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Abstract

We develop a noncommutative analogue of the spectral decomposition with the quasideterminant de-
fined by I. Gelfand and V. Retakh. In this theory, by introducing a noncommutative Lagrange interpolating
polynomial and combining a noncommutative Cayley–Hamilton’s theorem and an identity given by a
Vandermonde-like quasideterminant, we can systematically calculate a function of a matrix even if it has
noncommutative entries. As examples, the noncommutative spectral decomposition and the exponential
matrices of a quaternionic matrix and of a matrix with entries being harmonic oscillators are given.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Quasideterminant; Spectral decomposition; Noncommutative

1. Introduction

The theory of spectral decomposition of a square matrix over a commutative field is well
known in linear algebra and is used for calculation of a function of the matrix, especially the
exponential matrix. However, for a matrix with noncommutative entries, the determinant or the
characteristic polynomial are not defined because of the ordering problem. Therefore, “eigen-
values” used in the spectral decomposition are undefined and we have no systematic method for
calculation of function of a matrix with noncommutative entries until now.

Under these circumstances, we studied the exponential of a matrix with entries being har-
monic osillators for a model in quantum optics and developed “the quantum diagonalization
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method” for a special type of matrices derived from the representation theory [3]. Moreover,
we had a chance to encounter with the quasideterminant defined by I. Gelfand and V. Retakh.
By using the quasideterminant, “noncommutative determinants” such as quaternionic determi-
nants [1], superdeterminant, quantum determinant, Capelli determinant, etc. are expressed in the
unified form [8]. In the theory of the noncommutative integrable system, quasideterminants are
very useful to express the solution of the noncommutative integrable equations [2,6,7,10]. Fur-
thermore, various noncommutative analogues of theories using determinants are developed, for
example, noncommutative analogue of Cramer’s formula, the Vandermonde determinant, sym-
metric functions, Plücker coordinates, and so on (see [4,5,9] and references therein).

In particular, in [5], they investigated a noncommutative Cayley–Hamilton’s theorem. In their
theory, a different characteristic polynomial for each row was introduced and the trace or determi-
nant were of the form of diagonal matrices. Moreover, we knew through the study of the quantum
diagonalization method that eigenvalues should be generalized as “eigen-diagonalmatrix” due
to the noncommutativity of entries of the matrix. That is why we find that a noncommutative
Cayley–Hamilton’s theorem in [5] is suitable to a noncommutative analogue of the spectral de-
composition.

In this paper, we define a noncommutative analogue of the Lagrange interpolating poly-
nomial and develop a noncommutative analogue of the spectral decomposition by using the
noncommutative Cayley–Hamilton’s theorem with the quasideterminant. An identity given by
a Vandermonde-like quasideterminant plays an essential role. As examples, we explicitly calcu-
late the noncommutative spectral decomposition and the exponential matrices of a quaternionic
matrix and of a matrix with entries being harmonic oscillators.

The contents of this paper are as follows. In Section 2, we give a brief review of the spec-
tral decomposition in linear algebra. In Section 3, we introduce the quasideterminant defined by
I. Gelfand and V. Retakh and describe some important properties used in our theory. In Sec-
tion 4, we review the noncommutative Cayley–Hamilton’s theorem in [5] shortly. In Section 5,
we develop a noncommutative analogue of the spectral decomposition with the quasidetermi-
nant. In Section 6, we apply our method to a quaternionic matrix and a matrix with entries being
harmonic oscillators. Section 7 is devoted to discussion.

2. Brief review of the spectral decomposition

Firstly, we give a brief review of the spectral decomposition in linear algebra.
Let A be an (n × n)-matrix with commutative entries. For simplicity, we suppose that all the

eigenvalues λ1, . . . , λn of A are distinct. For j = 1, . . . , n, we set

Pj =
∏

1�i�n, i �=j

(A − λiI )

(λj − λi)
.

The polynomial of right-hand side is called the Lagrange interpolating polynomial. Then we have
the spectral decomposition of A:

A = λ1P1 + · · · + λnPn.

Moreover, if the Cayley–Hamilton’s theorem holds, then P1, . . . ,Pn are projection matrices i.e.

P 2
i = Pi, PiPj = O (i �= j), P1 + · · · + Pn = I.



T. Suzuki / Advances in Mathematics 217 (2008) 2141–2158 2143
Therefore, we can calculate expA explicitly:

expA = eλ1P1 + · · · + eλnPn.

Remark 1. Lagrange interpolating polynomials fj (z) = ∏
1�i�n, i �=j

(z−xi )
(xj −xi )

(j = 1, . . . , n) sat-
isfy the following relations:

(1) x
j

1 f1(z) + x
j

2 f2(z) + · · · + x
j
nfn(z) = zj (j = 0,1, . . . , n − 1).

