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1. Introduction

We consider the isoperimetric problem of minimizing perimeter under a given volume 
constraint inside N = M × R

k, where Rk is the k-dimensional Euclidean space and M
is an m-dimensional compact Riemannian manifold without boundary. Our main result 
is the following:

Theorem 1.1. Let M be a compact Riemannian manifold. There exists a constant v0 > 0
such that any isoperimetric region in M ×R

k of volume v � v0 is a tubular neighborhood 
of M × {x}, with x ∈ R

k.

This result, in case k = 1, was first proven by Duzaar and Steffen [4, Prop. 2.11]. As 
observed by Morgan, an alternative proof for k = 1 can be given using the monotonicity 
formula and properties of the isoperimetric profile of M × R (see [20, Cor. 4.12] for a 
proof when M is a convex body). Gonzalo considered the general problem in his Ph.D. 
Thesis [9]. In S1 × R

k, the result follows from the classification of isoperimetric regions 
by Pedrosa and Ritoré [19]. Large isoperimetric regions in asymptotically flat manifolds 
have been recently characterized by Eichmair and Metzger [5]. It is worth mentioning 
that W.-T. Hsiang and W.-Y. Hsiang [12] completely solved the isoperimetric problem in 
products of Euclidean and hyperbolic spaces. Morgan [16], after Barthé [1], using results 
by Ros [22], provides a lower bound of the isoperimetric profile of a Riemannian product 
in terms of concave lower bounds of the isoperimetric profiles of the factors.

In our proof we use symmetrization and show in Corollary 2.2 that anisotropic scaling 
of symmetrized isoperimetric regions of large volume L1-converge to a tubular neighbor-
hood of M×{0}. This convergence is improved in Lemma 2.4 to Hausdorff convergence of 
the boundaries using the density estimates on tubes from Lemma 2.3, similar to the ones 
obtained by Ritoré and Vernadakis [21]. Results of White [23] and Grosse-Brauckmann 
[11] on stable submanifolds then imply that the scaled boundaries are cylinders, see The-
orem 3.2. For small dimensions, it is also possible to use a result by Morgan and Ros [18]
to get the same conclusion only using L1-convergence. Once it is shown that the sym-
metrized set is a tube, it is not difficult to prove that the original isoperimetric region is 
also a tube.

After the distribution of this manuscript, Gonzalo informed us that he had obtained 
a proof of Theorem 1.1 in [10]. His techniques are different from ours and similar to the 
ones used in [9].

Given a measurable set E ⊂ N , their perimeter and volume will be denoted by P (E)
and |E|, respectively. We refer the reader to Maggi’s book [14] for background on finite 
perimeter sets. The r-dimensional Hausdorff measure of a set E will be denoted by 
Hr(E).

On M × R
k we shall consider the anisotropic dilation of ratio t > 0 defined by

ϕt(p, x) = (p, tx), (p, x) ∈ M × R
k.
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Since the Jacobian of the map ϕt is tk, we have

|ϕt(E)| = tk|E|, for any measurable set E ⊂ M × R
k. (1.1)

Let Σ ⊂ M × R
k be an (n − 1)-rectifiable set, where n = m + k is the dimension of N . 

At a regular point p ∈ Σ, the unit normal ξ can be decomposed as ξ = av + bw, with 
a2 + b2 = 1, v tangent to M and w tangent to Rk. Then the Jacobian of ϕt|Σ is equal 
to tk−1(t2a2 + b2)1/2. For t � 1 we get

tkHn−1(Σ) � Hn−1(ϕt(Σ)) � tk−1Hn−1(Σ), (1.2)

and the reversed inequalities when t � 1. Similar properties hold for the perimeter. 
Equality holds in the right hand side of (1.2) if and only if a = 0, or equivalently if and 
only if ξ is tangent to Rk.

