
Discrete Applied Mathematics 121 (2002) 61–72

A simple algorithm to �nd the steps of double-loop
networks�

Robin Chi-Feng Chan, Chiuyuan Chen ∗, Zhi-Xin Hong
Department of Applied Mathematics, National Chiao Tung University, 1001 Ta-Hsueh Road,

Hsinchu 300, Taiwan

Received 28 June 2000; received in revised form 20 March 2001; accepted 9 April 2001

Abstract

Double-loop networks have been widely studied as architecture for local area networks and it
is well-known that the minimum distance diagram of a double-loop network yields an L-shape.
Given an N , it is desirable to �nd a double-loop network DL(N ; s1; s2) with its diameter being
the minimum among all double-loop networks with N stations. Since the diameter can be easily
computed from an L-shape, one method is to start with a desirable L-shape and then asks
whether there exist s1 and s2 (also called the steps of the double-loop network) to realize it.
In this paper, we propose a simple and e6cient algorithm to �nd s1 and s2, which is based on
the Smith normalization method of Aguil7o, Esqu7e and Fiol. ? 2002 Elsevier Science B.V. All
rights reserved.

Keywords: Double-loop network; L-shape; Diameter; Algorithm

1. Introduction

A double-loop network DL(N ; s1; s2) has N nodes 0; 1; : : : ; N − 1 and 2N links of
two types:

s1-links : i → i + s1 (modN); i=0; 1; : : : ; N − 1;

s2-links : i → i + s2 (modN); i=0; 1; : : : ; N − 1:
Double-loop networks have been widely studied as architecture for local area networks.
For surveys about these networks, see [2,10,11,14].
Fiol et al. [8] proved that DL(N ; s1; s2) is strongly connected if and only if

gcd(N; s1; s2)= 1. When DL(N ; s1; s2) is strongly connected, then we can talk about

� This research was partially supported by the National Science Council of the Republic of China under
the grant NSC89-2115-M009-026.

∗ Corresponding author.
E-mail address: cychen@cc.nctu.edu.tw (C. Chen).

0166-218X/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(01)00245 -1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82092962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

62 R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72

Fig. 1. Two examples of L-shapes.

Fig. 2. An L-shape with parameters.

a minimum distance diagram. This diagram gives a shortest path from node u to node
v for any u; v. Since a double-loop network is node-symmetric, it su6ces to give a
shortest path from node 0 to any other node. Let 0 occupy cell (0; 0). Then v occupies
cell (i; j) if and only if ia+ jb ≡ v (modN) and i+ j is the minimum among all (i′; j′)
satisfying the congruence, where ≡ means congruent modulo N . Namely, a shortest
path from 0 to v is through taking i s1-links and j s2-links (in any order). Note that in
a cell (i; j), i is the column index and j is the row index. A minimum distance diagram
includes every node exactly once (in case of two shortest paths, the convention is to
choose the cell with the smaller row index, i.e., the smaller j). Wong and Coppersmith
[15] proved that the minimum distance diagram is always an L-shape (a rectangle is
considered a degeneration). See Fig. 1 for two examples.
An L-shape is determined by four parameters l; h; p; n as shown in Fig. 2. These four

parameters are the lengths of four of the six segments on the boundary of the L-shape.
For example, DL(9; 4; 1) in Fig. 1 has l=5, h=3, p=3, and n=2. Let N = lh−pn.
Fiol et al. [8,9] and Chen and Hwang [3] proved that there exists a DL(N ; s1; s2)
realizing the L-shape(l; h; p; n) if and only if l¿n, h¿p, and gcd(l; h; p; n)= 1.
The diameter d(N ; s1; s2) of a double-loop network DL(N ; s1; s2) is the largest dis-

tance between any pair of stations. It represents the maximum transmission delay be-
tween two stations. Therefore, it is desirable to minimize the diameter. This is the
problem discussed by many authors; see [1,5–7,9,12,15]. Let d(N) denote the best
possible diameter of a double-loop network with N stations. Wong and Coppersmith
[15] showed that d(N)¿ �√3N� − 2.
Given an N , it is desirable to �nd a double-loop network DL(N ; s1; s2) with its di-

ameter being equal to d(N). Since the diameter of a double-loop network DL(N ; s1; s2)