(2) fi(xj ) = δij .

We note that from (1), if x1, . . . , xn are all distinct, then we have⎛
⎝f1(z)

...

fn(z)

⎞
⎠ =

(
xn−1

1 · · · xn−1
n

· · ·
1 · · · 1

)−1 ⎛
⎝ zn−1

...

1

⎞
⎠ .

3. Quasideterminant

In this section, we introduce the quasideterminant defined by I. Gelfand and V. Retakh and
describe some important properties used in our theory.

3.1. Definition

Let R be a (not necessary commutative) associative algebra. For a position (i, j) in a square
matrix A = (ars)1�r,s�n ∈ M(n,R), let Aij denote the (n − 1) × (n − 1)-matrix obtained from
A by deleting the ith row and the j th column. Let also ri j = (ai1, . . . , âij , . . . , ain) and cj

i =
(a1j , . . . , âij , . . . , anj )

T .

Definition 1. We assume that Aij is invertible over R. The (i, j)-quasideterminant of A is defined
by

|A|ij = aij − ri
j · (Aij

)−1 · cj
i . (1)

Example 2. For A = ( a11 a12
a21 a22

)
,

|A|11 = a11 − a12a
−1
22 a21, |A|12 = a12 − a11a

−1
21 a22,

|A|21 = a21 − a22a
−1
12 a11, |A|22 = a22 − a21a

−1
11 a12.

It is sometimes convenient to adopt the following more explicit notation

|A|11 =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11 − a12a
−1
22 a21.

Remark 3. If the elements aij of the matrix A commute, then

|A|ij = (−1)i+j detA

detAij
.
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3.2. Inverse matrix and quasideterminant

Proposition 2. If all |A|−1
ij exist, A−1 is given by

A−1 = (|A|−1
ji

)
1�i,j�n

.

Example 4. For a quaternionic matrix A = ( 1 i
j k

)
,

|A|−1
11 = (

1 − i · k−1j
)−1 = (1 + ikj)−1 = 1

2
,

|A|−1
21 = (

j − k · i−11
)−1 = (j + ki)−1 = (2j)−1 = −j

2
,

|A|−1
12 = (

i − 1 · j−1k
)−1 = (i + jk)−1 = (2i)−1 = − i

2
,

|A|−1
22 = (

k − j · 1−1i
)−1 = (k − ji)−1 = (2k)−1 = −k

2
.

Therefore

A−1 = 1

2

(
1 −j

−i −k

)
.

Example 5. We can calculate quasideterminants inductively:∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣ = a11 − (a12 a13)

( |A11|−1
22 |A11|−1

32
|A11|−1

23 |A11|−1
33

)(
a21
a31

)

= a11 − a12
(
a22 − a23a

−1
33 a32

)−1
a21 − a12

(
a32 − a33a

−1
23 a22

)−1
a31

− a13
(
a23 − a22a

−1
32 a33

)−1
a21 − a13

(
a33 − a32a

−1
22 a23

)−1
a31.

3.3. Homological relations

For A = (aij ) ∈ M(n,R), n2 quasideterminants are defined. They are related by the so-called
homological relations. For example,∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = −a22 a−1
12

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ .
In general, we have important identities as follows:

Proposition 3.

1. Row homological relations:

−|A|ij · ∣∣Ail
∣∣−1
sj

= |A|il · ∣∣Aij
∣∣−1
sl

, s �= i.

2. Column homological relations:

−∣∣Akj
∣∣−1
it

· |A|ij = ∣∣Aij
∣∣−1
kt

· |A|kj , t �= j.
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3.4. The multiplication of rows and columns

Let B be the matrix obtained from the matrix A by multiplying the ith row by λ ∈ R, then

|B|kj =
{

λ|A|ij if k = i,

|A|kj if k �= i.

Let C be the matrix obtained from the matrix A by multiplying the j th column by μ ∈ RC then

|C|il =
{ |A|ijμ if l = j,

|A|il if l �= j.
(2)

Example 6.

∣∣∣∣a11 a12μ

a21 a22μ

∣∣∣∣ = a12μ − a11a
−1
21 a22μ = |A|12μ,

∣∣∣∣a11μ a12
a21μ a22

∣∣∣∣ = a12 − a11μ(a21μ)−1a22 = |A|12.

3.5. Sylvester’s identity

Let A = (aij ) ∈ M(n,R) be a matrix and A0 = (aij ), i, j = 1, . . . , k, a submatrix of A that is
invertible over R. For p,q = k + 1, . . . , n, set

cpq =

∣∣∣∣∣∣∣∣

a1q

A0
...

akq

ap1 · · · apk apq

∣∣∣∣∣∣∣∣
. (3)

These quasideterminants are defined because matrix A0 is invertible.
Consider the (n − k) × (n − k) matrix

C = (cpq), p, q = k + 1, . . . , n.

