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Abstract This paper presents the model of calculating the total friction moment of space gyro-

scope ball bearings which usually work under ultra-low oscillatory motion and are very sensitive

to the friction moment. The aim is to know the proportion of the friction moment caused by each

frictional source in the bearing’s total friction moment, which is helpful to optimize the bearing

design to deduce the friction moment. In the model, the cage dynamic equations considering six

degree-of-freedom and the balls dynamic equations considering two degree-of-freedom were solved.

The good trends with different loads between the measured friction moments and computational

results prove that the model under constant rate was validated. The computational results show that

when the speed was set at 5 r/min, the bearing’s maximum total friction moment when oscillation

occurred was obviously larger than that occurred at a constant rate. At the onset of each oscillatory

motion, the proportion of the friction moment caused by cage in the bearing’s total friction moment

was very high, and it increased with the increasing speed. The analyses of different cage thicknesses

and different clearances between cage pocket and ball show that smaller thickness and clearance

were preferred.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

It is a continuous goal for bearing engineers to always develop

advanced bearings that provide higher efficiency, lower fric-
tion, and more reliable, etc, under adverse operating condi-
tions.1 There is a considerable interest in understanding the

friction moments of space gyroscope ball bearings used in
many sensing mechanisms, such as those used for attitude con-
trol in spacecraft, which often run under ultra-low oscillatory

motion for extended periods. Usually these bearings’ starting
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Table 1 Structure parameters.

Structure parameter Value

Inner diameter of inner race, d (mm) 4.00

Outer diameter of outer race, D (mm) 9.00

Ball diameter, Dw (mm) 1.30

Number of balls, z 8.00

Contact angular, b (�) 0.00

Inner race conformity, fi 0.55

Outer race conformity, fo 0.55

Depth of ribbon cage pocket, k (mm) 0.67

Diameter of cage pocket, dp (mm) 1.40

Thickness of cage, s (mm) 0.15

Clearance between cage pocket and ball, K (mm) 0.02
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friction moments are tested by particular friction moment
tester2 through frequent start-stop operation. From early
papers,3–10 as a result of frequent start-stop operation, the

bearing’s friction moment often traces out hysteresis loops
which contain two regions, the pre-rolling and the steady roll-
ing. Dahl3,4 developed an empirical equation to describe the

hysteresis behavior. Todd and Stevens,5 Todd and Johnson6

analyzed the shape of hysteresis friction curves, and these
curves were found to be in agreement with hysteresis loops

generated using Dahl’s equation. Lovell et al.7–10 verified this
hysteresis curves by three-ball experimental testing apparatus
at a constant rate and sinusoidal oscillating rate, respectively.
In the Lovell’s study, the experimental testing apparatus was

designed to incorporate three balls, rather than a full bearing
(without considering the cage) so as to eliminate the additional
friction elements and the hysteresis behavior could be readily

determined. In the Lovell’s experiments, the balls’ diameters
(12.7 mm) were bigger and the loads (81.6, 133.5, 185.4 N/ball)
were larger. All of the above studies proved that the elastic

hysteresis in relatively large ball bearings is an important
source under high loads and ultra-low speed conditions.
Whether the friction moment caused by elastic hysteresis under

lower loads in mini-ball bearing occupies a large proportion in
the total bearing’s friction moment needs to be studied. In
addition, the sources of friction in ball bearings are manifold11

and other friction sources also need to be known, since the fric-

tion moment is an important factor for controlling space
instruments. Some experiments12,13 for the gyroscope bearings
proved that the friction moment caused by cage was high and

might not be neglected at the onset of bearing. In order to
know the friction moment caused by that, a study of the rib-
bon cage dynamics at ultra-low speeds and its influence on

the bearing’s total friction moment is carried out in this paper.
More advanced analyses about dynamic behavior of cage,

such as the references of Gupta,14 Meeks,15,16 and Houpert17–19

have been developed at higher speeds. Because of the influences
of the cage centrifugal force, the skidding phenomenon and the
viscous drag of the lubricant between ball and cage, the cage
analysis model at higher speed is much more complicated than

that at lower speed. The difficulty in their high speed dynamic
models is a considerable number of computations in a short
final output time, for example, the final output time shown in

