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Abstract

Given a finite set of strings, the MEDIAN STRING problem consists in finding a string that min
mizes the sum of the edit distances to the strings in the set. Approximations of the median st
used in a very broad range of applications where one needs a representative string that sum
common information to the strings of the set. It is the case in classification, in speech and
recognition, and in computational biology. In the latter, MEDIAN STRING is related to the key prob
lem of multiple alignment. In the recent literature, one finds a theorem stating the NP-comple
of the MEDIAN STRING for unbounded alphabets. However, in the above mentioned areas, t
phabet is often finite. Thus, it remains a crucial question whether the MEDIAN STRING problem is
NP-complete for bounded and even binary alphabets. In this work, we provide an answer to th
tion and also give the complexity of the related CENTER STRING problem. Moreover, we study th
parameterized complexity of both problems with respect to the number of input strings. In ad
we provide an algorithm to compute an optimal center under a weighted edit distance in poly
time when the number of input strings is fixed.
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1. Introduction

Given an alphabetΣ , a setW of strings overΣ , and an edit distance between strin
the problem of finding a string overΣ that minimizes the sum of edit distances to
strings ofW is called the MEDIAN STRING problem. Alternative terminologies includ
the GENERALIZED MEDIAN STRING problem[2], the STAR ALIGNMENT problem[12],
the CONSENSUSALIGNMENT problem[13] and also the STEINER STRING problem[8].

The MEDIAN STRING problem is of major significance in several areas of research
tern recognition, speech recognition and computational biology. Its importance is refl
by the wide use of a polynomial time approximation, the set median string[7–10,19,20]. In
this restricted version of the problem, the solution string must be taken in the inputW

(it is also termed the “center string” in[8, p. 349]). One class of applications, encounter
in all three areas, looks for a string (or a language) that models the input set of strin
other words, this string summarizes the information shared by the strings ofW . Depend-
ing on the application, it then serves as an index forW (in databases and data mining
as a pattern that is searched for in longer texts (in computational biology[8,22]) or used
for classification purposes (in speech recognition[10], classification[8] and computationa
biology [8,22]).

In computational biology, computing a median string of a setW is equivalent to solv-
ing a MULTIPLE ALIGNMENT problem, which is one of the most important and diffic
problems in this area[8]. In practice, MULTIPLE ALIGNMENT may be easier when th
evolutionary relationships of the species bearing the sequence are known. The inpu
so called TREE ALIGNMENT problem is then a set of stringsW and a tree whose leave
are labeled by the strings ofW . The objective is to find strings for the internal nodes, s
that the sum of edit distances between adjacent strings/nodes over all edges is m
A special case of tree of theoretical importance is thestar tree: there the computed inte
nal string is a median string[8,24]. As already mentioned, the median string can serv
consensus of the strings inW , especially if the strings occupy homogeneously the me
space around the median. Unfortunately, in practical applications, the strings inW are not
a uniform sample of the evolutionary diversity: some evolutionary families of stringsW

are more represented than others. In such cases, minimizing the sum of the edit di
results in a biased alignment and consensus (see[1] for a discussion about this matte
Minimizing the maximum edit distance, i.e., computing a center string, produces sol
that reflect more faithfully the variations inW . For this purpose, Ravi and Kececioglu intr
duced in 1995 a variant of the TREE ALIGNMENT problem with this objective. It is calle
the BOTTLENECK TREE ALIGNMENT. When the input tree is a star, the BOTTLENECK

TREE ALIGNMENT problem is equivalent to the CENTER STRING problem.
In [2], it is shown that CENTER STRING and MEDIAN STRING are NP-hard for al-

phabets of size at least 4 and for unbounded alphabets, respectively. In many p
situations, the alphabet is of fixed constant size. In computational biology, the DNA
protein alphabets are respectively of size 4 and 20. However, other alphabet sizes
used. Indeed, for some applications, one needs to encode the DNA or protein seque
a binary alphabet that expresses only a binary property of the molecule, e.g., hydro
for proteins or purine-pyrimidine composition for nucleic acids. For instance, it is the
in some protocols to identify similar DNA sequences[27]. The important practical ques
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tion is whether CENTER STRING and MEDIAN STRING are NP-hard for finite and eve
binary alphabets. In the above-mentioned article, these questions remain open[2, p. 48].
These conjectures are solved in this paper. Additionally, an interesting issue conce
existence of fast exact algorithms when the number of input strings is fixed. We prov
answer to this issue for both CENTER STRING and MEDIAN STRING.

1.1. Definitions

We denote byN the set of non-negative integers and byN
∗ the set of positive integers

For all m, n ∈ N, we denote by[m,n] the set{k ∈ N: m � k � n}. For every finite setX
we denote by #X the cardinality ofX.

1.1.1. Strings
An alphabetis a non-empty set ofletters. In the sequel,Σ always denotes an alphab

A string over Σ is a finite sequence of elements ofΣ . The set of all strings overΣ is
denoted byΣ�. A languageoverΣ is any subset ofΣ�. The empty sequence, denoted
ε, is called theempty string. Given two stringsx andy, we denote byxy theconcatenation
of x andy. For all L ⊆ Σ� and for allw ∈ Σ�, we denote{xw: x ∈ L} by Lw. For all
n ∈ N, we denote byxn thenth powerof x, i.e., the concatenation ofn copies ofx (note that
x0 = ε). For a stringw, |w| denotes the length ofw. For a languageL ⊆ Σ�, |L| denotes∑

x∈L |x|. For all i ∈ [1, |w|], w[i] denotes theith letter ofw: w = w[1]w[2] . . .w[|w|].
For all a ∈ Σ , |w|a := #{i ∈ [1, |w|] : w[i] = a} denotes the number ofoccurrencesof the
lettera in w.

1.1.2. Edit distance
Definition 1 (Metric). Let E be a set andd be a mapping fromE × E ontoR. We say that
d is ametricoverE iff for any x, y, z ∈ E, d fulfills the following conditions

– d(x, y) � 0 (positivity),
– d(x, y) = 0 if and only ifx = y (separation),
– d(x, y) = d(y, x) (symmetry),
– d(x, z) � d(x, y) + d(y, z) (triangular inequality).

The edit operationsare single letter deletions, insertions and substitutions. Letδ be
an integer valued metric overΣ ∪ {ε}: δ can be viewed as a cost function over the e
operations (apenalty matrix). Hence, for alla, b ∈ Σ , the substitution froma into b costs
δ(a, b), the deletion of ana costsδ(a, ε) and the insertion of ab costsδ(ε, b). The cost of
a sequence of edit operations is the sum of the costs of its terms.

The δ-weighted edit distancebetween two stringsx andy is the cost of the cheape
sequence of edit operations needed to transformx into y. It is also the cost the cheape
alignment ofx andy. Let us denote bydE :Σ� × Σ� → N the δ-weighted edit distance
sinceδ is a metric,dE is also a metric and for alla, b ∈ Σ ∪{ε}, we havedE(a, b) = δ(a, b).