The submatrix A0 is called the pivot for the matrix C.

Theorem 4 (Sylvester’s identity). For i, j = k + 1, . . . , n,

|A|ij = |C|ij .

Example 7.

∣∣∣∣∣
1 a12 a13
0 a22 a23
0 a a

∣∣∣∣∣ (i, j = 2,3).
32 33 ij



2146 T. Suzuki / Advances in Mathematics 217 (2008) 2141–2158
Applying Theorem 4 with the (1,1)-entry 1 as a pivot, we put

cpq =
∣∣∣∣1 a1q

0 apq

∣∣∣∣
pq

= apq (p, q = 2,3)

and

∣∣∣∣∣
1 a12 a13
0 a22 a23
0 a32 a33

∣∣∣∣∣
ij

= |C|ij =
∣∣∣∣a22 a23
a32 a33

∣∣∣∣
ij

(i, j = 2,3).

4. Noncommutative version of the characteristic polynomial and the Cayley–Hamilton’s
theorem

In this section, we review the noncommutative Cayley–Hamilton’s theorem in [5] shortly.
We use notations Φi(λ), C(i)j instead of Qi(t), L

(i)
j (A) in it. For A = ( a11 a12

a21 a22

)
, we denote

Φ1(λ),Φ2(λ) as two polynomials given by

Φ1(λ) = λ2 − (
a11 + a12a22a

−1
12

)
λ + (

a12a22a
−1
12 a11 − a12a21

)
≡ λ2 − tr1(A)λ + det 1(A),

Φ2(λ) = λ2 − (
a22 + a21a11a

−1
21

)
λ + (

a21a11a
−1
21 a22 − a21a12

)
≡ λ2 − tr2(A)λ + det 2(A).

Then we can check the noncommutative Cayley–Hamilton’s theorem for the generic matrix of
order 2:

A2 −
(

tr1(A) 0
0 tr2(A)

)
A +

(
det 1(A) 0

0 det 2(A)

)
= O.

The general result is as follows. We also give a simple proof.

Theorem 5. (See [5].) For A = (aij ) ∈ M(n,R), we define a “noncommutative characteristic
polynomial for the ith row” as follows:

Φi(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

a
(n)
i1 a

(n)
i2 · · · a

(n)
in λn

a
(n−1)
i1 a

(n−1)
i2 · · · a

(n−1)
in λn−1

...
...

...
...

a
(1)
i1 a

(1)
i2 · · · a

(1)
in λ

a
(0)
i1 a

(0)
i2 · · · a

(0)
in 1

∣∣∣∣∣∣∣∣∣∣∣∣
≡ λn −

n∑
C(i)kλ

n−k, (4)

k=1
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where Ak = (a
(k)
ij ). Then we have a noncommutative version of the Cayley–Hamilton theorem

An −
n∑

k=1

⎛
⎜⎜⎝

C(1)k

C(2)k

. . .

C(n)k

⎞
⎟⎟⎠An−k = O. (5)

Proof. For unknown C(i)k (i, k = 1, . . . , n), consider Eq. (5). Then the (i, j)-entry of (5) is

a
(n)
ij −

n∑
k=1

C(i)ka
(n−k)
ij = 0 (i, j = 1, . . . , n), (6)

namely

(C(i)1, . . . ,C(i)n)

⎛
⎜⎝

a
(n−1)
i1 · · · a

(n−1)
in

...
...

a
(0)
i1 · · · a

(0)
in

⎞
⎟⎠ = (

a
(n)
i1 , . . . , a

(n)
in

)
. (7)

Therefore we obtain C(i)k by solving the linear equations (7). Moreover, by using (6), the non-
commutative characteristic polynomial for the ith row is written as

Φi(λ) =

∣∣∣∣∣∣∣∣∣

∑n
k=1 C(i)ka

(n−k)
i1 · · · ∑n

k=1 C(i)ka
(n−k)
in λn

a
(n−1)
i1 · · · a

(n−1)
in λn−1

...
...

...

a
(0)
i1 · · · a

(0)
in 1

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

0 · · · 0 λn − ∑n
k=1 C(i)kλ

n−k

a
(n−1)
i1 · · · a

(n−1)
in λn−1

...
...

...

a
(0)
i1 · · · a

(0)
in 1

∣∣∣∣∣∣∣∣∣∣
= λn −

n∑
k=1

C(i)kλ
n−k. �

By this proof, we obtain an important corollary.

