because of Lemma 4.3)

(n − p − j − 3)i� �(n − i − 2)(p + j + 1)� + (i − p − j − 1)(n − 2)� for p + j + 1� i�n − 2,

(n − p − j − 2)(n − 2)� �(p + j + 1)� + (n − p − j − 3)(n − 1)�.
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The latter inequality is obtained for i = n − 2 from the inequality

(n − p − j − 2)i� �(n − i − 1)(p + j + 1)� + (i − p − j − 1)(n − 1)� for p + j + 1� i�n − 1.

It means that we will get the maximum value of 0R� if we put np+j+2 = np+j+3 = · · · = nn−3 = � = 0 and

0R̃
(p,p+j+1)
� = n − p + j − 3

n − p − j − 3
(p + j + 1)� + (p + j + 1)(n − 1)�

+ n2 − n(2p + 2j + 5) + p2 + 2pj + 5p + j2 + 3j + 6

n − p − j − 3
(n − 2)�

for p = 0, 1, . . . , n − 4 and j = 0, 1, . . . , n − p − 4. This solution does not always correspond to a graph (except for
j = 0, 0R̃

(p,p+1)
� = 0R

(p,p+1)
� ). We put symbol ∼ for this solution, but the true graph solution, 0R

(p,p+j+1)
� is less than

or equal to 0R̃
(p,p+j+1)
� .

Now we show that 0R
(p,p+1)
� is the maximum value of 0R� for a given number p, that is, 0R

(p,p+1)
� =max0� j �n−p−4

0R
(p,p+j+1)
� . Since 0R

(p,p+j+1)
� �0R̃

(p,p+j+1)
� , it is sufficient to prove that 0R

(p,p+1)
� =max0� j �n−p−4

0R̃
(p,p+j+1)
� .

We have to prove the following inequality:

0R̃
(p,p+j+1)
� �(p + 1)� + (n − p − 2)(n − 2)� + (p + 1)(n − 1)�. (4.4)

We transform inequality (4.4) (for n − p − j − 3 �= 0) into (4.5)

f (j) = (n − p − j − 3)(p + 1)� − (n − p + j − 3)(p + j + 1)�

+ j (n − p − j − 1)(n − 2)� − j (n − p − j − 3)(n − 1)� �0. (4.5)

Since f (0) = f (n − p − 3) = 0, we only need to prove �2f/�j2 �0. We have

�2f/�j2 = −�(p + j + 1)�−2 (2(p + j + 1) + (� − 1)(n − p + j − 3)) − 2((n − 2)� − (n − 1)�),

and since −2((n − 2)� − (n − 1)�)�0, we have to prove

2(p + j + 1) + (� − 1)(n − p + j − 3) = (n − p + j − 3)� − n + 3p + j + 5�0. (4.6)

Since 0�p�n − 4 and 0�j �n − p − 4, we have 0�p + j �n − 4 and

n − 3p − j − 5 = n − 2p − (p + j) − 5�n − 2p − (n − 4) − 5

= − 2p − 1� − 2(n − 4) − 1 = −2n + 7,

n − p + j − 3�n − p + (n − p − 4) − 3 = 2n − 7 − 2p�2n − 7.

So we have

n − 3p − j − 5

n − p + j − 3
� −2n + 7

2n − 7
= −1��.

Then inequality (4.6) holds for �� − 1.
We have proved that the maximum value of 0R� for a given number p is 0R

(p,p+1)
�

0R
(p,p+1)
� = (p + 1)� + (n − p − 2)(n − 2)� + (p + 1)(n − 1)�

for p = 0, 1, . . . , n − 4. This value is attained at a graph which has nn−1 = p + 1, nn−2 = n − p − 2 and np+1 = 1.
Case 2: 2�k�n − 2.
We have proved the theorem for k = n − 1, in which case m�(n − 1)(n − 2)/2 + 1. It remains to prove the theorem

for m�(n2 − 3n + 2)/2. Denote by G∗ = G∗(n, m) the graph at which 0R� attains maximum. �

Lemma 4.7. If a maximum graph G∗ has r (r �n − 3) vertices of degree n − 1, then the minimum degree of G∗ is r.
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Proof. If not, let l be the minimum degree of G∗, and l�r +1. Let u be a vertex of degree l. Let v be a neighbor vertex
of u such that d(v) < n − 1. Then there exists a vertex w with degree j (l�j < n − 1) such that vw /∈ E(G∗). Denote
by G′ a graph obtained from G∗ by deleting the edge uv and adding a new edge vw. Then by Lemma 3.1, we have
0R�(G

′) > 0R�(G
∗), a contradiction. �

Lemma 4.8. If m�(n2 − 3n + 2)/2, then n1(G
∗) �= 0, for any maximum graph G∗.