Wagner and Fisher’s algorithm[28] computes the weighted edit distancedE(x, y) in
polynomial time O(|x||y|). It proceeds by dynamic programming and can be easily
duced fromTheorem A.1below.
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If δ is such that:

∀a, b ∈ Σ ∪ {ε} δ(a, b) =
{

1 if a �= b,

0 otherwise

(that is if each edit operation has unitary cost) then theδ-weighted edit distance is calle
Levenshtein distance(or sometimesunweighted edit distance) and is denoted bydL.

1.1.3. Radius, center string and median string
Definition 2. Let dE a weighted edit distance. For all languagesW overΣ , we denote:

R(W) := inf
γ∈Σ�

(
sup
w∈W

dE(γ,w)
)
,

S(W) := inf
µ∈Σ�

( ∑
w∈W

dE(µ,w)

)

and we callR(W) theradiusof W (underdE). A centerof W (underdE) is a stringγ over
Σ such that supw∈W dE(γ,w) = R(W). A medianof W (underdE) is a stringµ overΣ
such that

∑
w∈W dE(µ,w) = S(W).

If W is infinite then the radius ofW andS(W) are infinite. We study only the finit
case. Let us consider the case #W = 2. Letx, y ∈ Σ�.

– Under any weighted edit distancedE , S({x, y}) = dE(x, y). Any string on an optima
alignment path betweenx andy is a median of{x, y}, includingx andy themselves.

– Under Levenshtein distance,R({x, y}) = �dL(x, y)/2	. Any stringγ on an optimal
alignment path betweenx andy such thatdL(γ, x) or dL(γ, y) equals�dL(x, y)/2	 is
a center of{x, y}. In this case, a center is always a median. Given an optimal align
betweenx andy, a center can be computed in linear time.

Example 1. Let Σ := {0,1} andW := {0N,1N } whereN denotes an even integer. Und
Levenshtein distance,

– S(W) = dL(0N,1N) = N and the medians ofW are the stringsµ ∈ {0,1}� such that
|µ|0 + |µ|1 = N and,

– R(W) = N/2 and the centers ofW are the stringsγ ∈ {0,1}� such that|γ |0 = |γ |1 =
N/2.

Example 2. Let Σ := {0,1} andW := {(01)N , (10)N } whereN denotes a positive in
teger. Under Levenshtein distance, both strings(01)N−10 and1(01)N−1 are centers an
medians ofW (S(W) = dL((01)N , (10)N ) = 2 andR(W) = 1).

Example 3. Let

Σ := {a0, a1, . . . , aσ , b, c} and W := {a0b
N,a1c

N , a2c
N, . . . , aσ cN }

whereσ ∈ N \ {0,1}, N denotes an even positive integer, anda0, a1, . . . , aσ , b andc are
distinct letters. Under Levenshtein distance,
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N is a median ofW for all i ∈ [0, σ ] (S(W) = N + σ ), and

– bN/2cN/2 is a center ofW for all i ∈ [0, σ ] (R(W) = N/2+ 1).

In this example, no word is both a center and a median ofW .

Our goal is to prove the intractability of the two following problems.

Definition 3. The CENTER STRING (resp. MEDIAN STRING) problem is the decision
problem: “given a non-empty finite languageW overΣ andK ∈ N, is R(W) � K (resp.
S(W) � K)?”

1.2. Related works

1.2.1. Related problems
Computational biology exhibits numerous problems related to MEDIAN STRING and

CENTER STRING. In the more studied ones, the computationally less demanding H
ming distance replaces the edit distance. One often uses a closest representative o
constant length strings that share a biological function. For instance, under the Ham
distance MEDIAN STRING is polynomial, while CENTER STRING is known to be NP-hard
[11] and is called CLOSESTSTRING.

The CONSENSUSPATTERN problem (also called the CONSENSUSSTRING problem
in [22]) and its variants, like the CLOSESTSUBSTRING problem, aim at finding commo
substrings of a given length in a set of strings, and a model for them. Li et al.[12,14,16]
exhibit PTAS for all of these, while[5,6] give exact polynomial time algorithms for som
special cases and study their parameterized complexities. Another interesting prob
the DISTINGUISHING SUBSTRINGSELECTIONproblem. Given two sets, one of “positive
and the other of “negative” example strings, one has to find a string that is close
positive, and far from the negative strings (see[3,6,11]).

When the edit distance is used, finding common substrings is termed pattern dis
or motif extraction (see[18,22]).

MEDIAN STRING is also important because of its relation with theMultiple Alignment
problems. Indeed, once given a median string, one can compute an approximate m
alignment from the pairwise alignments between the median and any string in the in
[8]. Thus, an algorithm for the set median string is used by several authors as an a
mation of theMultiple Alignmentproblem. First, Gusfield[7] provides an approximatio
algorithm for the SUM-OF-PAIRS MULTIPLE ALIGNMENT problem. In this problem, on
wishes to minimize the sum of all pairwise alignment costs, hence the name Sum-of
Second, Jiang et al.[9] also give an approximation for the TREE ALIGNMENT problem.
They show that associating the set median string to each internal node provides
approximation scheme. This result is further improved in[29].

An approximation algorithm for BOTTLENECK TREE ALIGNMENT is given in[24].

1.2.2. Known results
MEDIAN STRING is polynomial for two strings (any of the input string is a media

Moreover, a dynamic programming algorithm computes for every non-empty, finite
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guageW overΣ a median ofW in O((#W)2#W
∏

w∈W |w| + (#W)(#Σ)#W+1) time [25].
Thus, if the number of input strings is fixed, MEDIAN STRING is polynomial. In[24], an
exact dynamic programming algorithm is sketched for BOTTLENECK TREE ALIGNMENT

under Levenshtein distance.
In [13], it is shown that the CONSENSUSc-ALIGNMENT problem is NP-hard for al

phabet size 4. The CONSENSUSc-ALIGNMENT problem consists in the MEDIAN STRING

problem where the number of gaps between any two strings is constrained to be atc.
Nevertheless, it would not imply that MEDIAN STRING is NP-hard in its general setup.

1.2.3. Our contribution
In [2], it is shown that ifΣ is unbounded (resp. #Σ is at least 4) then MEDIAN STRING

(resp. CENTER STRING) is NP-complete. In[26], it is shown that MEDIAN STRING is
NP-hard for alphabet of size 7 and under a conveniently weighted edit distance. A
we argue already that the NP-completeness of MEDIAN STRING for finite alphabet is an
important conjecture. In this work, we demonstrate that both problems are NP-com
under Levenshtein distance even ifΣ is binary. Both proofs consist in reducing a we
known NP-complete problem, LONGEST COMMON SUBSEQUENCE(LCS), to CENTER

STRING and MEDIAN STRING.
We also demonstrate that both CENTER STRING and MEDIAN STRING are hard in the

sense of parameterized complexity with respect to the number of input strings. The
important results from a practical point of view since they rule out the existence
exact algorithm solving one of our problems in time O(f (#W)|W |c) wheref :N → N

is anarbitrary function andc is a constant. Unlike CLOSEST STRING that is FPT with
respect to the number of input strings, CENTER STRING is W[1]-hard for this parameter.

Moreover, we extend the intractability results for CENTER STRING for a large class o
weighted edit distances satisfying natural assumptions.