Corollary 6. If an identity (5) holds, the noncommutative characteristic polynomials Φi(λ) de-
fined by (4) are equal to λn −∑n

k=1 C(i)kλ
n−k . Especially, the (usual) Cayley–Hamilton theorem

for A (i.e. C(i)k = Ck for all i) holds, then Φi(λ) (i = 1, . . . , n) coincide with the usual charac-
teristic polynomial Φ(λ) of A.

Moreover, as a contraposition, we have the following:
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Corollary 7. For a given matrix A, if the noncommutative characteristic polynomials Φi(λ) are
different for each i, then no commutative-Cayley–Hamilton-theorem type of identity with respect
to A exists.

Example 8. Let A be a matrix Aq = (aij ) of the generators of the quantum group GLq(n), the
noncommutative Cayley–Hamilton theorem (the quantum Cayley–Hamilton theorem) holds [5].
For example, n = 2, by using relations

a11a22 − a22a11 = (
q−1 − q

)
a12a21, a12a22 = q−1a22a12,

a11a21 = q−1a21a11, a12a21 = a21a12,

we have

A2
q − (

q1/2a11 + q−1/2a22
)(

q−1/2 0
0 q1/2

)
Aq + (

a11a22 − q−1a12a21
)(

q−1 0
0 q

)
= O.

However, the noncommutative characteristic polynomials for each row do not coincide each
other:

Φ1(λ) = λ2 − (
a11 + q−1a22

)
λ + q−1a11a22 − q−2a12a21,

Φ2(λ) = λ2 − (qa11 + a22)λ + qa11a22 − a12a21.

Therefore, there is no identity for A of commutative-Cayley–Hamilton-theorem type.

5. Noncommutative spectral decomposition

In this section, we develop a noncommutative analogue of the spectral decomposition with the
quasideterminant. First, we review the Vandermonde quasideterminant and define a noncommu-
tative analogue of the Lagrange interpolating polynomial. Next, we present the main theorem and
our method of a noncommutative spectral decomposition. We also give a proof of the theorem
by using properties of the quasideterminant prepared in Section 3.

5.1. Vandermonde quasideterminant

First, for x1, x2, . . . , xk ∈ R, the Vandermonde quasideterminant [4,5] is defined by

V (x1, . . . , xk) =

∣∣∣∣∣∣∣∣
xk−1

1 · · · xk−1
k· · ·

x1 · · · xk

1 · · · 1

∣∣∣∣∣∣∣∣
.

Example 9.

V (x1, x2, z) =
∣∣∣∣∣∣
x2

1 x2
2 z2

x1 x2 z

∣∣∣∣∣∣
1 1 1
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= z2 − (
x2

1 x2
2

)(
x1 x2
1 1

)−1 (
z

1

)

= z2 − (
x2

1 x2
2

)(
(x1 − x2)

−1 (1 − x−1
2 x1)

−1

(x2 − x1)
−1 (1 − x−1

1 x2)
−1

)(
z

1

)

= z2 + (−x1 − (x2 − x1)x2(x2 − x1)
−1 (x2 − x1)x2(x2 − x1)

−1x1
)(

z

1

)

= z2 + (−(y1 + y2) y2y1
)(

z

1

)

= z2 − (y1 + y2)z + y2y1

where we put y1 = x1, y2 = (x2 − x1)x2(x2 − x1)
−1. This is the noncommutative version of the

relationship between solutions and coefficients for a (left) algebraic equation of degree 2 [4].

Remark 10. If z = A = (aij ) ∈ M(2,R) and xj = ( x(1)j

x(2)j

)
(j = 1,2), yj (j = 1,2) are also

diagonal matrices. Moreover, comparing the equation V (x1, x2,A) = A2 − (y1 + y2)A+ y2y1 =
O with the noncommutative Cayley–Hamilton’s theorem

A2 −
(

C(1)1
C(2)1

)
A −

(
C(1)2

C(2)2

)
= O,

if y1 + y2 = ( C(1)1
C(2)1

)
and y2y1 = −( C(1)2

C(2)2

)
, by the relationship between solutions and

coefficients again, x(i)1, x(i)2 are the solutions of the noncommutative characteristic equation of
A for the ith row.

For a given z = A = (aij ) ∈ M(n,R) and the equation V (x1, . . . , xn,A) = O , diagonal com-
ponents of diagonal matrices xj are the solutions of the noncommutative characteristic equations
of A in the same way.

5.2. Noncommutative Lagrange interpolating polynomial

For x1, . . . , xn ∈ R, suppose that the inverse of the Vandermonde matrix
(

xn−1
1 ··· xn−1

n···
1 ··· 1

)−1
ex-

ists. Then we define polynomials fi(z) (i = 1, . . . , n) with respect to z ∈ R as follows.

Definition 8.

⎛
⎝f1(z)

...

fn(z)

⎞
⎠ =

(
xn−1

1 · · · xn−1
n

· · ·
1 · · · 1

)−1 ⎛
⎝ zn−1

...