An open ball in Rk of radius r > 0 and center x will be denoted by D(x, r). If it is 
centered at the origin, we set D(r) = D(0, r). We shall also denote by T (x, r) the set 
M ×D(x, r), and by T (r) the set M ×D(r). Observe that ϕt(T (x, r)) = T (tx, tr) and 
that T (x, r) is the tubular neighborhood of radius r > 0 of M × {x}.

Given any set E ⊂ N of finite perimeter, we can replace it by a normalized set symE

by requiring symE ∩ ({p} × R
k) = {p} × D(r(p)), where Hk(D(r(p)) is equal to the 

Hk-measure of E ∩ ({p} × R
k). For such a set we get

Theorem 1.2.

1. |symE| = |E|,
2. P (symE) � P (E).

The proof of Theorem 1.2 is similar to the one of symmetrization in Rn = R
m × R

k

with respect to one of the factors, see Burago and Zalgaller [2, § 9] (or Maggi [14] for 
the case m = 1). The main ingredients are a corresponding inequality for the Minkowski 
content and approximation of finite perimeter sets by sets with smooth boundary.

Given E ⊂ N , we denote by E∗ its orthogonal projection onto M . If E is normalized, 
and u : E∗ → R

+ measures the radius of the disk obtained projecting E ∩ ({p} × R
k)

to R
k, we get, assuming enough regularity on u, that

|E| = ωk

∫
E∗

ukdHm,

Hn−1(∂E) = kωk

∫
E∗

uk−1
√

1 + |∇u|2dHm,

where ωk = Hk(D(1)), and kωk = Hk−1(Sk−1). The above formulas imply
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|T (r)| = ωkr
kHm(M),

P (T (r)) = kωkr
k−1Hm(M),

so that

P (T (r)) = k
(
ωkH

m(M)
)1/k |T (r)|(k−1)/k. (1.3)

The isoperimetric profile of M ×R
k is the function I : (0, +∞) → [0, +∞) defined by

I(v) = inf{P (E); |E| = v}.

An isoperimetric region is a set E ⊂ M × R
k satisfying I(|E|) = P (E). Existence of 

isoperimetric regions in M × R
k is guaranteed by a result of Morgan [17, p. 129], since 

the quotient of M × R
k by its isometry group is compact. From his arguments, it also 

follows that isoperimetric regions are bounded in M × R
k (see also [7]). From (1.3) we 

get

I(v) � k
(
ωkH

m(M)
)1/k

v(k−1)/k, (1.4)

for any v > 0. The regularity of isoperimetric regions in Riemannian manifolds is well-
known, see Morgan [15] and Gonzalez–Massari–Tamanini [8]. The boundary is regular 
except for a singular set of vanishing Hn−7 measure. The following properties of the 
isoperimetric profile hold

Proposition 1.3. The isoperimetric profile I of M×R
k is non-decreasing and continuous.

Proof. Let v1 < v2, and E ⊂ N an isoperimetric region of volume v2. Let 0 < t < 1 so 
that |ϕt(E)| = v1. By (1.2) we have

I(v1) � P (ϕt(E)) � P (E) = I(v2).

This shows that I is non-decreasing.
Let us prove now the right-continuity of I at v. Consider an isoperimetric region E of 

volume v. Take a smooth vector field Z with support in the regular part of the boundary 
of E such that 

∫
E

divZ �= 0. The flow {ϕt}t∈R of Z satisfies (d/dt)|t=0|ϕt(E)| �= 0. Using 
the Inverse Function Theorem we obtain a smooth family {Ew}, for w near v, with 
|Ew| = w and Ev = E. The function f(w) = P (Ew) satisfies f � I and I(v) = f(v). 
This implies that I is right-continuous at v since, for vi ↓ v, we have