R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72 63

can be readily computed from the dimensions of its L-shape, one method is to start
with a desirable L-shape and then asks whether there exist s1 and s2 to realize it.
Aguil7o, Esqu7e and Fiol [1,7] proposed the Smith normalization method to �nd s1 and
s2 for a given L-shape, but no explicit algorithm was given in their paper. In [3], Chen
and Hwang proposed a simple method, based on the sieve method in number theory,
to �nd s1 and s2 for a given L-shape.
In this paper, we propose a simple and e6cient algorithm to �nd s1 and s2 for a

given L-shape. Our algorithm is based on the Smith normalization method of Aguil7o,
Esqu7e and Fiol [1,7], but unlike their method, our algorithm does not require any
matrix operation. Our algorithm takes at most O((logN)2) time and if gcd(l; n)= 1 or
gcd(l; p)= 1 or gcd(h; p)= 1 or gcd(h; n)= 1, then our algorithm could �nd the steps
of a double-loop network in only O(logN) time.

2. Preliminary

It is well-known that

Lemma 1. If a and b are integers; not both zero; then there exist integers � and �
such that �a+ �b=gcd(a; b).

We now prove that

Lemma 2. If �; a; �; b are integers; not all zero; such that �a+�b=1; then gcd(a; �)= 1.

Proof. Assume that �a + �b=1 and gcd(a; �)= k. Then k|a and k|�. Thus k|�a +
�b=1. So k =1.

Theorem 3. If a and b are integers; not both zero; then there exist integers x and y
such that xa+ yb=gcd(a; b) and (y; gcd(a; b))= 1.

Proof. Set r=gcd(a; b) for easy writing. By Lemma 1, there exist integers � and �
such that �a+�b= r. If gcd(�; r)= 1, then we are done. In the following, assume that
gcd(�; r)= k ¿ 1. Suppose k =ps11 p

s2
2 · · ·psmm , where p1¡p2¡ · · ·¡pm are the prime

factors of k and suppose r=pr11 p
r2
2 · · ·prmm prm+1m+1p

rm+2
m+2 · · ·prnn , where p1¡p2¡ · · ·¡pn

are the prime factors of r. Since k|r, we have ri¿ si for all i, 16 i6m. Let

r′=prm+1m+1p
rm+2
m+2 · · ·prnn ; a′= a=r; and b′= b=r:

Note that gcd(r′; �)= 1; otherwise, we will have gcd(�; r)¿k. Since gcd(r′; �)= 1
and k|�, we have gcd(r′; k)= 1. Since �a+ �b= r, we have �a′+ �b′=1. By Lemma
2, we have gcd(a′; �)= 1. Since gcd(a′; �)= 1 and k|�, we have gcd(a′; k)= 1. Since
k|� and gcd(r′; k)= 1 and gcd(a′; k)= 1, we have gcd(�− r′a′; k)= 1. Since gcd(r′; �)
= 1 and r′|r′a′, we have gcd(� − r′a′; r′)= 1. Since gcd(� − r′a′; k)= 1 and

64 R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72

gcd(� − r′a′; r′)= 1 and every prime factor of r is either a prime factor of k or a
prime factor of r′, we have gcd(� − r′a′; r)= 1. Consider

x= �+ r′b′ and y= � − r′a′:

Then xa + yb=(� + r′b′)a + (� − r′a′)b= r and gcd(y; r)= gcd(� − r′a′; r)= 1. We
have this theorem.

The proof of Theorem 3 leads to the following algorithm for �nding x and y in
Theorem 3.

ALGORITHM-MODIFIED-EUCLIDEAN

Input: Integers a and b, not both zero, and r=gcd(a; b).
Output: Integers x and y such that xa+ yb= r and gcd(y; r)= 1.

1. Find integers � and � such that �a+ �b= r.
2. If gcd(�; r)= 1, then let x= �, y= �, return x; y and stop this algorithm.
3. Let k =gcd(�; r), r′= r, and d= k.
4. WHILE (d¿ 1) DO
BEGIN
r′= r′=d;
d=gcd(r′; k);
END

5. Let a′= a=r, b′= b=r, x= �+ r′b′ and y= � − r′a′. Return x, y.
We give an example to show how Step 4 is executed. Suppose before Step 4 is

executed, d= k =23 × 32 × 74 and r′= r=24 × 38 × 715 × 11 × 23. After the �rst
iteration of the while-loop, r′=2 × 36 × 711 × 11 × 23 and d=2 × 32 × 74. After
the second iteration, r′=34 × 77 × 11 × 23 and d=32 × 74. After the third iteration,
r′=32×73×11×23 and d=32×73. After the fourth iteration, r′=11×23 and d=1.
Since d=1, we stop the iteration.