Ref.16 was 0.01 s and 2.5 s in Ref.19. In spite of the force model
at ultra-low speeds can be relatively simply designed, the time
step is much smaller than that at higher speed. The time for out-

put results needs to be 3–5 s at least under constant rate and
even longer under oscillatory motion. It needs to change the
time steps to perform the numerical integration instead of the
constant time step in the model. However, changing the time

steps makes the program more easily divergent especially under
oscillatory motion. How to make sure that the program carries
out smoothly and how to improve the final output time are

introduced in this paper.

2. Total friction moment of bearing

The total friction moment includes five principal sources11 of
friction in space gyroscope ball bearings. They are the friction
moment due to the elastic hysteresis in rolling ME, the friction

moment due to the geometry of the contacting surfaces MD,
the friction moment due to the pivoting on contact ellipse
MS, the friction moment due to the viscous drag of lubricant
ML, and the friction moment due to the sliding between the
cage and balls MC. ME, MD, MS ML have to be deduced
maturely by static analysis and MC needs to be analyzed with

more complicated dynamic models. According to the analyses
by Houpert,20 the total friction moment M acting on the outer
race of bearing is

M¼
Xz
ðdMLþdMEþdMDþdMSþdMCÞ

¼MLþ
Xz dMEoRiþdMEiRo

Dw

þdMDoRiþdMDiRo

Dw

þdMSiþdMSo

2
sinbþ

ðFp
l�Fp

pbzÞRo

2

0
BB@

1
CCA ð1Þ

where z is the number of balls, Dw is the ball diameter, b is the

contact angle, and dML, dME, dMD, dMS, and dMC are the
individual one ball contribution to the friction moment of
lubricant, elastic hysteresis, the geometry of the contacting

surfaces, pivoting effects and ball-cage contact, respectively.
Ri, Ro are the radii to initial contact point between the ball
and inner and outer race, respectively. The formulas of

ML, dMEi, dMEo, dMDi, dMDo, dMSi, dMSo and their references
are deduced by following Eq. (2). The subscripts i, o represents
the inner and outer race, respectively.

ML ¼ 160� 10�7fd3m
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In Eq. (2), f is a factor depending upon type of bearing and

method of lubrication. dm is the bearing’s pitch diameter. Qn(i)
is the normal force between the ith ball and race. The losing
energy caused by the hysteresis is thought to be the energy
caused by the friction, and the losing energy due to the elastic

hysteresis is a small proportion ar (for metal, usually
0.7% 6 ar 6 1.0%, here ar = 0.8%). a and b are semimajor
and semiminor axes of the contact ellipse respectively. Ra is

the Hertz contact radius. X1 = x1/a, X2 = x2/a (x2 > 0),
where x1, x2 is the locations of two pure rolling lines respec-
tively on the contact ellipse in Ref.20 Fp

pbz in Eq. (1) is the zp
component in Frame p (introduced later) of the normal ball-
cage contact force and Fp

l ¼ lFp
pbz; of which l is the friction

coefficient between the ball and cage and Fp
pbz is positive or

negative depending upon whether the ball is driving the cage
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or vice versa. The calculations of them need to build the cage
dynamics so as to obtain MC. lb in Eq. (2) is the friction coef-
ficient between the ball and inner/outer race. In the paper

lb = 0.08, which is based on the experimental results of
four-ball friction machine by professor Tao Dehua in Shang-
hai University. This value is also consistent with the test results

by Houpert with the same oil viscosity (15 CST) in Table 2 in
Ref.21 The oil viscosity in our experiment is 14.8 CST.
Fig. 1 Relationship of reference frames.
3. Cage dynamics analysis