I(v) = f(v) = lim
i→∞

f(vi) � lim
i→∞

I(vi) � I(v),

by the monotonicity of I.
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To prove the left-continuity of I at v we take a sequence of isoperimetric regions Ei

with vi = |Ei| ↑ v and we consider balls Bi disjoint from Ei so that |Ei∪Bi| = |Ei| +|Bi|. 
Then I(v) � P (Ei ∪Bi) = I(vi) + P (Bi) � I(v) + P (Bi) by the monotonicity of I, and 
the left-continuity follows by taking limits since limi→∞ P (Bi) = 0. �

We shall also use the following well-known isoperimetric inequalities in M and M×R
k

Lemma 1.4 ([4]). Given 0 < v0 < Hm(M), there exists a constant a(v0) > 0 such that

Hm−1(∂E) � a(v0)Hm(E)

for any set E ⊂ M satisfying 0 < Hm(E) < v0.

Lemma 1.5. Given v0 > 0, there exists a constant c(v0) > 0 so that

I(v) � c(v0) v(n−1)/n (1.5)

for any v ∈ (0, v0).

Lemma 1.5 follows from the facts that I(v) is strictly positive for v > 0 and asymptotic 
to the Euclidean isoperimetric profile when v approaches 0.

2. Large isoperimetric regions in M × R
k

In this Section we shall prove that normalized isoperimetric regions of large volume, 
when scaled down to have constant volume v0, have their boundaries uniformly close to 
the boundary of the normalized tube of volume v0.

If E ⊂ N is any finite perimeter set and T (E) is the tube with the same volume as E, 
we define

E− = E ∩ T (E), E+ = E \ T (E).

Let t > 0, and Ω = ϕt(E). Since ϕt(E+) = Ω+, (1.1) implies

|E+|
|E| = |Ω+|

|Ω| . (2.1)

A similar equality holds replacing E+ by E−.

Proposition 2.1. Let {Ei}i∈N be a sequence of normalized sets with volumes |Ei| → ∞. 
Let v0 > 0 and 0 < ti < 1 so that |ϕti(Ei)| = v0 for all i ∈ N, and let T be the tube of 
volume v0 around M0.

If ϕti(Ei) does not converge to T in the L1-topology, then there is a constant c > 0, 
only depending on {Ei}i∈N, so that, passing to a subsequence, there holds
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Hn−1(∂Ei) � c|Ei|. (2.2)

Proof. Assume T = M × D(r), and set Ωi = ϕti(Ei). As |Ωi| = |T |, we get 2 |Ω+
i | =

|Ωi�T | and, since |Ωi�T | does not converge to 0, the sequence |Ω+
i | does not converge 

to 0 either. Let c1 > 0 be a constant so that lim supi→∞(|Ω+
i |/|Ωi|) > c1. From (2.1) we 

obtain

lim sup
i→∞

|E+
i |

|Ei|
> c1. (2.3)

Now we claim that

lim inf
i→∞

Hm((Ωi ∩ ∂T )∗) < Hm(M). (2.4)

To prove (2.4) we argue by contradiction. Assume that lim infi→∞ Hm((Ωi ∩ ∂T )∗) =
Hm(M). As Ωi is normalized, we have (Ωi ∩ ∂T )∗ ⊂ (Ωi ∩ T )∗ and so (T \ Ωi) ⊂
(M \ (Ωi ∩ ∂T )∗) ×D(r). This implies lim supi→∞ |T \ Ωi| = 0. Since |Ωi| = |T |, we get 
limi→∞ |Ωi�T | = 2 limi→∞ |T \ Ωi| = 0, a contradiction that proves the claim.