1

⎞
⎠ .

We call them noncommutative Lagrange interpolating polynomials.



2150 T. Suzuki / Advances in Mathematics 217 (2008) 2141–2158
Example 11. For n = 2,

f1(z) =
∣∣∣∣ x1 x2

1 1

∣∣∣∣
−1

z +
∣∣∣∣ x1 x2

1 1

∣∣∣∣
−1

1

= (x1 − x2)
−1z + (

1 − x−1
2 x1

)−1

= (x1 − x2)
−1z + (x2 − x1)

−1x2

= (x1 − x2)
−1(z − x2),

f2(z) =
∣∣∣∣x1 x2

1 1

∣∣∣∣
−1

z +
∣∣∣∣x1 x2

1 1

∣∣∣∣
−1

1

= (x2 − x1)
−1z + (

1 − x−1
1 x2

)−1

= (x2 − x1)
−1(z − x1).

By the definition above, we obtain the following theorem.

Theorem 9. For x1, . . . , xn, z ∈ R, we have

(1) x
j

1 f1(z) + x
j

2 f2(z) + · · · + x
j
nfn(z) = zj (j = 0,1, . . . , n − 1),

(2) fi(xj ) = δij .

5.3. Our method of noncommutative spectral decomposition

Theorem 10 (Main Theorem). If given z, x1, . . . , xn ∈ R satisfy the equation V (x1, . . . , xn, z) =
0, then we have the following identities

Vm ≡

∣∣∣∣∣∣∣
xm

1 · · · xm
n zm

xn−1
1 · · · xn−1

n zn−1

· · ·
1 · · · 1 1

∣∣∣∣∣∣∣ = 0 (m = 0, . . . , n, n + 1, . . .). (8)

Rewriting (8), by the definition of noncommutative Lagrange interpolating polynomials

zm = (
xm

1 · · · xm
n

)(
xn−1

1 · · · xn−1
n

· · ·
1 · · · 1

)−1 ⎛
⎝ zn−1

...

1

⎞
⎠

= xm
1 f1(z) + · · · + xm

n fn(z),

then we have the noncommutative spectral decomposition of z

zm = xm
1 f1(z) + · · · + xm

n fn(z) (m = 0,1, . . .).

In particular, if z is a matrix A = (aij ) ∈ M(n,R), put x1, . . . , xn as unknown diagonal matri-
ces and solve the equation

V (x1, . . . , xn,A) = O.
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By Remark 10, this equation is nothing but the noncommutative Cayley–Hamilton’s theorem
and the diagonal components of diagonal matrices xj are the solutions of the noncommutative
characteristic equations of A. Therefore, by using the solutions of them, we obtain the noncom-
mutative spectral decomposition of A

Am = xm
1 f1(A) + · · · + xm

n fn(A) (m = 0,1, . . .).

5.4. A proof of Main Theorem 10

Proof. In case of m = 0,1, . . . , n − 1, the identity (8) is trivial. If m = n, (8) is nothing but
V (x1, . . . , xn, z) = 0. In the following, we suppose m = n + 1, n + 2, . . . .

Consider a matrix A and the submatrix A0 defined by

A =

⎛
⎜⎜⎜⎜⎜⎝

xm
1 · · · xm

n 0 zm

xn
1 · · · xn

n 0 zn

xn−1
1 · · · xn−1

n 0 zn−1

· · · ...
...

1 · · · 1 1 1

⎞
⎟⎟⎟⎟⎟⎠ , A0 =

(
xn−1

1 · · · xn−1
n

· · ·
1 · · · 1

)
.

For p = 1,2, q = n + 1, n + 2, we put a matrix C = (cpq) which entries are quasideterminants
with A0 as a pivot like (3) (note that quasideterminants are unchanged under permutations of
rows or columns) and we remark

c1,n+2 =

∣∣∣∣∣∣∣∣
xm

1 · · · xm
n zm

zn−1

A0
...

1

∣∣∣∣∣∣∣∣
= Vm,

c2,n+2 =

∣∣∣∣∣∣∣∣
xn

1 · · · xn
n zn

zn−1

A0
...

1

∣∣∣∣∣∣∣∣
= V (x1, . . . , xn, z) = Vn.

Then by the Sylvester’s identity (Theorem 4), we have

|A|1,n+2 = |C|1,n+2 =
∣∣∣∣ c1,n+1 c1,n+2
c2,n+1 c2,n+2

∣∣∣∣
= c1,n+2 − c1,n+1c

−1
2,n+1c2,n+2

= Vm − c1,n+1c
−1
2,n+1Vn.