3.1. Coordinate systems

Fig. 1 shows the fixed inertial reference frame oIxIyIzI (Frame I)
with the yI axis located at the initial position of No. 1 ball. The

inner and outer races rotate about the xI axis with angular veloc-
itieswi,wo, respectively.The coordinate system ocxcyczc (Frame c)
is fixed to the cage with the cage geometrical center oc as its
origin. The local coordinate system opxpypzp (Frame p) is fixed

to the ith pocket, with the pocket center op as its origin. Counter-
clockwise rotation is designated to be positive, and balls are also
numbered counterclockwise. The superscripts I, c and p repre-

sent the corresponding reference frame. The ball-cage coordi-
nate system omxmymzm (Frame m), not shown in Fig. 1, rotates
about the xm axis with the theoretical angular velocity wbc,

wbc ¼
1

2
½wið1� cÞ þ woð1þ cÞ�

c ¼ Dw cos b
dm

8>><
>>: ð3Þ

Let wi be the angular position of the ith ball, the position
vector of ith ball center in Frame I is

rIob ¼

0
dm
2

cosðwi þ wbctÞ
dm
2

sinðwi þ wbctÞ

2
6664

3
7775 ð4Þ

Let h = [hx, hy, hz]
T be the sequential angles obtained by

rotating the x, y, z axes from Frame I to Frame c, respectively.
The transform matrix AIc from Frame I to Frame c is
AIc ¼
cos hy cos hz cos hx sin hz þ sin hx sin hy cos hz sin hx sin hz

cos hy sin hz cos hx cos hz � sin hx sin hy sin hz sin hx cos h

sin hy � sin hx cos hy c

2
64

Table 2 Comparison of maximum total friction moment under two

Load (N) no = 2 r/min

SFMC (lN�m) SFMO (lN�m) Increased percenta

1 5.34 6.74 26.22

2 8.24 9.73 18.08

3 12.64 14.69 16.22
Let wc
oc be the cage’s angular velocity in Frame c, then

wc
oc ¼ u½ _hx; _hy; _hz�

T

u ¼
cos hy cos hz sin hz 0

� cos hy sin hz cos hz 0

sin hy 0 1

2
64

3
75

8>>>><
>>>>:

ð6Þ

In the paper, the superscripts in variables represent the cor-
responding frame. Let Rc

oc be the offset vector from oc to oI in
Frame c, then in Frame I, RI

oc ¼ A�1Ic R
c
oc. As shown in Fig. 2,

because the same vector has different value in different frame,
the superscripts in the figure were not shown. rcb is the vector
of ob relative to the oc, rcp is the vector of op relative to the oc.

3.2. Ball and ribbon cage contact

The cage type is ball riding design, so only the contact between
the ball and cage occurs. Fig. 3 provides three views of the con-

tact status of a ball in its pocket. k is the pocket depth and Dp

is the diameter of cage pocket, where k < Dp/2. The clearance
between the cage pocket and ball is defined as K, and K = k

�Dw/2. o
0
p denotes the pocket curvature center. When the ball

center moves along the xp axis, one point contact may occur.
While as the ball center moves along the zp axis, two contact
� cos hx sin hy cos hz

z þ cos hx sin hy sin hz

os hx cos hy

3
75 ð5Þ

conditions.

no = 5 r/min

ge SFMC (lN�m) SFMO (lN�m) Increased percentage

10.06 14.51 44.23

13.73 17.01 23.89

17.72 21.45 21.05



Fig. 3 One ball in its pocket.

Fig. 4 Contact between the ball and cage.

Fig. 2 Locating ball center in frames.
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points may occur. The contact status can be determined by the
position vector of ith ball in Frame p.