Hence there exists w ∈ (0, Hm(M)) so that

lim inf
i→∞

Hm((Ωi ∩ ∂T )∗) < w. (2.5)

Let T (ri) be the normalized tube with |T (ri)| = |Ei|. As Ωi ∩ T = ϕti(Ei ∩ T (ri)), we 
have (Ei∩∂T (ri))∗ = (Ωi∩∂T )∗; from (2.5) we get lim infi→∞ Hm((Ei∩∂T (ri))∗) < w, 
and we obtain

lim inf
i→∞

Hm((Ei ∩ ∂T (s))∗) < w, ∀s � ri. (2.6)

This last step to go from the particular ri to every s � ri is easy to check as, for any 
normalized set E =

⋃
p∈E∗({p} ×D(r(p))), we have (E ∩ ∂T (s))∗ = {p ∈ M : r(p) � s}, 

therefore (E ∩ ∂T (s))∗ ⊂ (E ∩ ∂T (r))∗ whenever s � r.
The above arguments imply, replacing the original sequence by a subsequence, that

|E+
i | > c1 |Ei|, Hm((Ei ∩ ∂T (s))∗) < w, i ∈ N, s � ri. (2.7)

Let a = a(w) be the constant in Lemma 1.4. For the elements of the subsequence 
satisfying (2.7) we have

Hn−1(∂Ei) � Hn−1(∂Ei ∩ (N \ T (ri)))

�
∞∫
Hn−2(∂Ei ∩ ∂T (s)) ds
ri
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�
∞∫

ri

Hn−2(∂(Ei ∩ ∂T (s))) ds

=
∞∫

ri

Hm−1(∂(Ei ∩ ∂T (s))∗)Hk−1(∂D(s)) ds

�
∞∫

ri

aHm((Ei ∩ ∂T (s))∗)Hk−1(∂D(s)) ds

= a

∞∫
ri

Hn−1(Ei ∩ ∂T (s)) ds = a |E+
i | > a c1|Ei|,

thus proving the result. In the previous inequalities we have used the coarea formula for 
the distance function to M × {0}; that ∂(Ei ∩ ∂T (s)) ⊂ ∂Ei ∩ ∂T (s), where the first 
∂ denotes the boundary operator in ∂T (s); the fact that for an O(k)-invariant set F
we have F ∩ ∂T (s) = (F ∩ ∂T (s))∗ × ∂D(s), and so Hr+k−1(F ∩ ∂T (s)) = Hr((F ∩
∂T (s))∗) Hk−1(∂D(s)); that (∂(Ei ∩ ∂T (s)))∗ = ∂(Ei ∩ ∂T (s))∗; and the isoperimetric 
inequality on M given in Lemma 1.4. �
Corollary 2.2. Let {Ei}i∈N be a sequence of normalized isoperimetric sets with volumes 
limi→∞ |Ei| = ∞. Let v0 > 0 and 0 < ti < 1 such that Ωi = ϕti(Ei) has volume v0 for 
all i ∈ N. Then Ωi → T in the L1-topology, where T is the tube of volume v0.

Proof. Regularity results for isoperimetric regions imply that P (Ei) = Hn−1(∂Ei), 
choosing as representative of every isoperimetric set the closure of the set of density 
one points. If Ωi does not converge to T in the L1-topology then, using (2.2) in Propo-
sition 2.1 and (1.4), we get

c |Ei| � P (Ei) � k
(
ωkH

m(M)
)1/k |Ei|(k−1)/k

for a subsequence, thus yielding a contradiction by letting i → ∞ since |Ei| → ∞. �
Using density estimates, we shall show now that the L1 convergence of the scaled 

isoperimetric regions can be improved to Hausdorff convergence.
In a similar way to Leonardi and Rigot [13, p. 18] (see also [21] and David and 

Semmes [3]), given E ⊂ N , we define a function h : Rk × (0, +∞) → R
+ by

h(x,R) =
min

{
|E ∩ T (x,R)|, |T (x,R) \ E|

}
Rn

,

for x ∈ R
k and R > 0. We remark that the quantity h(x, R) is not homogeneous in the 

sense of being invariant by scaling since h(x, R) � 1
2 (kωkH

m(M)) Rk−n, which goes to 
infinity when R goes to 0. When the set E should be explicitly mentioned, we shall write
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h(E, x,R) = h(x,R).