On the other hand, since



2152 T. Suzuki / Advances in Mathematics 217 (2008) 2141–2158
|A|1,n+2 =

∣∣∣∣∣∣∣∣∣∣∣

xm
1 · · · xm

n 0 zm

xn
1 · · · xn

n 0 zn

xn−1
1 · · · xn−1

n 0 zn−1

... · · · ...
...

...

1 · · · 1 1 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣

xm
1 · · · xm

n zm 0
xn

1 · · · xn
n zn 0

xn−1
1 · · · xn−1

n zn−1 0
... · · · ...

...
...

1 · · · 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

xm
1 · · · xm

n zm

xn
1 · · · xn

n zn

xn−1
1 · · · xn−1

n zn−1

... · · · ...
...

x1 · · · xn z

∣∣∣∣∣∣∣∣∣∣∣

(
by the Sylvester’s identity with
(n + 2, n + 2)-entry 1 as a pivot

)

=

∣∣∣∣∣∣∣∣∣∣∣∣

xm−1
1 · · · xm−1

n zm−1

xn−1
1 · · · xn−1

n zn−1

xn−2
1 · · · xn−2

n zn−2

... · · · ...
...

1 · · · 1 1

∣∣∣∣∣∣∣∣∣∣∣∣
z

(
by the property (2)

)

= Vm−1z,

we obtain the important identities

Vm−1z = Vm − c1,n+1c
−1
2,n+1Vn. (9)

Therefore Vn = 0 implies Vm = 0 (m = n + 1, n + 2, . . .) by the mathematical induction. �
Remark 12. In particular, for n = 2,

Vm = zm − (
xm

1 xm
2

)(
x1 x2
1 1

)−1 (
z

1

)
= zm − (

xm
1 f1(z) + xm

2 f2(z)
)
.

Then the identity (9) is

{
zm−1 − (

xm−1
1 f1(z) + xm−1

2 f2(z)
)}

z

= zm − (
xm

1 f1(z) + xm
2 f2(z)

)
− (

xm−1
2 − xm−1

1

)
(x2 − x1)

−1{z2 − (
x2

1f1(z) + x2
2f2(z)

)}
(m = 2,3, . . .). (10)

6. Examples of noncommutative spectral decomposition and the exponential matrices

In this section, we apply our method to a quaternionic matrix and a matrix with entries being
harmonic oscillators. As a result, we obtain the noncommutative spectral decomposition and the
exponential matrices of them explicitly.
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6.1. Quaternionic matrices

As a quaternionic matrix, we consider an element A of Lie algebra sp(2):

A =
(

i j

j −i

)
.

We apply our method to A and calculate the spectral decomposition and the exponential matrix
exp tA explicitly. First, from

A2 =
( −2 2k

−2k −2

)
,

noncommutative characteristic equations for each row are

Φ1(λ) =
∣∣∣∣∣∣
−2 2k λ2

i j λ

1 0 1

∣∣∣∣∣∣ = λ2 − 2iλ = 0,

then λ = 0,2i, and

Φ2(λ) =
∣∣∣∣∣∣
−2k −2 λ2

j −i λ

0 1 1

∣∣∣∣∣∣ = λ2 + 2iλ = 0,

then λ = 0,−2i.
Next, in the noncommutative Lagrange interpolating polynomials

f1(z) = (x1 − x2)
−1(z − x2), f2(z) = (x2 − x1)

−1(z − x1),

we put z = A, x1 = ( 2i
−2i

)
, x2 = ( 0

0

)
, then

P1 = f1(A) =
(

2i

−2i

)−1

A = 1

2

(
1 −k

k 1

)
,

P2 = f2(A) =
{(

2i

−2i

)}−1 {
A −

(
2i

−2i

)}
= 1

2

(
1 k

−k 1

)
.

We can check P 2
i = Pi , PiPj = 0 (i �= j) easily and we obtain

exp tA = (exp tx1)P1 + (exp tx2)P2

=
(

e2it

e−2it

)
1

2

(
1 −k

k 1

)
+

(
1

1

)
1

2

(
1 k

−k 1

)

= 1

2

(
e2it + 1 −e2it k + k

e−2it k − k e−2it + 1

)

=
(

eit cos t eit sin tj

e−it sin tj e−it cos t

)
∈ Sp(2).
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Remark 13. If we put

x1 =
(

2i

0

)
, x2 =

(
0

−2i

)
,

we have [A,x1] �= O , [A,x2] �= O and f1(A), f2(A) are not projection matrices. Nevertheless,
by Theorem 10, we have Am = xm

1 f1(A) + xm
2 f2(A) and we can calculate exp tA explicitly.

This result is derived from the fact that Theorem 10 not depends on the ordering of solutions for
noncommutative characteristic equations for each row.

6.2. A matrix with entries being harmonic oscillators

Let a, a† be the generator of the harmonic oscillator. The relation is [a, a†] = 1. We also
denote N as the number operator N = a†a.