Theorem 4. ALGORITHM-MODIFIED-EUCLIDEAN is correct and it takes at
most O((logN)2) time; where N =max{a; b}.

Proof. Note that Steps 1, 2, 3, and 5 of ALGORITHM-MODIFIED-EUCLIDEAN are
translated directly from the proof of Theorem 3, so they are correct. Steps 1 and 2
take O(logN) time; Steps 3 and 5 take O(1) time. It remains to consider Step 4. Let
k =ps11 p

s2
2 · · ·psmm and r=pr11 p

r2
2 · · ·prmm prm+1m+1p

rm+2
m+2 · · ·prnn be de�ned as in the proof of

Theorem 3. Note that ri¿ si for all i, 16 i6m. In the proof of Theorem 3, we need
r′=prm+1m+1p

rm+2
m+2 · · ·prnn . The purpose of Step 4 is to derive r′=prm+1m+1p

rm+2
m+2 · · ·prnn .

Before Step 4 is executed, r′= r=pr11 p
r2
2 · · ·prmm prm+1m+1p

rm+2
m+2 · · ·prnn . We then use a

while-loop to remove pr11 p
r2
2 · · ·prmm from r′. Before an iteration of the while-loop, if

pi (where 16 i6m) still exists in the current r′ and its power in the current r′ is

R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72 65

r′i , then after the iteration, the power of pi is decreased by si or r′i , whichever is
smaller. At the end of Step 4, d=gcd(r′; k)= 1; that is, r′=prm+1m+1p

rm+2
m+2 · · ·prnn . Set

�=max{�r1=s1�; �r2=s2�; : : : ; �rm=sm�} for easy writing. Step 4 iterates � times. Thus
Step 4 takes O(� logN) time. Since �=O(logN), Step 4 takes at most O((logN)2)
time.
The above arguments show that ALGORITHM-MODIFIED-EUCLIDEAN is correct

and it takes at most O((logN)2) time.

3. The Smith normalization method

Let L(l; h; p; n) be an L-shape such that l¿n, h¿p, and gcd(l; h; p; n)= 1. Aguil7o
and Fiol [1], and also Esqu7e et al. [7] proposed the following method of computing s1
and s2 such that DL(N ; s1; s2) realizes L. They considered the integral matrix

M=
(

l −p
−n h

)

and computed the Smith normal form of M,

S(M)=
(
1 0
0 N

)
:

Then S(M)=LMR, where L and R are two nonsingular unimodular (determinant
±1) integral matrices. They proved that if

L=
(
� �
� �

)
;

then s1 = � (modN) and s2 = � (modN) in DL(N ; s1; s2). No algorithm on computing
the Smith normal form was actually given in their paper except a reference to [13].
In [13], the reader was referred to three theorems (Theorem II.1, Theorem II.2, and
Theorem II.9) for learning how to compute the Smith normal form.
The following is a brief description of what the three theorems in [13] say. Let �1

and �2 be two integers, no both zero, and let �=gcd(�1; �2). Theorem II.1 says that
there exists an integral matrix(

�1 �2
� �

)

with �rst row [�; �2] and determinant �; note that the elements � and � may be
determined by the Euclidean algorithm. Theorem II.2 uses Theorem II.1 to show that
the (1,1) element of a matrix may be replaced by the greatest common divisor of the
�rst column of the matrix. Theorem II.9 uses Theorem II.2 to derive the Smith normal
form. To make the readers easy to understand the Smith normalization method, we
now give an explicit algorithm for it.