The balls and the cage need not always contact.
Let the position vector of ball center in Frame p be
rppb ¼ ½Dx;Dy;Dz�

T
, then three contact cases are considered:

one point contact, e P O, Dx „ 0, two points contact,
e P O, Dx = 0, no contact, e < O. And,

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDxj þ Dp

2
� k

�� ��� 	2
þ Dy2 þ Dz2

r

r ¼ Dp

2
�Dw

2

8>><
>>:
As shown in Fig. 4, the ball linear velocity at the contact point

Qb in Frame p is

vpb ¼ BiAIcðwI
bc � rIoqÞ þ wp

b � rpbq ð7Þ

where Bi ¼
1 0 0
0 coswi sinwi

0 � sinwi coswi

2
4

3
5 is the transform matrix

from Frame c to Frame p, wp
b ¼ ½wbr cos b; 0;wbr sinb�T and

wI
bc ¼ ½wbc; 0; 0�T; wbr is the ball spinning velocity, and rpbq and

rIoq are the contact vectors from the ball center ob and oI to
Qb, respectively. r
p
cq is the contact vector from the point oc to

Qb. Let the cage angular velocity vector in Frame c be wc
oc; then

the cage linear velocity at this contact point in Frame p is

vpc ¼ Bi
_Rc
oc þ ðBiw

c
ocÞ � rpcq ð8Þ

The velocity of the ball relative to the cage in Frame p is

Dvpcb ¼ vpc � vpb ð9Þ

Hertz contact is assumed between the ball and cage here,
which is similar to the contact between the balls and inner/

outer races.11 If the contact deformation is Ddpb, the normal
contact force between the ball and cage is

Fp
pbN ¼ KpbDd3=2

pb

Ddpb ¼ e�r

(
ð10Þ

where Kpb is the contact force–deformation coefficient between
the ball and cage. For the bearings working under ultra-low
oscillatory motion, the lubrication between the ball and cage

is boundary lubrication. The contact condition between them
is more close to the contact with ‘‘dry’’ film lubrication, so
the deduction of Kpb is also similar to the ball and race contact

force–deformation coefficient11 with ‘‘dry’’ film lubrication.
Once Fp

pbN and rppb are obtained, the normal contact force vec-
tor Fp

pbN and its unit vector Np
pb can be known. The tangent rel-

ative velocity of ball and cage in Frame p is

DvpcbT ¼ Dvpcb � ðDv
p
cb �N

p
pbÞN

p
pb ð11Þ

Let the tangential contact force vector be Fp
pbT, and the

deduction of it is

Fp
pbT ¼ �lFp

pbN

DvpcbT
jDvpcbTj

ð12Þ

where l is the friction coefficient between ball and cage, which
will be introduced in experiments. Oil damping force is not

taken into account because the speed is ultra-low. Considering
the gravity of cage Gc and summing up all the ball-cage contact
forces and moments, the resultant force and moment vector on
the cage in Frame c are
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Fc ¼
Xz
i¼1

B�1i Fp
pbN þ Fp

pbT

� 	
þ Gc

Mc ¼
Xz
i¼1

B�1i rpcq � Fp
pbN þ Fp

pbT

� 	h i
8>>>><
>>>>:

ð13Þ
3.3. Cage dynamic equations of motion

The basic motion equations of cage are:

vcoc ¼ _Rc
oc ¼ ½vcxoc; vcyoc; vczoc�

T ð14Þ
_hx

_hy

_hz

2
64

3
75 ¼

cos hz= cos hy � sin hz= cos hy 0

sin hz cos hz 0

� tan hy cos hz tan hy sin hz 1

2
64

3
75

wc
xoc

wc
yoc

wc
zoc

2
64

3
75 ð15Þ

where wc
oc ¼ wc

xoc; wc
yoc; wc

zoc

� �T
. Since the cage structure is

symmetrical, there are no products of inertia, and the moments
of inertia about the xc axis, yc axis, and zc axis are Jx, Jy, Jz,

respectively. Once the total force vector Fc ¼ ½Fc
x;F

c
y;F

c
z�
T
and

total moment vectorMc ¼ ½Mc
x;M

c
y;M

c
z�
T
in Frame c are calcu-

lated, based on the Euler law, the accelerations can be calcu-
lated as follows:

Fc
x

mc

¼ dVc
xoc

dt
þ wc

yocV
c
zoc � wc

zocV
c
yoc

Fc
y

mc

¼
dVc

yoc

dt
þ wc

zocV
c
xoc � wc

xocV
c
zoc

Fc
z

mc

¼ dVc
zoc

dt
þ wc

xocV
c
yoc � wc

yocV
c
xoc

Mc
x ¼ Jx

dwc
xoc

dt
þ ðJz � JyÞwc

yocw
c
zoc

Mc
y ¼ Jy

dwc
yoc

dt
þ ðJy � JzÞwc

xocw
c
zoc

Mc
z ¼ Jz

dwc
zoc

dt
þ ðJy � JxÞwc

xocw
c
yoc

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð16Þ

Eqs. (14)–(16) form a complete set of dynamic equations
for the ribbon cage. The conventional fourth-order Runge–
Kutta method15 is used to perform the numerical integration,
and the vectors Rc

oc ¼ ½Rc
xoc;R

c
yoc;R

c
zoc�

T
, h ¼ ½hx; hy; hz�T,

vcoc ¼ ½vcxoc; vcyoc; vczoc�
T
, wc

oc ¼ ½wc
xoc;w

c
yoc;w

c
zoc�

T
can be

determined.

3.4. Balls motion

In order to simplify the model, each ball’s motion considers only
two degree-of-freedom. Each ball orbits the bearing axis (wbc),

and revolves about its own axis (wbr) simultaneously. Referring
to the Fig. 5, at the start or when oscillation occurs, the ball’s
motion is thought to be driven by motor and the start or oscilla-

tory acceleration e is supposed tobe constant. The ball’smotion is
Fig. 5 Motion model of ball under oscillatory motion.
wbc ¼ 1
2
ð1þ cÞetðiÞ

wbr ¼
dm
2Dw

ð1� cÞð1þ cÞetðiÞ

8<
: ð17Þ

Once the orbital speed of ball wbc runs up to the setting
value, the ball motion is thought to be stable and e = 0. At
the stable stage, if some ball is in contact with the cage, the

ball/cage contact force then affects its orbital and revolutionary
speed. The motion of ball is affected by ball/cage contact force
Fp
pbN. Three different conditions are considered as follows:

Condition 1: If the ith ball runs at the unload area, there is a
small clearance between the ball and race. A pure rolling

occurs.
Ib þmb

dm
2

� �2
 !

_wbc ¼ �Fp
pbz

dm
2
� Fp

l
Dw

2

_wbr ¼
di
Dw

_wbcðif wi ¼ 0Þ

8>>><
>>>:

ð18Þ

where Ib is the ball inertia about its center axis,mb is the ball mass
and di is the diameter of contact point between the ball and inner
race. Because only two degree-of-freedom of the ball is

considered, Fp
pbz is zp component of Fp

pbN in z axis direction in
Frame p.

Condition 2: If the ith ball runs at the load area and
FpbN 6 lQn(i), no slipping occurs and wbc and wbr are
unchangeable.
Fig. 6 Program frame of cage dynamic analysis.
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Condition 3: If the ith ball runs at the load area and

FpbN > lQn(i), a small slipping occurs. According to the
model of Meeks,15 the slipping forces between the ball
and inner/outer races are
Fsi ¼ lQnðiÞ _si= _sroll

Fso ¼ lQnðiÞ _so= _sroll



ð19Þ

where _si and _so are the slipping velocities of the inner and outer
race, and _sroll is the rolling velocity of ball. So according to the
force along the orbit path and moment about ball center in