We consider a matrix A = √
2
( 0 a 0

a† 0 a

0 a† 0

)
. This matrix is related to a Hamiltonian of a model

in quantum optics [3]. So, it is important to calculate the exponential of A as the time-evolution
operator of the Hamiltonian.

From

A2 = 2

(
N + 1 0 a2

0 2N + 1 0
(a†)2 0 N

)
, A3 = 2

√
2

( 0 (2N + 3)a 0
(2N + 1)a† 0 (2N + 1)a

0 (2N − 1)a† 0

)
,

the noncommutative characteristic equations for each row are

Φ1(λ) =

∣∣∣∣∣∣∣
0 2

√
2(2N + 3)a 0 λ3

2(N + 1) 0 2a2 λ2

0
√

2a 0 λ

1 0 0 1

∣∣∣∣∣∣∣ = λ3 − 2(2N + 3)λ = 0,

then λ = ±√
2(2N + 3),0, and

Φ3(λ) =

∣∣∣∣∣∣∣
0 2

√
2(2N − 1)a† 0 λ3

2(a†)2 0 2N λ2

0
√

2a† 0 λ

0 0 1 1

∣∣∣∣∣∣∣ = λ3 − 2(2N − 1)λ = 0,

then λ = ±√
2(2N − 1),0.

Remark 14. For the second row, the quasideterminant

Φ2(λ) =

∣∣∣∣∣∣∣
2
√

2(2N + 1)a† 0 2
√

2(2N + 1)a λ3

0 2(2N + 1) 0 λ2√
2a† 0

√
2a λ

∣∣∣∣∣∣∣

0 1 0 1
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is not defined because “rank” of the matrix
( 0 2(2N+1) 0√

2a† 0
√

2a
0 1 0

)
is 2 (on “rank of A ∈ M(n,R),”

see [4]). Then, we put

A3 + UA2 + V A + W = 0, U,V,W are diagonal matrices

and simplify them, then the second row is

λ3 + uλ2 − 2(2N + 1)λ − 2u(2N + 1) = 0 (for arbitrary u).

Therefore, if we put u = 0, we obtain λ = ±√
2(2N + 1),0.

Next, we calculate the noncommutative Lagrange interpolating polynomials

f1(z) =
∣∣∣∣∣∣

x2
1 x2

2 x2
3

x1 x2 x3
1 1 1

∣∣∣∣∣∣
−1

z2 +
∣∣∣∣∣

x2
1 x2

2 x2
3

x1 x2 x3
1 1 1

∣∣∣∣∣
−1

z +
∣∣∣∣∣
x2

1 x2
2 x2

3
x1 x2 x3
1 1 1

∣∣∣∣∣
−1

1

= (
x2

1 − x2
2(x2 − x3)

−1x1 − x2
3(x3 − x2)

−1x1

− x2
2(x3 − x2)

−1x3 − x2
3(x2 − x3)

−1x2
)−1

z2

+ (
x1 − x2

(
x2

2 − x2
3

)−1
x2

1 − x3
(
x2

3 − x2
2

)−1
x2

1

− x2
(
x2

3 − x2
2

)−1
x2

3 − x3
(
x2

2 − x2
3

)−1
x2

2

)−1
z

+ (
1 − (

x2
2 − x3x2

)−1
x2

1 − (
x2

3 − x2x3
)−1

x2
1

− (
x2 − x−1

3 x2
2

)−1
x1 − (

x3 − x−1
2 x2

3

)−1
x1

)−1
.

In particular, in the case of x1 = x, x2 = 0, x3 = −x,

f1(z) = (
x2 − (−x)2(−x)−1x

)−1
z2 + (

x − (−x)(−x)−2x2)−1
z + 0

= (
2x2)−1

z2 + (2x)−1z,

where the last term of f1(z) is calculated by using the homological relation as follows:

∣∣∣∣∣
x2

1 x2
2 x2

3
x1 x2 x3
1 1 1

∣∣∣∣∣
−1

= −
∣∣∣∣∣

x2
1 x2

2 x2
3

x1 x2 x3
1 1 1

∣∣∣∣∣
−1 ∣∣∣∣ x2

2 x2
3

x2 x3

∣∣∣∣
∣∣∣∣x2

2 x2
3

1 1

∣∣∣∣
−1

= −
∣∣∣∣∣

x2
1 x2

2 x2
3

x1 x2 x3
1 1 1

∣∣∣∣∣
−1 (

x2 − x−1
3 x2

2

)(
1 − x−2

3 x2
2

)−1

→ −(2x)−1 · 0 · 1 = 0 (x1 → x, x2 → 0, x3 → −x).
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Then we put

z = A, x =
(

λ(N)