Proof. Suppose to the contrary, n1(G
∗) = 0. Without loss of generality, we can suppose that the minimum degree of

G∗ is r, i.e., n1 = n2 = · · · = nr−1 = 0 and nr �= 0 for r �2. Then G∗ has r vertices of degree n − 1. For otherwise,
if G∗ has k �= r vertices of degree n − 1, by Lemma 4.7 we have that the minimum degree of G∗ is k �= r . Let u be a
vertex of degree r, then u is joined with all vertices w1, w2, . . . , wr of maximum degree n − 1.

Denote by S(G∗) the subgraph induced by G∗\{u, w1, w2, . . . , wr}, and K(G∗) the complete graph on V (S(G∗)).
Then

|E(K(G∗))| − |E(S(G∗))| =
(

n − r − 1
2

)
−

(
m − r(n − r) −

(
r

2

))

�
(

n − r − 1
2

)
− n2 − 3n + 2

2
+ r(n − r) +

(
r

2

)

= r .

It means that we can add at least r − 1 edges in S(G∗), and after that, these vertices do not still form a complete
graph.

For r �2, denote by G′ a simple connected graph obtained from G∗ when we delete r − 1 edges between vertex u
and vertices w2, . . . , wr and add r − 1 new edges among n − r − 1 vertices between r − 1 pairs of vertices: v1 (degree
j1) and v′

1 (degree j ′
1), v2 (degree j2) and v′

2 (degree j ′
2), . . . , vr−1 (degree jr−1) and v′

r−1 (degree j ′
r−1), and these

vertices are not necessarily distinct.
If all these vertices are distinct, then the degree of vi (v′

i) (i = 1, 2, . . . , r − 1), increases by 1. We have

0R�(G
′)−0R�(G

∗) = 1 − r� + (r − 1)(n − 2)� − (r − 1)(n − 1)� + (j1 + 1)� − j�
1

+ (j ′
1 + 1)� − (j ′

1)
� + (j2 + 1)� − j�

2 + (j ′
2 + 1)� − (j ′

2)
� + · · ·

+ (jr−1 + 1)� − j�
r−1 + (j ′

r−1 + 1)� − (j ′
r−1)

�

> 1 − r� + 2(r − 1)((r + 1)� − r�)

the last inequality holds because (j + 1)� − j� is an increasing function.
Moreover, there may exist some vertices used more than once. Suppose the degree of vi (v′

i) increases by xi (x′
i)

(i = 1, 2, . . . , r − 1), then for 1� i�r − 1, xi, x
′
i �0, we have

∑r−1
i=1xi = r − 1,

∑r−1
i=1x′

i = r − 1 and

((j + x)� − j�) − x((r + 1)� − r�)�0 for x�0. (4.7)

In fact, if j �r+1, then ((j +x)�−j�)−x((r+1)�−r�)=�x(��−1
1 −��−1

2 )�0, where �1 ∈ (j, j +x), �2 ∈ (r, r+1).
And if j = r , we need to prove

((r + x)� − r�) − x((r + 1)� − r�)�0.

We proceed by induction on x. When x = 0, the inequality holds. Suppose the inequality holds for x�0, and consider
the case of x + 1. By induction hypothesis,

(r + x + 1)� − r� = ((r + x)� − r�) + ((r + x + 1)� − (r + x)�)

�x((r + 1)� − r�) + ((r + x + 1)� − (r + x)�)

�x((r + 1)� − r�) + ((r + 1)� − r�)

= (x + 1)((r + 1)� − r�).
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Thus, we have proved the inequality (4.7).
So, we have

0R�(G
′) − 0R�(G

∗) = 1 − r� + (r − 1)(n − 2)� − (r − 1)(n − 1)�

+ (j1 + x1)
� − j�

1 + (j ′
1 + x′

1)
� − (j ′

1)
� + (j2 + x2)

� − j�
2

+ (j ′
2 + x′

2)
� − (j ′

2)
� + · · · + (jr−1 + xr−1)

� − j�
r−1

+ (j ′
r−1 + x′

r−1)
� − (j ′

r−1)
�

> 1 − r� + 2(r − 1)((r + 1)� − r�)

= 1 − r� + 2�(r − 1)��−1

> 1 − r� + 2�(r − 1)r�−1

= 1 − (r − 2�(r − 1))r�−1 �0,

where � ∈ (r, r + 1).
In order to prove the last inequality, we only need to prove

f (�) = r1−� + 2�(r − 1) − r �0 for r �2.

But f ′(�) = −r1−� ln r + 2(r − 1) < 0, for r �2. This implies f (�)�f (−1) = r2 − 3r + 2 = (r − 1)(r − 2)�0 for
r �2, and then f (�)�f (−1) = 0 for �� − 1. �

Hence, we only need to consider maximum graphs which have n1 �= 0, for 2�k�n − 2. Then nn−1 = 1 (Lemmas
4.1 and 3.3) and all vertices of degree 1 must be adjacent to this unique vertex of degree n − 1.