Frame p,

�FpbN � Fsi � Fso ¼ mb€sb

ðFso � Fsi � FpbTÞ
Dw

2
¼ Ib _wbr

8<
: ð20Þ

_sb is the slipping velocity of ball. The relationship about them is

_si þ _so ¼ 2 _sb

_so � _si ¼
Dwwbr

2

8<
: ð21Þ
Fig. 7 Cage angular displacement a
3.5. Integration procedures with variable time steps

Because the bearing’s speed and the deformation between
the cage and balls are small, the time step also needs to
be small, which makes the computational program time-

consuming. So, variable time steps are used in the program.
However, the variable time steps make the program diver-
gent easily.

In order to make sure that the program is carried out

smoothly, the maximum deformation dmax and minimum
deformation dmin are introduced. dmax in the paper is supposed
to be the maximum deformation between the ball and race

based on the quasi-static analyses and dmin = dmax/100000.
When contact occurs at the beginning, which is controlled by
dmin, the time step is then chosen to be the smallest, and ht(i)

= ht_min (about 1 · 10�8 s–3 · 10�8 s). If Ddpb 6 0, large time
steps are continued to be amplified, and ht(i) = 2ht(i).
If Ddpb > dmax, the time steps must be reduced, and ht(i) =

ht(i)/3. The program frame is shown as Fig. 6.
nd angular velocity about xI axis.
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4. Calculated results

One size of mini-ball gyroscope bearing is used. Its structure
parameters are given in Table 1.

According to the working conditions of gyroscope bear-
ings, the outer race rotational speeds no of bearing are ±2 r/
min and ±5 r/min. The thrust loads are 1 N, 2 N, 3 N.

Fig. 7(a) and (b) show the program results of orbital angular
and angular velocity of No. 1 ball (black line) and cage (red
line) about the bearing rotational axis under oscillatory
motion. From the results, the cage’s angular velocity fluctuates

around the ball’s angular velocity. The motion of the ball
immediately reacts with the motion of outer race, and the
angular velocities of the cage vary more than those of the ball.

This phenomenon means that the ball-cage contact force has
an obvious influence on the cage motion than on the ball
motion. At the same speed, there is no obvious change of cage

motion with increasing thrust load. When oscillation occurs,
the cage motion fluctuates more obviously than that at a con-
stant rate, especially at ±5 r/min.
Fig. 8 MC versus time un

Fig. 9 M, ME, MD, MS, ML and MC v
Fig. 8 shows the program results of MC. The normal force
between the ball and cage can be positive or negative, so the
value of MC might be positive or negative. When no >0, the

positive value of MC denotes that the contact force drives
the cage’s rotation, the negative value of MC denotes that
the contact force retards the cage’s rotation, and zero means

that there is no friction force. When no < 0, it is contrary to
the positive or negative value of MC. From the results, the
thrust load has little influence on MC at the same speed and

MC increases clearly with the increasing input speed. Through
analyses, only the contact force that drives the cage’s rotation
will make M increase, so the corresponding MC is reserved for
further analyses. Obviously MC at ±5 r/min are larger than

MC at ±2 r/min.
Fig. 9 shows the friction moments caused by five sources

ME, MD, MS, ML, MC and the bearing’s total friction moment

M (blue line). From the results, when oscillation occurs, MC is
obviously larger than other friction moments, especially at
±5 r/min. So the proportion of MC in M occupies the main

part (from the results, about >50%) at the onset of every
der oscillatory motion.

ersus time under oscillatory motion.
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oscillation. When the bearing runs after a short time (about
1 s) of every oscillation, MC rapidly reduces to a small value
(nearly to zero at ±2 r/min), so the proportion of MC in

M turns to be smaller and the proportions of ME, MD, MS

occupy the mainly part in M. Referring to Eq. (2), ME, MD

and MS increase with the increasing thrust load and MC is

almost unchanged with the increasing thrust load, so the pro-
portion of MC decreases with the increasing load. The maxi-
mum M when the bearing starts to run from rest is defined

as the starting friction moment of bearing at a constant rate
(SFMC). Extracting the maximum M of each 2 s oscillation
period and then averaging these maximum data by program,
the mean friction moment is defined as the starting friction

moment of bearing under oscillatory motion (SFMO).
From Table 2, SFMO is obviously larger than SFMC and

the increased percentage is at least more than 15%.