Lemma 2.3. Let E ⊂ N be an isoperimetric region of volume v > v0. Let τ > 1 such 
that Ω = ϕ−1

τ (E) has volume v0. Choose ε so that

0 < ε < min
{
v0,

(
c(v0) v1/k

0
2kωkHm(M)

)n

,

(
c(v0)
8n

)n}
, (2.8)

where c(v0) is as in (1.5).
Then, for any x ∈ R

k and R � 1 so that h(Ω, x, R) � ε, we get

h(Ω, x, R/2) = 0.

Moreover, in case h(Ω, x, R) = |Ω ∩ T (x, R))| R−n, we get |Ω ∩ T (x, R/2)| = 0 and, in 
case h(Ω, x, R) = |T (x, R) \ Ω| R−n, we have |T (x, R/2) \ Ω| = 0.

Proof. Using Lemma 1.5 we get a positive constant c(v0) so that (1.5) is satisfied (i.e., 
I(w) � c(v0) w(n−1)/n, for all 0 � w � v0).

Assume first that

h(x,R) = h(Ω, x, r) = |Ω ∩ T (x,R)|
Rn

.

Define

m(r) = |Ω ∩ T (x, r)|, 0 < r � R.

The function m(r) is non-decreasing and, for r � R � 1, we get

m(r) � m(R) � |Ω ∩ T (x,R)| � εRn � ε < v0 (2.9)

by (2.8). Hence v0 −m(r) > 0 for 0 < r � R.
By the coarea formula, when m′(r) exists, we get

m′(r) = d

dr

r∫
0

Hn−1(Ω ∩ ∂T (x, s)) ds = Hn−1(Ω ∩ ∂T (x, r)).

Now define

λ(r) = v
1/k
0

(v0 −m(r))1/k
= v1/k

|E \ T (τx, τr)|1/k � 1,

and

Ω(r) = ϕλ(r)(Ω \ T (x, r)),
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so that |Ω(r)| = |Ω|. Then

E(r) = ϕτ (Ω(r)) = ϕλ(r)(E \ T (τx, τr)),

and |E(r)| = |E|. Then, using (1.2) for λ(r) � 1 and standard properties of finite perime-
ter sets [14, Lemmas 12.22 and 15.12], we have

I(v) � P (E(r)) � λ(r)k
(
P (E \ T (τx, τr))

)
� v0

v0 −m(r)
(
P (E) − P (E ∩ T (τx, τr)) + 2Hn−1(E ∩ ∂T (τx, τr))

)
.

(2.10)

Since τ � 1 and E ∩ ∂T (τx, τr) is part of a cylinder, using (1.2) again we get

P (E ∩ T (τx, τr) � τk−1P (Ω ∩ T (x, r)) � τk−1c(v0)m(r)(n−1)/n,

Hn−1(E ∩ ∂T (τx, τr)) = τk−1Hn−1(Ω ∩ ∂T (x, r)) = τk−1m′(r).

Replacing these expressions in (2.10), since P (E) = I(v) and τkv0 = v, we have

2m′(r) � m(r)(n−1)/n
(
c(v0) −

m(r)1/n

τk−1v0
I(v)

)

� m(r)(n−1)/n
(
c(v0) −

m(r)1/n

v
1/k
0

I(v)
v(k−1)/k

)

� m(r)(n−1)/n
(
c(v0) −

ε1/n

v
1/k
0

(kωkH
m(M))

)

� c(v0)
2 m(r)(n−1)/n,

(2.11)

where we have also used m(r) � ε, (1.4), and (2.8)
If there is r ∈ [R/2, R] such that m(r) = 0 then, by the monotonicity of the function 

m(r), we would conclude m(R/2) = 0 as well. So we assume m(r) > 0 in [R/2, R]. Then 
by (2.11), we get

c(v0)
4 � m′(t)

m(t)(n−1)/n , H1-a.e.

By (2.9) we get m(R) � εRn. Integrating between R/2 and R,

c(v0)R/8 � n (m(R)1/n −m(R/2)1/n) � nm(R)1/n � n ε1/nR.