1.2.4. Organization of the paper
We conclude this section with some definitions about parameterized complexit

some known results about the LCS problem. In Section2, we prove that under Levenshte
distance, CENTER STRING and MEDIAN STRING over binary alphabets are NP-comple
and W[1]-hard with respect to the number of input strings. In Section3 we generalize the
results for CENTER STRING obtained in Section2: we prove that underanyweighted edit
distance satisfyingProperty 1, CENTERSTRING over binary alphabets is NP-complete a
W[1]-hard with respect to the number of input strings. InAppendix A, we show that CEN-
TER STRING is polynomial if the number of input strings and the weighted edit dista
are fixed. Note that in the same case, the counterpart for MEDIAN STRING has been known
for a long time[25]. We conclude the paper in Section4 with some open problems.

1.3. Parameterized complexity

We give a short introduction to parameterized complexity and the W[1]-class (see[4]
for a definition of the whole W-hierarchy).

Let L, L′ ⊆ {0,1}� × N be two parameterized binary languages.
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We say thatL is fixed parameter tractableif there exists an algorithm that, for a
(x, k) ∈ {0,1}� × N, decides whether(x, k) ∈ L in time f (k)|x|c wheref :N → N is
an arbitrary function andc an integer constant. We denote by FPT the set of all fi
parameter tractable parameterized languages.

We says thatL reduces toL′ by a standard parameterized(many to one) reductionif
there are functionsf , m :N → N, M : {0,1}� ×N → {0,1}� and a constantc ∈ N such that
for all (x, k) ∈ {0,1}� ×N: M(x, k) is computable in timef (k)|x|c and(M(x, k),m(k)) ∈
L′ iff (x, k) ∈ L.

We say that a parameterized languageL belongs to W[1] if there exists a standar
parameterized reduction fromL to thek-STEPHALTING problem.1 A languageL is W[1]-
hard if there exists a standard parameterized reduction from thek-STEPHALTING problem
to L.

Thek-STEP HALTING problem is the parameterized analog of the TURING MACHINE

ACCEPTANCEproblem, which is the basic generic NP-complete problem. The conje
FPT �= W[1] is to parameterized complexity what P�= NP is to classical computation
complexity. Hence, from a practical point of view, W[1]-hardness gives a concrete indic
tion that a parameterized problem is fixed parameter intractable.

1.4. The longest common subsequence problem

Let w be a string. Asubsequenceof w is any string obtained fromw by deleting be-
tween 0 and|w| letters. We denote by Sub(w) the set of all subsequences ofw. For every
non-empty languageL, we denote by CSub(L) the set of all the strings which are com
mon subsequences of all the strings inL, and by lcs(L) the length of the longest strings
CSub(L). Formally, we have:

CSub(L) =
⋂
x∈L

Sub(x) and lcs(L) = max
s∈CSub(L)

|s|.

For example, for alln ∈ N, we have, CSub({0n1n,1n0n}) = ⋃n
i=0{0i ,1i} and therefore

lcs({0n1n,1n0n}) = n.

Definition 4 (Longest Common Subsequence problem(LCS)). Given a non-empty finite
languageL overΣ andk ∈ N, is lcs(L) � k?

The intractability of LCS was studied firstly by Maier and later by Pietrzak, who
proves Maier’s results in terms of parameterized complexity:

Theorem 1. SupposeΣ is a binary alphabet.
TheLCS problem isNP-complete[17].
TheLCS problem, parameterized in#L, is W[1]-hard [23].

1 Also known as SHORT TURING MACHINE ACCEPTANCEproblem.
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2. Hardness of CENTER STRING and MEDIAN STRING over binary alphabets
under Levenshtein distance

In this section, we demonstrate the NP-completeness and W[1]-hardness with respect t
the number of input strings of CENTER STRING and MEDIAN STRING under Levenshtein
distance. These results already appear in[21]. We start with the less technical of the tw
proofs, the one concerning CENTER STRING (Theorem 3). Similar ideas are used for ME-
DIAN STRING (Theorem 4). As a by-product, we also show the hardness of a restric
LCS to instances in which all input strings share the same length.

2.1. Hardness ofCENTER STRING under Levenshtein distance

In order to reduce LCS to CENTER STRING we introduce, like in[2], the following
intermediate problem, LCS0, which consists in the restriction of LCS to the instanc
which input strings have length 2k.

Before stating our theorems, we need the following lemmas. In substance, th
lemma says that if one concatenates a lettera to all strings in a languageL, then the
lcs of L increases by one. Indeed, by doing this, one “adds” ana to any maximal com-
mon subsequence ofL (one changes CSub(L) into CSub(L) ∪ CSub(L)a). Thus, the lcs
increases by one. The formal proof is left to the reader.

Lemma 1. For every languageL and for every lettera, we havelcs(La) = lcs(L) + 1.

The following lemma shows that given a languageL and two different letters ofΣ ,
one can design another languageL′ by associating to each stringx of L two strings such
that their only common subsequence isx. This is made by concatenating tox two suffixes
sharing no common letters. It follows that the lcs ofL and ofL′ have equal length althoug
the strings ofL′ are arbitrarily longer than the ones ofL. This lemma is novel compare
to the proof in[2] and allows us to exhibit a reduction of LCS0 to LCS that remains v
in the case of binary alphabets, and preserves the parameter.

Lemma 2. Let L be a language overΣ , a, b ∈ Σ such thata �= b, and (mx)x∈L and
(nx)x∈L two lists of positive integers each associated with a string ofL. Let us define the
languageL′ by L′ := ⋃

x∈L{xamx , xbnx }. Then, the longest common subsequencesL
and ofL′ share the same length, i.e.,lcs(L) = lcs(L′).

Proof. For all stringsu, v, w ∈ Σ�, Sub(wu) ∩ Sub(wv) = Sub(w) if and only if u andv

do not share any letter. We have

CSub(L′) =
⋂
x∈L

Sub(xamx ) ∩ Sub(xbnx )︸ ︷︷ ︸
Sub(x)

= CSub(L)

and therefore lcs(L) = lcs(L′). �
It is shown in[2] that if #Σ is at least 4 then LCS0 is NP-complete. (The result t

prove is stronger than the one stated in[2, Proposition 1].) We improve this result.
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Theorem 2. TheLCS0problem isNP-hard even ifΣ is binary. Moreover, theLCS0prob-
lem parameterized in#L is W[1]-hard.

Proof. Suppose thatΣ is the binary alphabet{0,1}. By Theorem 1, it is sufficient to re-
duce LCS (parameterized in #L) to LCS0 (parameterized in #L). Let (L, k) be an instance
of LCS,L being a non-empty finite language andk a positive integer. We construct(L̃, k̃)

such that it is an instance of LCS0. In our construction, we introduce an intermedia
guageL′ whose strings all have intermediate lengthN . L′ is constructed fromL as in
Lemma 2with appropriatemx ’s andnx ’s in order to obtain strings of the same lengthN .
With n set as the length of the longest string inL, the final languagẽL is made by concate
nating0n to all strings inL′. This forces the lcs of̃L to be larger than or equal ton. We set
k̃ := k + n such that if(L, k) has a solution of lengthk, (L̃, k̃) has a solution of length̃k.
Let

n := max
x∈L

|x|, N := 2k + n, L′ :=
⋃
x∈L

{x0N−|x|, x1N−|x|},

L̃ := L′0n and k̃ := k + n.