In order to illustrate clearly, Fig. 10(a) shows M with only
two different thicknesses of cage (s= 0.15 mm and
s= 0.20 mm) and Fig. 10(b) shows M with four different
Fig. 10 M with different thicknesses v
thicknesses (s = 0.15 mm, s = 0.20 mm, s = 0.25 mm, and
s= 0.30 mm) versus time under oscillatory motion. From
the results, M increases with the increasing thickness as a

whole. When s = 0.15 mm or s = 0.20 mm, M increases a
little, but when s = 0.25 mm or s = 0.30 mm, M increases
clearly. Fig. 11 shows M with different clearance K
(K = 0.01–0.05 mm) between the cage pocket and ball versus
time under oscillatory motion. From the results, M also
increases with the increasing clearance as a whole. When the

clearance is from 0.01 mm to 0.03 mm, M increases a little,
but when K = 0.04 mm or K = 0.05 mm, M increases clearly.
This fact is very important for designers when selecting the
dimensional tolerance of cage pocket. For both two parame-

ters, M increases clearly at ±5 r/min than at ±2 r/min. From
the maximum value and range of M, the K is very important
parameter and the influence of it on M seems much more sen-

sitive. Despite that smaller s and smaller K are better to reduce
the bearing’s friction moment it is worthwhile to note that
smaller parameters require more strict processing techniques.
ersus time under oscillatory motion.



Fig. 11 M with different clearances versus time under oscillatory motion.

Table 3 Comparison of measured results and calculated results at a constant rate.

Load (N) Measured results (lN�m) Calculated results (lN�m)

SFMC RFMC SFMC RFMC

Minimum value Mean value Maximum value Span 2 r/min 5 r/min Value

1 4.49 8.66 16.38 4–9 5.34 10.06 2.81

2 8.96 17.88 26.98 7–13 8.24 13.73 6.21

3 14.03 23.15 35.92 12–16 12.64 17.72 10.11
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5. Measurements

5.1. Measuring friction moment of bearing at a constant rate

At present, the friction moment testers which can be used to

measure the starting friction moment at a constant rate
(SFMC) and the running friction moment (RFMC, when the
bearing runs steadily) at a constant rate are feasible. However,
they cannot work under oscillatory motion. So the calculated
SFMC and RFMC were compared with the experimental

results respectively at a constant rate.
Table 3 gives the measured results of ten bearings by YZC-

II friction moment tester2 with the same parameters in Table 1.

The SFMC of each bearing was measured 15 times forward or
backward rotation, respectively. Because the YZC-II tester has
no set value about speed parameter when testing SFMC,



Fig. 12 Tester of measuring the friction coefficient between the ball and cage pocket.

Table 4 Measuring results of friction coefficient between the ball and cage.

Pressure (N) Speed (r/min) Lubrication Friction coefficient

Span Average

5–20 2 A drop of T4 oil 0.05–0.11 0.09

5–20 8 A drop of T4 oil 0.05–0.12 0.08

5–20 8 No oil 0.15–0.20 0.18
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according to the operational principle of tester, once the mag-
nitude of the induction moment is equal to the total friction
moment of bearing, the bearing will start to run at a ultra-
low different speed (about 2–5 r/min). So the measured SFMC

results will be compared with the calculated SFMC results at
both 2 r/min and 5 r/min.