66 R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72

THE-SMITH-NORMALIZATION-METHOD

Input: l; h; p; n of an L-shape L, where l¿n, h¿p, and gcd(l; h; p; n)= 1.
Output: s1 and s2 such that DL(N ; s1; s2) realizes the L-shape L(l; h; p; n).
1. Let

M=
(

l −p
−n h

)
;

M0 =M, i=0; j=0; k =0.
2. Repeat sub-steps 2.1–2.2 until the (1,1) element of Mj divides both the (2,1) ele-
ment and the (1,2) element of Mj.
2.1 If the (1,1) element of Mj does not divide the (2,1) element of Mj, then let

i= i + 1, j= j + 1, and �nd a nonsingular unimodular integral matrix Li such
that the (1,1) element of Mj =LiMj−1 is the greatest common divisor of the
�rst column of Mj−1.

2.2 If the (1,1) element of Mj does not divide the (1,2) element of Mj, then let
j= j+1, k = k +1, and �nd a nonsingular unimodular integral matrix Rk such
that the (1,1) element of Mj =Mj−1Rk is the greatest common divisor of the
�rst row of Mj−1.

3. If the (2,1) element of Mj is not zero, then let i= i+1, j= j+1, and �nd a nonsin-
gular unimodular integral matrix Li to make the (2,1) element of Mj =LiMj−1
zero.

4. If the (1,2) element of Mj is not zero, then let j= j+1, k = k+1, and �nd a non-
singular unimodular integral matrix Rk to make the (1,2) element of Mj =Mj−1Rk

zero.
5. If the (1,1) element of Mj does not divide the (2,2) element of Mj, then add
column 2 of Mj to column 1 of Mj and go to Step 2.

6. Now Mj is the Smith normal form of M, i.e.,

Mj =Li · · ·L2L1MR1R2 · · ·Rk =S(M)=

(
1 0

0 N

)
:

Let L=Li · · ·L2L1. If

L=
(
� �
� �

)
;

then let s1 = � (modN) and let s2 = � (modN). Return s1, s2.
Since [1,7] did not provide the time complexity analysis of the Smith normalization
method, we now analyze its time complexity. Its time complexity is dominated by Step
2. Each execution of Step 2 takes O(logN) time. Since each execution of Step 2.1
and Step 2.2 makes the (1,1) element of Mj contains less prime factors than before,
Step 2 is executed at most O(logN) times. Therefore the Smith normalization method
takes at most O((logN)2) time.

R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72 67

4. The sieve method

Let L(l; h; p; n) be an L-shape such that l¿n, h¿p, and gcd(l; h; p; n)= 1. Chen
and Hwang [3] (see also [11]) proposed the following method, based on the sieve
method in number theory, to �nd s1 and s2.
For k =0; 1; : : : ; de�ne

ak = kn+ h;

bk = kl+ p:

Let Fk denote the set of prime factors of gcd(ak ; bk) and F denote the set of prime
factors of N . They proved that there exists a k such that f
∈ Fk for all f∈F ; then
s1 = ak (modN) and s2 = bk (modN) realize L. Note that if f∈F appears in Fk for
some k and kf is the smallest such k, then f appears in every fth k after kf.
For example, suppose N =2×3×5×7×11×59, and L(l; h; p; n)=L(22×107; 22×3×

5×7; 2×3×5×7; 32×23). Then F0 = {2; 3; 5; 7}, F1 = {11}, and F = {2; 3; 5; 7; 11; 59}.
Thus
2∈F appears in a0; b0; a2; b2; a4; b4; a6; b6; a8; b8; etc.,
3∈F appears in a0; b0; a3; b3; a6; b6; a9; b9; etc.,
5∈F appears in a0; b0; a5; b5; a10; b10; a15; b15; etc.,
7∈F appears in a0; b0; a7; b7; a14; b14; a21; b21; etc.,
11∈F appears in a1; b1; a12; b12; a23; b23; a34; b34; etc.
The �rst pair ak ; bk that is not crossed out by the sieve method is a11; b11. Thus

s1 = a11 (modN) and s2 = b11 (modN) realize L.
The sieve method is simple and easy to implement. Note that [3,11] did not give

the time complexity analysis of the sieve method. Although we are also unable to
give an exact time complexity analysis for the method, we give an upper bound for
it. Let "(N) denote the number of prime factors of N and let Pi denote the ith prime,
i.e., P1 = 2; P2 = 3, etc. Since smaller primes cross out more pairs (ak ; bk) than larger
primes can cross out, the sieve method would take the longest time when N contains
the smallest "(N) primes. In this case, the �nal k is bounded above by P"(N). Since
checking if f
∈ Fk for all f∈F is equivalent to check if gcd(gcd(ak ; bk); N)= 1
(which could be checked by using the Euclidean algorithm twice), the sieve method
takes at most O(P"(N)logN) time.