We haveL′ ⊆ {0,1}N . Therefore,L̃ is a subset of{0,1}2k̃ and (L̃, k̃) is an instance o
LCS0. The transformation of the instance(L, k) of LCS into the instance(L̃, k̃) of LCS0
is polynomial and parameter preserving (since #L̃ = #L′ = 2#L). It remains to prove that

(1)lcs(L) � k ⇔ lcs(L̃) � k̃.

First,Lemma 2applied toL andL′ yields lcs(L) = lcs(L′). As a corollary, the polyno
mial reduction of(L, k) to (L′, k) shows that the restriction of LCS to the instances s
that all strings inL share the same length is NP-complete and W[1]-hard with respect
to #L′.

On the other end,Lemma 1implies that lcs(L̃) = lcs(L′) + n and therefore: lcs(L̃) =
lcs(L) + n which implies(1). �

Now, we have to relate the Levenshtein distance and the notion of subsequence
plete the reduction of LCS0 to CENTER STRING.

Lemma 3. For all x, y ∈ Σ� we have:

(i) dL(x, y) � |x| − |y|,
(ii) dL(x, y) = |x| − |y| if and only ify is a subsequence ofx.

Proof. Let x, y ∈ Σ� and w.l.o.g. assumex is longer thany. The first statement says th
the edit distance is larger than or equal to the length difference ofx andy. Clearly, any
transformation ofx into y has to delete|x| − |y| supernumerary symbols. The seco
statement says that the equality holds iffy is a subsequence ofx. Again, once the transfor
mation has deleted the|x| − |y| supernumerary symbols, if the resulting subsequencey,
it means thaty is a subsequence ofx, and conversely. �
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Theorem 3. The CENTER STRING problem under Levenshtein distance isNP-complete
even ifΣ is binary. Moreover,CENTER STRING under Levenshtein distance, paramet
ized in#W , is W[1]-hard.

Proof. The proof is the same as in[2]. It consists in reducing LCS0 to CENTER STRING:
we transform an instance(L, k) of LCS0 into the instance(W,K) := (L ∪ {ε}, k) of
CENTER STRING. The transformation is polynomial and parameter preserving (s
#W ∈ {#L,#L + 1}). The equivalence

lcs(L) � k ⇔ R(W) � K,

follows from the properties ofdL stated inLemma 3.
(⇒) First, assume lcs(L) � k. We show thatR(W) � K . By hypothesis, it existss ∈

CSub(L) such that|s| = k. Statement (ii) ofLemma 3implies that for allx ∈ L: dL(x, s) =
|x|−|s| = 2k−k = k. AsdL(ε, s) = |s| = k = K , for anyx ∈ W , it follows thatdL(x, s) =
K and thus,R(W) � k = K .

(⇐) Now, assume thatR(W) � K . We show lcs(L) � k, i.e., it exists ans in CSub(L)

such that|s| � k. By hypothesis, it existss ∈ {0,1}� such that for anyw ∈ W we have
dL(w, s) � K = k. As ε belongs toW , we know by hypothesis that|s| = dL(ε, s) � k. By
definition of the radius, for anyx ∈ L:

k � dL(x, s)

� |x| − |s| by statement (i) ofLemma 3

= 2k − |s| becausex ∈ L

� 2k − k since|s| � k

= k.

It follows that the previous inequalities are in fact equalities. Thus, by statement (
Lemma 3, dL(x, s) = |x|− |s| implies thats is a subsequence ofx. Moreover, 2k −|s| = k

and therefore|s| = k, which completes the proof.�
2.2. Hardness ofMEDIAN STRING under Levenshtein distance

In order to reduce LCS to MEDIAN STRING, we need to link Levenshtein distance a
subsequences by a tighter inequality than the one provided byLemma 3. Let x, y ∈ Σ�

and w.l.o.g. assume|x| � |y|. Lemma 4shows that any transformation ofx into y contains
at least as much operations as the difference between the lengths ofx and of its longes
common subsequences withy. An explanation is as follows. Consider the positions ox

that do not belong to a fixed maximal common subsequence ofx andy. All these are eithe
supernumerary and have to be deleted, or differ from the corresponding position iny and
need to be substituted.

Lemma 4. For all x, y ∈ Σ�, we have

dL(x, y) � max
{|x|, |y|} − lcs

({x, y}).
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Proof. Let ((x1, y1), (x2, y2), . . . , (xn, yn)) be an alignment ofx andy with optimal cost
dL(x, y). For a definition of an alignment, we refer the reader to[8]. Remember thatx[i]
and notxi denotes theith symbol ofx. We have

– (xi, yi) ∈ ((Σ ∪ {ε}) × Σ) ∪ (Σ × (Σ ∪ {ε})) for all i ∈ [1, n] (a symbol in the align-
ment is a single letter or the empty string),

– x = x1x2 . . . xn,
– y = y1y2 . . . yn,
– dL(x, y) = #J whereJ is the set of alli ∈ [1, n] such thatxi �= yi .

Denotek := #([1, n] \ J ). Let i1, i2, . . . , ik be indexes such that:[1, n] \ J = {i1,
i2, . . . , ik} and i1 < i2 < · · · < ik . For all i ∈ [1, n], i /∈ J means thatxi = yi and there-
forexi1xi2 . . . xik = yi1yi2 . . . yik is a subsequence ofx and ofy. From that we deduce:

(2)lcs
({x, y}) � k = n − dL(x, y).

On the other hand, as any alignment symbol can be the empty string, we have

n � |x1x2 . . . xn| = |x| and n � |y1y2 . . . yn| = |y|,
and thus:

(3)n � max
{|x|, |y|}.

Combining Eqs.(2) and (3), we obtain the inequality stated in our lemma.�
The inequality stated inLemma 4involves only two strings. In order to generalize

to many strings (Lemma 6), we need the following lemma. For any two finite setsA, B,
we have #(A ∪ B) = #A + #B − #(A ∪ B). Lemma 5states an analogous result for t
length of the longest common subsequence. Indeed, the lcs of the union of{µ} ∪ X and
{µ} ∩ Y is larger than or equal to the lcs of each minus the lcs of their intersection, w
contains{µ}.

Lemma 5. For all µ ∈ Σ� and for allX, Y ⊆ Σ�, we have

(4)lcs
({µ} ∪ X ∪ Y

)
� lcs

({µ} ∪ X
) + lcs

({µ} ∪ Y
) − |µ|.

Proof. Let p := lcs({µ} ∪ X) and q := lcs({µ} ∪ Y). By hypothesis for{µ} ∪ X,
there exist indexesi1, i2, . . . , ip satisfying 1� i1 < i2 < · · · < ip � |µ| such that
u := µ[i1]µ[i2] . . .µ[ip] ∈ CSub({µ} ∪ X). Similarly, for {µ} ∪ Y , there exist indexe
j1, j2, . . . , jq satisfying 1� j1 < j2 < · · · < jq � |µ| such thatv := µ[j1]µ[j2] . . .µ[jq ] ∈
CSub({µ} ∪ Y).