When nn−1 = 1 and n1 = l, instead of problem (P ) we can consider the following problem (P l):

max l · 1� + n2 · 2� + · · · + nn−l−1(n − l − 1)� + (n − 1)�

under the constraints:

n2 + n3 + n4 + · · · + nn−l−1 = n − 1 − l, (4.8)

n2 + 2n3 + 3n4 + · · · + (n − l − 2)nn−l−1 = 2(m − n + 1). (4.9)

The proof of following lemma is based on mathematical induction. It is easy to check that the theorem is true for
n = 5 and 4�m�10. We will suppose that the theorem is true for every graph G(i, j), such that 5� i�n − 1 and

i − 1�j �
(

i
2

)
. We have to prove the theorem for graphs G(n, m), such that n − 1�m�

(
n
2

)
. The case m = n − 1

was already considered above, and the cases m = (
n
2

)
and

(
n
2

) − 1 will not be considered because each corresponds to
a unique graph.

Lemma 4.9. Inequality (3.1) holds for all graphs G(n, m) with nn−1 = 1 and n1 = l (l�1), for 2�k�n − 2.

Proof. Inequality (3.1) will be valid for all graphs G(n, m) with nn−1 = 1 and n1 = l, if the following inequality holds:

l + n2 · 2� + n3 · 3� + · · · + nn−l−1(n − l − 1)� + (n − 1)�

�n − k − 1 + (p + 1)� + (k − p − 1)(k − 1)� + p · k� + (n − 1)� (4.10)

under constraints (4.8) and (4.9).
We first prove (4.10) for l�2. Since n1 = l, by Lemma 4.2 we have nn−l = nn−l+1 = · · · = nn−2 = 0. Consider

the graph G′(n − 1, m − 1), which is obtained from G(n, m), when we delete one vertex of degree 1. The graph
G′(n − 1, m − 1) has n′

1 = l − 1 and one vertex of degree n − 2 (because the other vertices can have degree at most
n − 1 − l), and n′

i = ni for i = 2, . . . , n − 3. Then n′
n−l = n′

n−l+1 = · · · = n′
n−3 = 0 (because n − 1 − (l − 1) = n − l)
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and the same constraints (4.8) and (4.9) hold. Since G′(n − 1, m − 1) has n − 1 vertices and n − 1 + k(k − 3)/2 + p

edges, it satisfies the inductive hypothesis, and so,

n2 · 2� + n3 · 3� + · · · + nn−l−1(n − l − 1)�

= n′
2 · 2� + n′

3 · 3� + · · · + n′
n−l−1(n − l − 1)�

�n − k − 1 − l + (p + 1)� + (k − p − 1)(k − 1)� + p · k� (4.11)

for every 2�k�n − 2 and 0�p�k − 2. Inequality (4.11) is equivalent to (4.10), which is now proved because the
constraints are the same.

Now we show that (4.10) holds for l = 1, that is, the graph G′ has no vertex of degree one. We have n′
i = ni for

i = 2, . . . , n − 3 and n′
n−2 = nn−2 + 1. By the inductive hypothesis for the graph G′ holds

n2 · 2� + n3 · 3� + · · · + (nn−2 + 1)(n − 2)�

= n′
2 · 2� + n′

3 · 3� + · · · + n′
n−2(n − 2)�

�(n − 1) − k − 1 + (p + 1)� + (k − p − 1)(k − 1)� + p · k� + (n − 2)� (4.12)

under the constraints

n′
2 + n′

3 + n′
4 + · · · + n′

n−2 = n − 1,

2n′
2 + 3n′

3 + 3n′
4 + · · · + (n − 2)n′

n−2 = 2(m − 1). (4.13)

Namely, it holds

n2 · 2� + n3 · 3� + · · · + nn−3(n − 3)� + nn−2(n − 2)�

�n − k − 2 + (p + 1)� + (k − p − 1)(k − 1)� + p · k� (4.14)

under the constraints

n2 + n3 + · · · + nn−3 + nn−2 = n − 2,

n2 + 2n3 + · · · + (n − 4)nn−3 + (n − 3)nn−2 = 2(m − n + 1). (4.15)

Equalities (4.15) are just the constraints (4.8) and (4.9), and inequality (4.14) is equivalent to inequality (4.10) for
l = 1.

Finally, after considering all cases we proved the theorem. �

5. Concluding remarks

In this paper, we discuss general connected (n, m)-graphs with the extremal value of zeroth-order general Randić
index. We use the following table to summarize our main results. For � in some intervals, it remains to determine
exactly which graphs in the family F are extremal.

� < 0 or � > 1 0 < � < 1

Minimum graph Nearly regular graph in F
Maximum graph �� − 1 � > − 1 Nearly regular graph

L∗ in F
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