From the program results, when the bearing runs after a

short time, MC rapidly reduces almost to zero, so only the
sum of ME, MD, MS, ML is thought to be the calculated
RFMC. In comparison, the measured results are slightly big-

ger than the calculated results. That is because except ME,
MD,MS,ML MC, part of the measured friction moment is pro-
duced by structure errors, machining errors, etc. In addition,

the friction coefficient for computation is still a crude approx-
imation of the actual conditions, and the differences between
the measured results and the computed results are unavoid-
able. The trends from the calculated SFMC to RFMC are

found to be consistent with the measured results with increas-
ing load, so the program at a constant rate is credible.

5.2. Measuring friction coefficient between the ball and cage

Referring to Fig. 12, the friction coefficient between the ball
and cage which was used in the model was measured by the fol-

lowing tester to get a more credible value. As shown in
Fig. 12(a), the tester includes: torque indictor, pressure indic-
tor, differential head, pressure sensor, three dimensional

adjustable table, air-guide, motor, ball and the half pocket of
cage, air-bearing, static torque sensor, support of air-bearing
and torque sensor, foundation support.

Because the friction between the ball and cage was so small,

air bearing was used on the whole supporting system, such as
air-guide (number 6) and air-bearing (number 9). The pressure
was applied on the ball/cage through pressure sensor (number

4). When the motor drove the ball rolling at lower speed, the
friction moments between the ball and pocket versus time were
measured by static torque sensor (number 10). The ball diam-
eter was 12.7 mm in experiment. The friction coefficients were
measured under different forces (5–20 N) and two different
velocities (2 r/min and 8 r/min). Through data processing,

Table 4 shows the results. When there was oil lubrication,
the friction coefficients changed about 0.05–0.12, the average
of them were 0.09 at 2 r/min and 0.08 at 8 r/min, respectively.

When there was no oil lubrication, the friction coefficients
changed about 0.15–0.20.

From the measured data, it is difficult to find the relation-

ships between the friction coefficients and velocities or forces
under the boundary lubrication conditions, so the changing
law of friction coefficients under oscillatory motion cannot

be accurately described in the model. Based on the average
friction coefficients in Table 4 and considering measuring
result through the four-ball friction machine by Professor
Tao DH and Ref.21, the friction coefficients in all contact areas

(ball/race and ball/cage contacts) in the model were all roughly
taken to be 0.08.

6. Conclusions

(1) The model of calculating the friction moments of
mini-bearings under ultra-low oscillatory motion has

been built in the paper. The calculated SFMC and
RFMC with the model were compared with the mea-
sured results at a constant rate at 2 r/min and 5 r/min,
respectively. The good trends with different loads

between the measured and computational results
proved that the computational model at a constant
rate was credible. The model under oscillatory motion

needs to be further verified by experiments, since the
authors are not aware of any existing work in the lit-
erature that solves the relevant problems and there are

no testers at present to measure friction moments of
this kind of precision space gyroscope mini-bearings
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under oscillatory motion. However, the changing ten-

dency of calculated results and conclusions under
oscillatory motion are given to optimize the cage
design.

(2) The ball-cage contact force has an obvious influence on
the cage motion than on the ball motion. When oscilla-
tion occurs, the cage motion fluctuates more obviously
than that at a constant rate, especially at higher speed.

(3) Since the thrust load has no influence on MC but
more influence on other sources of friction moments
and the rotational speed has an obvious influence on

MC, the proportion of MC in M decreases with the
increasing load and increases with the increasing input
speed. When oscillation occurs, MC is obviously larger

than other friction moments and the proportion of it
in M occupies about 50%. When the bearing runs
after about 1s of every oscillation, MC reduces rapidly
to a small value and ME, MD, MS occupy the main

part in M.
(4) From the program results of bearing example, SFMO is

obviously larger than SFMC and the increased percent-

age is more than 15%. The analyses of different thick-
nesses of cage and different clearances between cage
pocket and ball show that the influence of clearance

on M seems much more sensitive and the smaller thick-
ness and clearance are preferred.
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