5. Our algorithm

Given an L-shape, we propose the following algorithm to �nd s1 and s2.

ALGORITHM-COMPUTING-STEPS

Input: l; h; p; n of an L-shape L, where l¿n, h¿p, and gcd(l; h; p; n)= 1.

68 R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72

Output: s1 and s2 such that DL(N ; s1; s2) realizes L.

1. Find r1 = gcd(l;−n).
2. Find integers �1 and �1 such that �1l+ �1(−n)= r1.
3. Find r2 = gcd(r1;−�1p+ �1h).
4. Find integers �2 and �2 such that �2r1 +�2(−�1p+�1h)= r2 and gcd(�2; r2)= 1.
5. s1 = �2n− �2h (modN) and s2 = �2l− �2p (modN).
For example, let l=5, h=3, p=3, and n=2. Then our algorithm derives r1 = 1,

�1 = 1, �1 = 2, r2 = 1, �2 =−2, and �2 = 1. Thus s1 =−7 (mod 9) and s2 =−13 (mod 9),
i.e., s1 = 2 and s2 = 5. It can be veri�ed that DL(9; 2; 5) realizes
L-shape(5,3,3,2).
We now prove that

Theorem 5. ALGORITHM-COMPUTING-STEPS is correct and it takes at most
O((logN)2) time.

Proof. Note that N = lh− pn. Let

M=
(

l −p
−n h

)
:

Consider column 1 of M: it contains l and −n. After Step 1 is performed, we have
r1 = gcd(l;−n) and �1l+ �1(−n)= r1. Let

L1 =
(
�1 �1
n
r1

l
r1

)
:

and let M1 =L1M. Then

M1 =
(
�1 �1
n
r1

l
r1

)(
l −p
−n h

)
=
(
r1 −�1p+ �1h
0 N

r1

)
:

Consider row 1 of M1: it contains r1 and −�1p + �1h. After Step 2 is performed,
we have r2 = gcd(r1;−�1p+�1h), �2r1 +�2(−�1p+�1h)= r2, and gcd(�2; r2)= 1. Let

R1 =

(
�2

−(−�1p+�1h)
r2

�2 r1
r2

)
:

and let M2 =M1R1. Then

M2 =
(
r1 −�1p+ �1h
0 N

r1

)(
�2

−(−�1p+�1h)
r2

�2 r1
r2

)
=

(
r2 0
N�2
r1

N
r2

)
:

Consider column 1 of M2: it contains r2 and N�2=r1. Let r3 = gcd(r2; N�2=r1). Note
that in Step 2 we choose gcd(�2; r2)= 1. Thus

r3 = gcd
(
r2;

N�2
r1

)
=gcd

(
r2;

N
r1

)
=gcd

(
r1;−�1p+ �1h;

N
r1

)
:

R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72 69

We claim that r3 = 1. Suppose this is not true and r3¿ 1. Then every entry of M1 is
a multiple of r3. Since M1 =L1M, we have

M=L−1
1 M1 =

1
det(L1)

(
l
r1

−�1
− n

r1
�1

) r1 −�1p+ �1h

0
N
r1


 :

That is,

M=
1

det(L1)

(
l
r1

−�1
− n

r1
�1

)
r3

(
r1
r3

−�1p+�1h
r3

0 N
r1r3

)
:

Since r3 = gcd(r1;−�1p+ �1h; Nr1),(
r1
r3

−�1p+�1h
r3

0 N
r1r3

)

is integral. Since det(L1)= ± 1, every entry of M must be a multiple of r3. Then
gcd(l; h; p; n)¿ r3¿ 1; this contradicts with the assumption that gcd(l; h; p; n)= 1.
Therefore r3 = 1.
Since r3 = gcd(r2; N�2=r1) and r3 = 1, by Lemma 1, there exist integers �3 and �3

such that �3r2 + �3(N�2=r1)= 1. Let

L2 =

(
�3 �3

−N�2
r1

r2

)

and let M3 =L2M2. Then

M3 =

(
�3 �3

−N�2
r1

r2

)(
r2 0
N�2
r1

N
r2

)
=

(
1 �3N

r2
0 N

)
:

Let

R2 =

(
1 − �3N

r2
0 1

)
:

and let M4 =M3R2. Then

M4 =

(
1 �3N

r2
0 N

)(
1 − �3N

r2
0 1

)
=
(
1 0
0 N

)
=S(M):

From the above, L2L1MR1R2 =S(M). Moreover, L1, L2, R1 and R2 are uni-
modular integral matrices. Let L=L1L2. Then

L=

(
�3 �3

−N�2
r1

r2

)(
�1 �1
n
r1

l
r1

)
=

(
�3�1 +

�1n
r1

�3�1 +
�3l
r1−N�2�1+r2n

r1
−N�2�1+r2l

r1

)
:

Using the facts that N = lh−pn and �1l+�1(−n)= r1 and �2r1+�2(−�1p+�1h)= r2,
we have (−N�2�1 + r2n)=r1 = �2n − �2h and (−N�2�1 + r2l)=r1 = �2l − �2p. Thus if
S1 = �2n− �2h (modN) and s2 = �2l− �2p (modN), then DL(N ; s1; s2) realizes L.

70 R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72

It is clear that Steps 1, 2, and 3 can be done in O(logN) time by using the Euclidean
algorithm. Step 4 can be done in O((logN)2) time by using ALGORITHM-MODIFIED-
EUCLIDEAN. Step 5 can be done in O(1) time. Thus ALGORITHM-COMPUTING-
STEPS takes at most O((logN)2).

The following theorem will be used in the follow-up discussions.

Theorem 6 (Chen and Hwang [4]). Suppose s′1; s
′
2 realize L-shape(l; h; n; p). Let x and

y be integers such that s′2x − s′1y=1. Then s1 = nx − hy (modN) and s2 = lx −
py (modN) realize L-shape(l; h; p; n); moreover; s1; s2 can be derived from s′1; s

′
2 in

O(logN) time.

Theorem 7. If gcd(l; n)= 1 or gcd(l; p)= 1 or gcd(h; p)= 1 or gcd(h; n)= 1; then
we could use ALGORITHM-COMPUTING-STEPS to 9nd the steps s1 and s2 of
L-shape(l; h; p; n) in only O(logN) time.

Proof. There are four cases:
Case 1: gcd(l; n)= 1. Then, clearly, r1 = gcd(l;−n)= 1. Hence r2 = 1 and Step 4 of

ALGORITHM-COMPUTING-STEPS takes only O(logN) time. Thus ALGORITHM-
COMPUTING-STEPS �nds the steps s1 and s2 in only O(logN) time.
Case 2: gcd(l; p)= 1. By an argument similar to that in Case 1, we could use

ALGORITHM-COMPUTING-STEPS to �nd the steps s′1 and s
′
2 of L-shape(l; h; n; p)

in only O(logN) time. Then, by Theorem 6, s1; s2 could be derived from s′1; s
′
2 in

O(logN) time.
Case 3: gcd(h; p)= 1. By an argument similar to that in Case 1, we could use

ALGORITHM-COMPUTING-STEPS to �nd the steps s′1 and s
′
2 of L-shape(h; l; n; p)

in only O(logN) time. Since L-shape(h; l; n; p) is the Mipping of L-shape(l; h; p; n),
s1 = s′2 and s2 = s

′
1.

Case 4: gcd(h; n)= 1. Again, by an argument similar to that in Case 1, we could use
ALGORITHM-COMPUTING-STEPS to �nd the steps s′′1 and s

′′
2 of L-shape(h; l; p; n)

in only O(logN) time. Then, by Theorem 6, the steps s′1; s
′
2 of L-shape(h; l; n; p) could

be derived from s′′1 ; s
′′
2 in O(logN) time. Since L-shape(h; l; n; p) is the Mipping of

L-shape(l; h; p; n), s1 = s′2 and s2 = s
′
1.