This is a contradiction, since ε < (c(v0)/8n)n by (2.8). So the proof in case h(x, R) =
|Ω ∩ T (x, R)| R−n is completed.

Now we deal with the case h(x, R) = |T (x, R) \ Ω| R−n. Define
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m(r) = |T (x, r) \ Ω|.

Then m(r) is a non-decreasing function and

m′(r) = Hn−1(Ωc ∩ ∂T (x, r)) = 1
τk−1 Hn−1(Ec ∩ ∂T (τx, τr)), (2.12)

since Ec ∩ ∂T (τx, τr) is part of a tube. We also have m(r) � m(R) � εRn � ε < v0 by 
(2.8). Observe that

P (E ∪ T (τx, τr) � P (E) − P (T (τx, τr) \ E) + 2Hn−1(Ec ∩ ∂E(τx, τr)). (2.13)

Since ϕτ (T (x, r) \ Ω) = T (τx, τr) \E and τ � 1, we get

P (T (τx, τr) \ E) = P (ϕτ (T (x, r) \ Ω))

� τk−1P (T (x, r) \ Ω) � τk−1 c(v0)m(r)(n−1)/n.
(2.14)

Now, using that I is a non-decreasing function we easily obtain P (E) = I(v) � I(|E ∪
T (τx, τr)|) � P (E ∪T (τx, τr)). We estimate P (E ∪T (τx, τr)) from (2.13). Using (2.14)
and (2.12), we get

I(v) = P (E) � P (E ∪ T (τx, τr))

� I(v) − τk−1c(v0)m(r)(k−1)/k + 2τk−1m′(r),
(2.15)

and so

c(v0)
2 � m′(r)

m(r)(n−1)/n , H1-a.e.

By (2.9) we get m(R) � εRn. Integrating between R/2 and R,

c(v0)R/4 � n (m(R)1/n −m(R/2)1/n) � nm(R)1/n � n ε1/nR,

and we get a contradiction since by (2.8) we have ε < (c(v0)/(8n))n < (c(v0)/(4n))n. 
This concludes the proof. �

Let F ⊂ N , then we define Fr = {x ∈ N : d(x, F ) � r}. We improve now the 
L1-convergence of normalized isoperimetric regions obtained in Corollary 2.2 to Haus-
dorff convergence of their boundaries

Lemma 2.4. Let {Ei}i∈N be a sequence of isoperimetric sets in N with limi→∞ |Ei| = ∞. 
Let v0 > 0 and {ti}i∈N such that limi→∞ ti = 0 and |Ωi| = v0 for all i ∈ N, where 
Ωi = ϕti(Ei). Then for every r > 0, ∂Ωi ⊂ (∂T )r, for large enough i ∈ N, where T is 
the tube of volume v0.
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Proof. Since |Ωi| = v0, using (2.8) we can choose a uniform ε > 0 so that Lemma 2.3
holds with this ε for all Ωi, i ∈ N. This means that, for any x ∈ N and 0 < r � 1, 
whenever h(Ωi, x, r) � ε we get h(Ωi, x, r/2) = 0.

As Ωi → T in L1(N) by Corollary 2.2, we can choose a sequence ri → 0 so that

|Ωi �T | < rn+1
i . (2.16)

Now fix some 0 < r < 1. We reason by contradiction assuming that, for some subse-
quence, there exist

xi ∈ ∂Ωi \ (∂T )r. (2.17)

We distinguish two cases.
First case: xi ∈ N \ T , for a subsequence. Choosing i large enough, (2.17) implies 

T (xi, ri) ∩ T = ∅ and (2.16) yields

|Ωi ∩ T (xi, ri)| � |Ωi \ T | � |Ωi�T | < rn+1
i .

So, for i large enough, we get

h(Ωi, xi, ri) = |Ωi ∩ T (xi, ri)|
rni

< ri � ε.