SettingI := {i1, i2, . . . , ip} andJ := {j1, j2, . . . , jq}, we see thatu andv share a com
mon subsequence of length #(I ∩ J ). It is also a common subsequence of all strings
{µ} ∪ X ∪ Y . From which we deduce

(5)lcs
({µ} ∪ X ∪ Y

)
� #(I ∩ J ).
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On the other hand, sinceI and J are subsets of[1, |µ|], we have #(I ∪ J ) � |µ| and
therefore

(6)#(I ∩ J ) = p + q − #(I ∪ J ) � p + q − |µ|.
Combining(5) and(6) gives(4) and concludes the proof.�

Lemma 6generalizesLemma 4to the case of a language.

Lemma 6. For all µ ∈ Σ� and for all finite languagesX overΣ , we have:∑
x∈X

dL(µ,x) + (#X − 1)|µ| � |X| − lcs
({µ} ∪ X

)
where|X| denotes

∑
x∈X |x|.

Proof. We proceed by induction on #X. Assume #X = 0; the inequality holds since bot
members are equal to−|µ|. When #X = 1, the statement follows fromLemma 4.

Now suppose that #X � 1. Letx0 ∈ X and letX′ := X \ {x0}. We have

(7)dL(µ,x0) � |x0| − lcs
({µ,x0}

)
,

(8)
∑

x′∈X′
dL(µ,x′) + (#X′ − 1)|µ| � |X′| − lcs

({µ} ∪ X′),
(9)lcs

({µ} ∪ X
)
� lcs

({µ} ∪ X′) + lcs
({µ,x0}

) − |µ|.
Inequalities(7) and(8) result respectively fromLemma 4and from the induction hypoth
esis.Lemma 5applied with(X,Y ) := (X′, {x0}) yields(9). Adding(7), (8) and the trivial
inequality|µ| � |µ| we obtain∑

x∈X

dL(µ,x) + (#X′)|µ| � |X′| + |x0| − lcs
({µ} ∪ X′) − lcs

({µ,x0}
) + |µ|

� |X′| + |x0| − lcs
({µ} ∪ X

)
,

where the last inequality deduces from(9). Since #X′ = #X − 1 and|X′| + |x0| = |X|, this
concludes the proof. �

We can now prove the main theorem of this section. Our proof is inspired from th
of [2]. However, our reduction differs: instead of adding new symbols to the alphabe
construct a language by concatenating a block of0’s to every word and adding new word
that are comparatively small powers of0’s.

Theorem 4. TheMEDIAN STRING problem under Levenshtein distance isNP-complete
even ifΣ is binary. Moreover,MEDIAN STRING under Levenshtein distance, paramet
ized in#W , is W[1]-hard.

Proof. SupposeΣ is the binary alphabet{0,1}. The schema of the proof is the followin
we reduce LCS (parameterized in #L) to MEDIAN STRING (parameterized in #W ) in order
to applyTheorem 1and conclude.



402 F. Nicolas, E. Rivals / Journal of Discrete Algorithms 3 (2005) 390–415

of

n

een
Let (L, k) be an instance of LCS,L being a non-empty finite language over{0,1} and
k a positive integer. We transform(L, k) into the instance(W,K) of MEDIAN STRING, as
described below. Let

n := #L, N := max

{
|L| + n(n − 1)

2
− k,n − 1

}
,

K := |L| + (n − 1)N − k − n(n − 1)

2
, W := L0N ∪ {

0i : i ∈ [1, n − 1]}.
This transformation is polynomial and parameter preserving since #W = 2(#L)−1. Hence,
it remains to prove

lcs(L) � k ⇔ S(W) � K.

(⇒) Suppose that lcs(L) � k. We want to prove thatS(W) � K . By hypothesis, it
existss ∈ CSub(L) such that|s| = k. Let µ := s0N .

The idea of the proof is to chooseµ as a potential median and computes the sum
the Levenshtein distances to all strings inW . First, we observe that the strings0i are
subsequences ofµ and thatµ is a subsequence of each stringx0N . In such a case,Lemma 3
gives us a formula to compute the Levenshtein distance betweenµ and any string inW .

For all i ∈ [1, n − 1], we havei � n − 1 � N � |µ|0, so0i is a subsequence ofµ.
Hence, byLemma 3, we have

dL(µ,0i ) = |µ| − |0i | = k + N − i.

Moreover, for allx ∈ L, µ is a subsequence ofx0N ; againLemma 3applies and we obtai

dL(µ,x0N) = |x0N | − |µ| = |x| − k.

Using these equalities, we compute the sum of the Levenshtein distances betwµ

and strings ofW

∑
w∈W

dL(µ,w) =
∑
x∈L

dL(µ,x0N) +
n−1∑
i=1

dL(µ,0i ) =
∑
x∈L

(|x| − k
) +

n−1∑
i=1

(k + N − i)

= |L| − nk + (n − 1)k + (n − 1)N − n(n − 1)

2
= K

and we obtainS(W) � K .
(⇐) Conversely, assumeS(W) � K . We show that lcs(L) � k. By hypothesis, it exists

µ ∈ {0,1}� such that
∑

w∈W dL(µ,w) � K . First, we prove that|µ|0 � n − 1. For this,
we note that for all stringsu, v, dL(u, v) is greater or equal to|v|0 − |u|0. Hence, for all
x′ ∈ L0N , we have

N − |µ|0 � |x′|0 − |µ|0 � dL(µ,x′)

so by summing overx′ ∈ L0N , we get

nN − n|µ|0 �
∑

x′∈L0N

dL(µ,x′) � K
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n|µ|0 � nN − K

= nN −
(

|L| + (n − 1)N − k − n(n − 1)

2

)

= N − |L| + k + n(n − 1)

2

�
(

|L| + n(n − 1)

2
− k

)
− |L| + k + n(n − 1)

2

= n(n − 1)

which yieldsµ0 � n − 1. This implies that for alli ∈ [1, n − 1], 0i is a subsequence ofµ,
and sodL(µ,0i ) = |µ| − i. Thus,

n−1∑
i=1

dL(µ,0i ) =
n−1∑
i=1

|µ| −
n−1∑
i=1

i = (n − 1)|µ| − n(n − 1)

2
.

We can now write∑
w∈W

dL(µ,w) =
∑

x′∈L0N

dL(µ,x′) + (n − 1)|µ| − n(n − 1)

2

(10)� |L0N | − lcs
({µ} ∪ L0N

) − n(n − 1)

2
,

where the application ofLemma 6with X := L0N yields the last inequality.
On the other hand, we have:

(11)|L0N | =
∑
x∈L

|x0N | =
∑
x∈L

(|x| + N
) = |L| + nN

and byLemma 1

(12)lcs
({µ} ∪ L0N

)
� lcs(L0N) = lcs(L) + N.

By hypothesis,K � S(W) �
∑

w∈W dL(µ,w); combining this with(10), (11)and(12)
yields

K �
∑
w∈W

dL(µ,w) �
(|L| + nN

) − (
lcs(L) + N

) − n(n − 1)

2

and thus

lcs(L) � |L| + (n − 1)N − n(n − 1)

2
− K = k.

This concludes the proof.�
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3. Hardness of CENTER STRING under a weighted edit distance

Let dE be a fixed integer valued edit distance that is a metric and satisfies the follo
property:

Property 1.