λ(N − 1)

λ(N − 2)

)
, λ(N) = √

2(2N + 3),

we have

P1 = f1(A)

= (
2x2)−1

A2 + (2x)−1A

=
(

(2λ(N))−2

(2λ(N − 1))−2

(2λ(N − 2))−2

)
· 2

(
N + 1 0 a2

0 2N + 1 0
(a†)2 0 N

)

+
(

(2λ(N))−1

(2λ(N − 1))−1

(2λ(N − 2))−1

)
· √2

( 0 a 0
a† 0 a

0 a† 0

)

=
⎛
⎝

1
2(2N+3)

1
2(2N+1)

1
2(2N−1)

⎞
⎠(

N + 1 0 a2

0 2N + 1 0
(a†)2 0 N

)

+
⎛
⎜⎝

1
2
√

2N+3
1

2
√

2N+1
1

2
√

2N−1

⎞
⎟⎠

( 0 a 0
a† 0 a

0 a† 0

)

=
⎛
⎜⎝

N+1
2(2N+3)

1
2
√

2N+3
a 1

2(2N+3)
a2

1
2
√

2N+1
a† 1

2
1

2
√

2N+1
a

1
2(2N−1)

(a†)2 1
2
√

2N−1
a† N

2(2N−1)

⎞
⎟⎠ .

In the same manner, if we put z = A, x1 = x, x2 = 0, x3 = −x in f2(z), f3(z), then we have

P2 = f2(A)

= (−x2)−1
A2 + I3

= −
⎛
⎝

1
2(2N+3)

1
2(2N+1)

1
2(2N−1)

⎞
⎠ · 2

(
N + 1 0 a2

0 2N + 1 0
(a†)2 0 N

)
+

(1
1

1

)

=
( N+2

2N+3 0 − 1
2N+3a2

0 0 0
− 1

2N−1 (a†)2 0 N−1
2N−1

)
,

P3 = f3(A) = (
2x2)−1

A2 − (2x)−1A

=
⎛
⎝

1
2(2N+3)

1
2(2N+1)

1

⎞
⎠(

N + 1 0 a2

0 2N + 1 0
(a†)2 0 N

)

2(2N−1)
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−
⎛
⎜⎝

1
2
√

2N+3
1

2
√

2N+1
1

2
√

2N−1

⎞
⎟⎠

( 0 a 0
a† 0 a

0 a† 0

)

=
⎛
⎜⎝

N+1
2(2N+3)

− 1
2
√

2N+3
a 1

2(2N+3)
a2

− 1
2
√

2N+1
a† 1

2 − 1
2
√

2N+1
a

1
2(2N−1)

(a†)2 − 1
2
√

2N−1
a† N

2(2N−1)

⎞
⎟⎠ .

We can check P 2
i = Pi , PiPj = 0 (i �= j) and for a constant g,

exp(−itgA)

= exp(−itgx)P1 + (exp 0)P2 + exp(itgx)P3

=
⎛
⎝

N+2+(N+1) cos(tgλ(N))
2N+3 −i 1√

2N+3
sin(tgλ(N))a 1

2N+3 (−1 + cos(tgλ(N)))a2

−i 1√
2N+1

sin(tgλ(N − 1))a† cos(tgλ(N − 1)) −i 1√
2N+1

sin(tgλ(N − 1))a

1
2N−1 (−1 + cos(tgλ(N − 2)))(a†)2 −i 1√

2N−1
sin(tgλ(N − 2))a† N−1+N cos(tgλ(N−2))

2N−1

⎞
⎠.

Remark 15. For this A, by using “the quantum diagonalization method” [3],

⎛
⎝1

a 1√
N

a2 1√
N(N−1)

⎞
⎠A

⎛
⎝1

1√
N

a†

1√
N(N−1)

(a†)2

⎞
⎠

= √
2

( 0
√

N + 1 0√
N + 1 0

√
N + 2

0
√

N + 2 0

)
.

Since the matrix on the right-hand side has only commutative entries, we calculate the character-
istic equation as usual, then

λ3 − 2(2N + 3)λ = 0, λ = 0,±√
2(2N + 3).

We remark that the result of exp(−itgA) in [3] and the explicit form of it with our noncommu-
tative spectral decomposition described in this section coincide.

7. Discussion

In this paper, we developed a noncommutative version of the spectral decomposition with
the quasideterminant and calculated some interesting examples. In particular, we defined a non-
commutative analogue of the Lagrange interpolating polynomials and applied to the systematic
method for constructing projection matrices with noncommutative entries.

Our method is very powerful to calculate a function of a matrix with noncommutative entries
and is expected to apply for the theory of noncommutative geometry, quantum physics, and so
on. A study of other applications with our theory is in progress.
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