By Lemma 2.3, we conclude that |Ωi ∩ T (xi, ri/2)| = 0, a contradiction.
Second case: xi ∈ T . Choosing i large enough, (2.17) implies T (xi, ri) ⊂ T and so

|T (xi, ri) \ Ωi| � |T \ Ωi|, for every ri < r.

Then, by (2.16), we get

|T (xi, ri) \ Ωi| � |T \ Ωi| � |Ωi�T | < rn+1
i .

So, for i large enough, we get

h(Ωi, xi, ri) = |T (xi, ri) \ Ωi|
rni

< ri � ε.

By Lemma 2.3, we conclude that |T (xi, ri/2) \ Ωi| = 0, and we get again contradiction 
that proves the Lemma. �
3. Strict O(k)-stability of tubes with large radius

In this Section we consider the orthogonal group O(k) acting on the product M ×R
k

through the second factor.
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Let Σ ⊂ M × R
k be a compact hypersurface with constant mean curvature. It is 

well-known that Σ is a critical point of the area functional under volume-preserving 
deformations, and that Σ is a second order minimum of the area under volume-preserving 
variations if and only if

∫
Σ

(
|∇u|2 − q u2) dΣ � 0, (3.1)

for any smooth function u : Σ → R with mean zero on Σ. In the above formula ∇
is the gradient on Σ and q is the function Ric(ξ, ξ) + |σ|2, where |σ|2 is the sum of the 
squared principal curvatures in Σ, ξ is a unit vector field normal to Σ, and Ric is the 
Ricci curvature on N .

A hypersurface satisfying (3.1) is usually called stable and condition (3.1) is referred to 
as stability condition. In case Σ is O(k)-invariant we can consider an equivariant stability 
condition: we shall say that Σ is strictly O(k)-stable if there exists a positive constant 
λ > 0 such that

∫
Σ

(
|∇u|2 − q u2) dΣ � λ

∫
Σ

u2 dΣ

for any O(k)-invariant function u : Σ → R with mean zero.
We consider now the tube T (r) = M ×D(r). The boundary of T (r) is the O(k)-inva-

riant cylinder Σ(r) = M × ∂D(r), with (k − 1) principal curvatures equal to 1/r. Hence 
its mean curvature is equal to (k−1)/r and the squared norm of the second fundamental 
form satisfies |σ|2 = (k − 1)/r2. The inner unit normal to Σ(r) is the normal to ∂D(r)
in Rk (it is tangent to the factor Rk). This implies Ric(ξ, ξ) = 0.

We have the following result

Lemma 3.1. The cylinder Σ(r) is strictly O(k)-stable if and only if

r2 >
k − 1
λ1(M) ,

where λ1(M) is the first positive eigenvalue of the Laplacian in M .

Proof. Let Σ = Σ(r) = M ×D(r). Observe that an O(k)-invariant function with mean 
zero on Σ is determined by a function u : M → R with 

∫
M

u dM = 0. Hence

∫
Σ

(
|∇u|2 − q u2) dΣ = kωkr

k−1
∫
M

(
|∇Mu|2 − k − 1

r2 u2) dM

� kωkr
k−1

(
λ1(M) − k − 1

r2

) ∫
u2 dM
M
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=
(
λ1(M) − k − 1

r2

) ∫
Σ

u2 dΣ.

This proves the Lemma. �
Using results by White [23] and Grosse-Brauckmann [11] we get

Theorem 3.2. Let T be a normalized tube so that Σ = ∂T is a strictly O(k)-stable cylinder. 
Then there exists r > 0 so that any O(k)-invariant finite perimeter set E with |E| = |T |
and ∂E ⊂ Tr has larger perimeter than T unless E = T .