∀a, b ∈ Σ a �= b ⇒ dE(a, ε) < dE(a, b) + dE(b, ε).

Property 1means that deleting a letter in a string costsstrictly less than changing thi
letter into another letter and deleting that letter. It tightens slightly the triangle ine
ity and is a natural property for an edit distance. In this section, we prove that CENTER

STRING underdE is intractable. Our proof relies on a reduction of a weighted counte
of LCS0 to CENTER STRING. After introducing the concept of weight, Section3.1proves
that the weighted counterparts of LCS0 and LCS are intractable. Section3.2 generalizes
Lemma 3to the weighted case and proves the main result.

3.1. TheWEIGHTED COMMON SUBSEQUENCEproblem

Let us first define aweight.

Definition 5. A weightoverΣ� is a mappingλ :Σ� → N such that:

– for all a ∈ Σ , λ(a) > 0 and
– for all x, y ∈ Σ�, λ(xy) = λ(x) + λ(y).

A weightλ is a morphism over the free monoid (for details on the free monoid see[15]).
Hence,λ(ε) = 0 andλ is defined by its restriction toΣ :

∀w ∈ Σ� λ(w) = λ
(
w[1]) + λ

(
w[2]) + · · · + λ

(
w

[|w|]).
The weight overΣ� that maps each element ofΣ to 1, maps each string ofΣ� to its length.

We can now introduce the weighted counterparts to LCS and LCS0.

Definition 6. Let λ be a weight overΣ�.
Theλ-WEIGHTED COMMON SUBSEQUENCEproblem (denoted byλ-WCS) is: given

a non-empty, finite languageL over Σ and k ∈ N, does there exists ∈ CSub(L) with
λ(s) = k?

Theλ-WCS0 problem is the restriction ofλ-WCS to the instances(L, k) such that for
all x ∈ L, λ(x) = 2k.

We now show the intractability ofλ-WCS0 for any fixed weightλ overΣ� (Theorem 5).
To prove this theorem requiresLemma 8. Lemma 8considers a class of morphisms over
free monoid that “amplify” the letters of a string, i.e., that replace each lettera by a power
of a. Let L be a language andf such a morphism. The result stated means that for eat

that is a common subsequence to the image ofL, one can find a common subsequencs
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of L such thatt is a subsequence off (s). This holds since it is possible to amplify som
letters int to obtain a common subsequence off (L) that has a preimage byf .

AlthoughLemma 8is used inTheorem 5in the finite case, it is also valid in the case
infinite languages, which is proved thanks to the following property of compactness.

Lemma 7 (Compactness). Let X be a non-empty language overΣ , i.e., X ⊆ Σ� and
X �= ∅. It existsY , a finite and non-empty subset ofX, such thatCSub(X) = CSub(Y ).

Proof. Choose a stringu in X. The set of the subsequences ofu, Sub(u), is finite and so is
its subsetS defined byS := Sub(u) \ CSub(X). By definition ofS, for eachs ∈ S one can
find a stringxs ∈ X such thats is not a subsequence ofxs . SettingY := {u} ∪ {xs : s ∈ S},
we have thatY is a non-empty and finite subset ofX. It remains to prove that CSub(X) =
CSub(Y ). First,Y ⊆ X implies CSub(X) ⊆ CSub(Y ). Now, let s ∈ CSub(Y ) and assume
thats /∈ CSub(X). As u ∈ Y , s is a subsequence ofu. By hypothesis,s belongs toS and is
thus, not a subsequence ofxs , which contradictss ∈ CSub(Y ). Thus, we haves ∈ CSub(X)

and CSub(Y ) ⊆ CSub(X). �
Lemma 8. Let f :Σ� → Σ� be a mapping satisfyingf (a) ∈ {a}+ for eacha ∈ Σ and
f (xy) = f (x)f (y) for anyx, y ∈ Σ�. Then, for any non-empty languageL overΣ and
for any t ∈ CSub(f (L)), it existss ∈ CSub(L) such thatt is a subsequence off (s).

Proof. If ε ∈ L thenε ∈ f (L) and CSub(f (L)) = {ε} andt = ε. In this case, settings := ε

we get thats ∈ CSub(L) and t is a subsequence off (s). Now, let us consider the cas
where all strings inL are non-empty. Moreover, byLemma 7, we can assume thatL is
finite and proceed by induction over|L|. As L := {ε} is the only non-empty languag
satisfying|L| = 0 and this case is now excluded, we can further assume that|L| > 0. Two
alternatives arise:

1. All strings inL end by the same letter, saya ∈ Σ . It existsL′ ⊆ Σ� such thatL = L′a.
It follows that|L′| < |L| andf (L) = f (L′)f (a). Letα be the longest suffix oft that is
a subsequence off (a) andt ′ be a string inΣ� such thatt = t ′α. By constructiont ′ ∈
CSub(f (L′)); so the induction hypothesis applies: it existss′ ∈ CSub(L′) satisfying
t ′ ∈ Sub(f (s′)). Settings := s′a, we obtain thats ∈ CSub(L) andt ∈ Sub(f (s)), what
we wanted to show.

2. At least two strings end with distinct letters. I.e., it existsa, b ∈ Σ and u, v ∈ Σ�

such thata �= b and {ua, vb} ⊆ L. So, eithera or b is not a suffix oft . As a and
b play symmetrical roles, assumea is not a suffix oft . Sincet is a subsequence o
f (ua) = f (u)f (a), it is also a subsequence off (u), asf (a) contains onlya’s. Setting
L′ := (L \ {ua}) ∪ {u}, we gett ∈ CSub(f (L′)) and also|L′| < |L| (more precisely
|L′| = |L|−1 if u /∈ L and|L′| = |L|−|ua| otherwise). Thus, the induction hypothe
applies: it existss ∈ CSub(L′) such thatt ∈ Sub(f (s)). Since by construction ofL′,
we have CSub(L′) ⊆ CSub(L), we gets ∈ CSub(L), what we needed to show.�

Theorem 5. Let λ be a weight overΣ�. Then theλ-WCS0problem isNP-hard even ifΣ
is binary. Moreover,λ-WCS0, parameterized in#L, is W[1]-hard.
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Proof. By Theorem 2, it is sufficient to reduce LCS0 (parameterized in #L) to λ-WCS0
(parameterized in #L). Suppose thatΣ is the binary alphabet{0,1}. Let (L, k) be an
instance of LCS0,L being a non-empty finite language overΣ andk a positive integer
We construct(L̃, k̃) such that it is an instance ofλ-WCS0. Let

(L̃, k̃) := (
f (L),λ(0)λ(1)k

)
,

where the mappingf : {0,1}� → {0,1}� is given by:f (0) = 0λ(1), f (1) = 1λ(0) and for
all x, y ∈ {0,1}�, f (xy) = f (x)f (y). The mappingf replaces each0 by a number of
0’s equal to the weight of a1, and symmetrically each1 by a number of1’s equal to the
weight of a0. The idea behind this rewriting is to obtain stringsf (x) whose weight do no
depends on their composition in0’s and1’s (which is the case in general), but solely
their length. Indeed, we haveλ(f (0)) = λ(f (1)) = λ(0)λ(1) and thus,

(13)∀x ∈ {0,1}� λ
(
f (x)

) = λ(0)λ(1)|x|.
Therefore, ifx ∈ L, thenλ(f (x)) = λ(0)λ(1)(2k) = 2k̃. Hence,(L̃, k̃) is an instance o
λ-WCS0.