We now compare the three existing algorithms for computing the steps of double-loop
networks: the Smith normalization method [1,7], the sieve method [3,11], and our algo-
rithm. Both the Smith normalization method and our algorithm take at most O((logN)2)
time. In the Smith normalization method, one needs to �nd nonsingular unimodular in-
tegral matrices Li ; : : : ;L2;L1;R1;R2; : : : ;Rk such that

Li · · ·L2L1MR1R2 · · ·Rk =S(M):

Our algorithm is based on the Smith normalization method, but our algorithm does not
require any matrix operation; moreover, as could be seen from the proof of Theorem

R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72 71

5, we prove that there exist nonsingular unimodular integral matrices L2;L1;R1;R2

such that

L2L1MR1R2 =S(M):

Therefore, our algorithm greatly simpli�es the computation of the Smith normalization
method.
Both the sieve method and our algorithm are very simple and easy to implement.

The sieve method shows that the steps of a double-loop network are of the form

s1 = kn+ h (modN); s2 = kl+ p (modN);

and our algorithm shows that the steps of a double-loop network are of the form

s1 = �2n− �2h (modN); s2 = �2l− �2p (modN):

The sieve method takes at most O(P"(N)logN) time. However, we are unable to predict
the value of P"(N) and therefore unable to tell which algorithm is more e6cient.
It is open whether the steps of a double-loop network can be found in O(logN)

time. Note that Cheng and Hwang [5] gave an O(logN) time algorithm to com-
pute the L-shape of a double-loop network DL(N ; s1; s2). It is also open whether
we can �nd integers x and y such that xa + yb=gcd(a; b) and (y; gcd(a; b))= 1 in
only O(logN) time, where a and b are integers, not both zero. If this is true, then
ALGORITHM-COMPUTING-STEPS would take only O(logN) time and the steps of
a double-loop network can be �nd in O(logN) time.

Acknowledgements

We thank Prof. Frank K. Hwang for many helpful comments. We also thank the
referees for many constructive comments that greatly improve the presentation of this
paper.

References

[1] F. Aguil7o, M.A. Fiol, An e6cient algorithm to �nd optimal double loop networks, Discrete Math. 138
(1995) 15–29.

[2] J.-C. Bermond, F. Comellas, D.F. Hsu, Distributed loop computer networks: a survey, J. Parallel
Distribut. Comput. 24 (1995) 2–10.

[3] C. Chen, F.K. Hwang, The minimum distance diagram of double-loop networks, IEEE Trans. Comput.
49 (2000) 977–979.

[4] C. Chen, F.K. Hwang, Equivalent nondegenerate L-shapes of double-loop networks, Networks 36 (2000)
118–125.

[5] Y. Cheng, F.K. Hwang, Diameters of weighted double loop networks, J. Algorithms 9 (1988) 401–410.
[6] P. ErdPos, D.F. Hsu, Distributed loop networks with minimum transmission delay, Theoret. Comput.

Sci. 100 (1992) 223–241.
[7] P. Esqu7e, F. Aguil7o, M.A. Fiol, Double commutative-step diagraphs with minimum diameters, Discrete

Math. 114 (1993) 147–157.

72 R. Chi-Feng Chan et al. / Discrete Applied Mathematics 121 (2002) 61–72

[8] M.A. Fiol, M. Valero, J.L.A. Yebra, I. Alegre, T. Lang, Optimization of double-loop structures for
local networks, Proceedings of the XIX International Symposium MIMI’82, Paris, France, 1982, pp.
37–41.

[9] M.A. Fiol, J.L.A. Yebra, I. Alegre, M. Valero, A discrete optimization problem in local networks and
data alignment, IEEE Trans. Comput. C-36 (1987) 702–713.

[10] F.K. Hwang, A survey on double-loop networks, in: F. Roberts, F.K. Hwang, C. Monma (Eds.),
Reliability of Computer and Communication Networks, AMS Series, 1991, pp. 143–151.

[11] F.K. Hwang, A complementary survey on double-loop networks, Theoret. Comput. Sci., to appear.
[12] F.K. Hwang, Y.H. Xu, Double loop networks with minimum delay, Discrete Math. 66 (1987) 109–118.
[13] M. Newman, Integral Matrices, Pure and Appl. Math. Series, Vol. 45, Academic Press, New York,

1972.
[14] J.M. Peha, F.A. Tobagi, Analyzing the fault tolerance of double-loop networks, IEEE Trans. Network

2 (1994) 363–373.
[15] C.K. Wong, D. Coppersmith, A combinatorial problem related to multimodule memory organizations,

J. Assoc. Comput. Mach. 21 (1974) 392–402.