Proof. Since Σ is strictly O(k)-stable, Grosse-Brauckmann [11, Lemma 5] implies that, 
for some C > 0, Σ has strictly positive second variation for the functional

FC = area + H vol + C

2 (vol − vol(T ))2,

in the sense that the second variation of FC in the normal direction of a function u
satisfies

δ2
uFC =

∫
Σ

(
|∇u|2 − q u2) dΣ + C

(∫
Σ

u dΣ
)2

� λ

∫
Σ

u2 dΣ,

for any smooth O(k)-invariant function u (see the discussion in the proof of Theorem 2 in 
Morgan and Ros [18]). In White’s proof of Theorem 3 in [23] it is observed that a sequence 
of minimizers of FC in tubular neighborhoods of radius 1/i of Σ are almost minimizing, 
and hence C1,α submanifolds that converge Hölder differentiably to Σ, contradicting the 
positivity of the second variation of Σ. Theorem 1.2 implies that the symmetrization 
of these minimizers are again minimizers. Thus we get a family of O(k)-minimizers of 
FC converging Hölder differentiably to Σ, thus contradicting the strict O(k)-stability 
of Σ. �
4. Proof of Theorem 1.1

First we claim that there exists v0 > 0 such that, for any isoperimetric region E of 
volume |E| � v0, the set symE is a tube.

To prove this, consider a sequence of isoperimetric regions {Ei}i∈N with limi→∞ |Ei| =
∞. We know that {symEi}i∈N are also isoperimetric regions. Let T = M×D be a strictly 
O(k)-stable tube, that exists by Lemma 3.1. For large i, we scale down the sets symEi so 
that Ωi = ϕ−1

ti (symEi) has the same volume as T . As symEi is isoperimetric and ti > 1, 
we get from (1.4) and (1.2) that P (Ωi) � P (T ). By Corollary 2.2, the sets {∂Ωi}i∈N

converge to ∂T in Hausdorff distance. By Theorem 3.2, Ωi = T for large i and so symEi

is a tube. This proves the claim. In particular, Hm(E ∩ ({p} × R
k)) = Hm(D) for any 

p ∈ M .
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Hence the isoperimetric profile satisfies I(v) = C v(k−1)/k for the constant C in (1.3)
and any v � v0. We conclude that

I(tkv) = tk−1I(v), whenever tkv � v0. (4.1)

Let E be an isoperimetric region with volume |E| > v0, and t < 1 so that tk|E| = v0. 
Then

I(tk|E|) � P (ϕt(E)) � tk−1P (E) = tk−1I(|E|)

by the inequality corresponding to (1.2) when t � 1. By (4.1), equality holds and the 
unit normal ξ to reg(∂E), the regular part of ∂E, is tangent to the Rk factor. This 
implies that the m-Jacobian of the restriction f of the projection π1 : M × R

k → M to 
the regular part of ∂E is equal to 1. By Federer’s coarea formula for rectifiable sets [6, 
3.2.22] we get

Hn−1(∂E) =
∫
M

Hk−1(f−1(p)) dHm(p).

Assume that symE is the tube T (E) = M ×D. The Euclidean isoperimetric inequality 
implies Hk−1(f−1(p)) � Hk−1({p} × ∂D) and so Hn−1(∂E) � Hn−1(∂T (E)), again 
by the coarea formula. As P (E) = P (symE) = P (T (E)), we get Hk−1(f−1(p)) =
Hk−1(∂D) for Hm-a.e. p ∈ M and so π−1

1 (p) is equal to a disc {p} × Dp for Hm-a.e. 
p ∈ M .

The fact that ξ is tangent to Rk in reg(∂E) implies that reg(∂E) is locally a cylinder of 
the form U×S, where U ⊂ M is an open set and S ⊂ R

k is a smooth hypersurface. Hence 
the discs Dp are centered at the same point (i.e., E is the translation of a normalized 
tube). This concludes the proof of the theorem.

Remark 4.1. The equivariant version of Theorem 2 in Morgan and Ros [18], together 
with Corollary 2.2, can be used to prove Theorem 1.1 for small dimensions.
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