The restriction of the morphismf to {0,1} is injective andf ({0,1}) = {0λ(1),1λ(0)}
is a code (see[15, Chapter 6]for a definition) over{0,1}. Hence,f is injective[15] and
so, #L̃ = #L. This proves that the reduction of an instance(L, k) of LCS0 into the instance
(L̃, k̃) of λ-WCS0 is parameter preserving. Since it is polynomial, it remains to prove
lcs(L) � k if and only if there exists̃s ∈ CSub(L̃) such thatλ(s̃) = k̃.

Suppose lcs(L) � k. Then, there existss ∈ CSub(L) such that|s| = k. Let s̃ := f (s): s̃

belongs to CSub(L̃) andλ(s̃) = k̃ (by Eq.(13)).
Conversely, suppose there existss̃ ∈ CSub(L̃) such thatλ(s̃) = k̃. By Lemma 8, there

existss ∈ CSub(L) such that̃s is a subsequence off (s). Thus, we have:

k̃ = λ(s̃) � λ
(
f (s)

) = λ(0)λ(1)|s|
(the last equality coming from Eq.(13)) and from which we deduce|s| � k̃

λ(0)λ(1)
= k. We

can now write lcs(L) � |s| � k, which completes the proof.�
Let λ be any fixed weight overΣ�. Sinceλ-WCS0 is a restriction ofλ-WCS, an imme-

diate corollary ofTheorem 5is thatλ-WCS (resp.λ-WCS parameterized in #L) is NP-hard
(resp. W[1]-hard) even ifΣ is binary.

3.2. Hardness ofCENTER STRING under any weighted edit distance

Property 1generalizesLemma 3to the case of a weighted edit distance.

Lemma 9. For everyx, y ∈ Σ�, we have:

(i) dE(x, y) � dE(x, ε) − dE(y, ε),
(ii) if y is a subsequence ofx thendE(x, y) = dE(x, ε) − dE(y, ε), and

(iii) if dE satisfiesProperty1 and if dE(x, y) = dE(x, ε) − dE(y, ε), theny is a subse-
quence ofx.
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Proof. Statement (i) is an immediate corollary of the triangle inequality:dE(x, ε) �
dE(x, y) + dE(y, ε).

Let us prove statement (ii). Assumey is a subsequence ofx. One can transformx into
y by deleting|x| − |y| letters ofx. More precisely, for eacha ∈ Σ one needs to delet
|x|a − |y|a occurrences ofa, which costs(|x|a − |y|a)dE(a, ε). The total editing cost fo
all letters is∑

a∈Σ

(|x|a − |y|a
)
dE(a, ε) =

∑
a∈Σ

|x|adE(a, ε) −
∑
a∈Σ

|y|adE(a, ε)

= dE(x, ε) − dE(y, ε).

It follows thatdE(x, y) � dE(x, ε) − dE(y, ε). As dE(x, ε) − dE(y, ε) � dE(x, y) is also
true, we obtain the equality of statement (ii).

Let us now prove statement (iii). Assume thatProperty 1is satisfied and thatdE(x, y) =
dE(x, ε) − dE(y, ε). Let ((x1, y1), (x2, y2), . . . , (xn, yn)) be an alignment betweenx and
y of optimal cost

∑n
i=1 dE(xi, yi) = dE(x, y).

To prove thaty is a subsequence ofx, it suffices to show that for anyi ∈ [1, n] we have
yi ∈ {ε, xi}. As x1x2 . . . xn = x, we get

n∑
i=1

dE(xi, ε) = dE(x, ε) = dE(x, ε) − dE(y, ε) + dE(y, ε) = dE(x, y) + dE(y, ε)

=
n∑

i=1

dE(xi, yi) +
n∑

i=1

dE(yi, ε) =
n∑

i=1

(
dE(xi, yi) + dE(yi, ε)

)
,

where the fourth equality follows from the alignment’s optimality and from the fact
y1y2 . . . yn = y. As for any positioni ∈ [1, n], the triangle inequality

dE(xi, ε) � dE(xi, yi) + dE(yi, ε)

is satisfied, we obtain:

dE(xi, ε) = dE(xi, yi) + dE(yi, ε).

By Property 1, this is true only ifyi /∈ Σ or if yi = xi . Thus, we haveyi ∈ {ε, xi}, which
proves the last statement of this lemma.�

The following lemma introduces a special weight: the morphism that maps a str
its distance toε.

Lemma 10. The mapping

Σ� → N

w → dE(w, ε)

is a weight overΣ�.
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Proof. To transformw into ε, we have to delete each letter inw and thus:

dE(w, ε) = dE

(
w[1], ε) + dE

(
w[2], ε) + · · · + dE

(
w

[|w|], ε). �
The proof of the intractability of CENTER STRING is based on the reduction of WCS

weighted by the above mentioned weight to CENTER STRING. We choose this weight fo
WCS0 because it is related to the distancedE used in CENTER STRING.

Theorem 6. SupposedE is an integer valued edit distance that is a metric satisfyingProp-
erty 1. Then, theCENTER STRING problem underdE is NP-complete even ifΣ is binary.
Moreover,CENTER STRING underdE parameterized in#W is W[1]-hard.

Proof. Suppose thatΣ is the binary alphabet{0,1}. Let λ := dE(., ε) the weight over
Σ� as defined inLemma 10. We reduceλ-WCS0 to CENTER STRING: we transform an
instance(L, k) of λ-WCS0 in the instance(W,K) := (L ∪ {ε}, k) of CENTER STRING.
The transformation is clearly polynomial and parameter preserving (#W ∈ {#L,#L + 1}).
Hence, it remains to check thatR(W) is at mostK if and only if there existss ∈ CSub(L)

such thatλ(s) = k.
(Only if part) First, assume that there existss ∈ CSub(L) such thatλ(s) = k. We

show thatR(W) � K . Statement (ii) ofLemma 9implies that for allx ∈ L: dE(x, s) =
dE(x, ε) − dE(s, ε) = λ(x) − λ(s) = 2k − k = k. As dE(ε, s) = λ(s) = k = K , for any
x ∈ W it follows thatdE(x, s) = K and thus,R(W) � k = K .

(If part ) Now, assume thatR(W) � K . We show that it exists ans in CSub(L) such
thatλ(s) = k.

By hypothesis, it existss ∈ {0,1}� such that for anyw ∈ W we havedE(w, s) � K = k.
As ε belongs toW , we know by hypothesis thatdE(ε, s) � k. By definition of the radius
for anyx ∈ L:

k � dE(x, s)

� dE(x, ε) − dE(s, ε) by statement (i) ofLemma 9

= 2k − dE(s, ε) becausex ∈ L

� 2k − k sincedE(ε, s) � k

= k.

It follows that the previous inequalities are in fact equalities. Thus, by statement (
Lemma 9, dE(x, s) = dE(x, ε) − dE(s, ε) implies thats is a subsequence ofx. Moreover,
2k − dE(s, ε) = k and thereforeλ(s) = dE(s, ε) = k, which completes the proof.�

The previous theorem means that, unless P= NP (resp. FPT= W[1]) it does not exists
a weighted edit distance satisfying natural properties under which CENTER STRING is
solvable in polynomial time (resp. is FPT in the number of input strings).

Note that if one replacesdE by dL the proof ofTheorem 6is a valid proof for the
unweighted case (Theorem 3).



F. Nicolas, E. Rivals / Journal of Discrete Algorithms 3 (2005) 390–415 409

ven
ance

pu-
tance

-
n-
d edit
r-

p-
in

. me-
et
es to
dmit

work
by the
heurs
Math

l

4. Conclusion

In Section2.1(see also[21]), we have shown that CENTER STRING under Levenshtein
distance is NP-complete and W[1]-hard with respect to the number of input strings, e
for binary alphabet. In Section3, we generalize these results to any weighted edit dist
that satisfies a natural condition. This condition is fulfilled in many applications of com
tational biology for instance. It remains open to find any particular weighted edit dis
(of course, one that does not satisfy our condition) for which CENTER STRING would be
polynomial, but this seems improbable.

Concerning MEDIAN STRING, we have shown (Section2.2) that under the Leven
shtein distance it is also NP-complete and W[1]-hard with respect to the number of i
put strings, even for binary alphabets. The complexity under a particular weighte
distance remains open and seems non-trivial, since ifΣ = {0,1} and if the scores of inse
tions/deletions of0 and of1 are not equal then our reduction does not seem to hold.

Although CENTER STRING and MEDIAN STRING are NP-complete, there exist a
proximation algorithms with bounded errors[8] and heuristic algorithms that are used
practice[10,19]. For example, given a finite languageW over Σ , a set center(resp.set
median) of W can be found in polynomial time and is an approximate center (resp
dian) ofW with performance ratio 2 (resp. 2− 2

#W
). Note that we call set center (resp. s

median) ofW any string that minimizes the maximum (resp. the sum) of the distanc
strings in the setW andbelongs toW . An open question subsists: do these problems a
Polynomial Time Approximation Schemes?
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Appendix A. A polynomial time algorithm for CENTER STRING with a fixed
number of strings

In this section,dE denotes a weighted metric edit distance overΣ� that takes natura
values. We set

E := max
a∈Σ

dE(ε, a) = max
a∈Σ

dE(a, ε).

E is the insertion and deletion cost of the heaviest symbols.
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For any stringw and anyk ∈ [0, |w|], w(k) denotes theprefixof w of lengthk, that is
w[1]w[2] . . .w[k] (note thatw(0) = ε). We denote byZ the set of all integers.

For anyn ∈ N and anyP ∈ Z
n, we call thesupportof P , the set denoted by supp(P ),

of i ∈ [1, n] such thatP [i] �= 0. For allI ⊆ [1, n], we callcharacteristic functionof I in
[1, n], the element1I of {0,1}n given by:

∀i ∈ [1, n] 1I [i] =
{

1 if i ∈ I,

0 if i /∈ I.

We denote1{j} by 1j for anyj ∈ [1, n].
Theorem A.1states the recurrence for the computation ofdE between two strings[28].

Theorem A.1. Let dE be any weighted edit distance overΣ�. For anyx, y ∈ Σ� and any
a, b ∈ Σ , we have:

dE(xa, ε) = dE(x, ε) + dE(a, ε),

dE(ε, yb) = dE(ε, y) + dE(ε, b),

dE(xa, yb) = min

{
dE(xa, y) + dE(ε, b),

dE(x, yb) + dE(a, ε),

dE(x, y) + dE(a, b).

A.2. A bound for the radius

The following property allows us to bound the radius of a language.

Proposition A.1. Let W be a non-empty finite language overΣ andM the length of the
longest strings inW . Then the radius ofW is at most equal toEM .

Proof. First, we bound the insertion cost of a stringw by the cost of inserting a string th
is a power of the heaviest symbol as long asw. For anyw ∈ Σ�, we have:

dE(ε,w) =
|w|∑
i=1

dE

(
ε,w[i]) �

|w|∑
i=1

E = E|w|

and thus

R(W) � max
w∈W

dE(ε,w) � max
w∈W

E|w| = EM. �
The bound given above is tight as shown by the following example.

Example A.1. Suppose that for allx, y ∈ Σ�, dE(x, y) = |x| + |y| − 2 lcs(x, y), i.e., that
substitutions cost at least 2 and insertions/deletions cost 1. In other words subs
are unnecessary, since one can always replace a substitution by a deletion followe
insertion. In this case, we haveE = 1. LetΣ := {0,1}, M ∈ N andW := {0M,1M}: ε and
0M1M are centers ofW andW admitsM as radius.
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A.3. Main algorithm

Let n ∈ N
∗ andW := {w1,w2, . . . ,wn} be a language withn strings overΣ . We want

to compute the radius ofW . We proceed bydynamic programming. LetM := maxw∈W |w|
be the length of the longest strings inW and let

P := [
0, |w1|

] × [
0, |w2|

] × · · · × [
0, |wn|

]
.

An element ofP is a combination of lengths, one for the prefix of eachwi . We denote by
∆ :P ×Z

n → {�,⊥} the boolean valued mapping that for any(P,D) ∈P ×Z
n is defined

by:

∆[P,D] ⇔ ∃s ∈ Σ�, ∀i ∈ [1, n], dE

(
s,w

(P [i])
i

)
� D[i].

D is a vector of maximum values for the edit distances.∆[P,D] is true iff it exists a
string s such that for each stringwi ∈ W , the edit distance betweens and the prefix of
w specified byP [i] is at mostD[i]. By Proposition A.1, it suffices to inspect the entrie
∆[(|w1|, |w2|, . . . , |wn|),D] for D ∈ [0,EM]n to compute the radius ofW . Our algorithm
computes by dynamic programming the restriction of∆ to P × [0,EM]n.

Before giving the recurrence relation inTheorem A.2we start by two lemmas
Lemma A.1 follows from the fact that the metricdE does not take negative value
Lemma A.2rewrites∆[P,D] whenP = (0,0, . . . ,0); it initializes the recurrence.

Lemma A.1. For anyP ∈P and anyD ∈ Z
n \ N

n, ∆[P,D] is false.

Lemma A.2. For anyD ∈ N
n, ∆[(0,0, . . . ,0),D] is true.

Proof. Let s := ε. If P = (0,0, . . . ,0) then for alli ∈ [1, n], w
(P [i])
i = ε, and thus,

dE

(
s,w

(P [i])
i

) = 0. �
The followingTheorem A.2states the main recurrence that enables the computati

∆[P,D]’s by dynamic programming.

Theorem A.2. Let P ∈ P with P �= (0,0, . . . ,0) and D ∈ Z
n. We have∆[P,D] if and

only if it existsj ∈ supp(P ) such that

∆
[
P − 1j ,D − dE

(
wj

[
P [j ]], ε)1j

]
OR it existsa ∈ Σ andJ ⊆ supp(P ) such that

(A.1)∆

[
P − 1J , D − dE(a, ε)1[1,n]\J −

∑
j∈J

dE

(
a,wj

[
P [j ]])1j

]
.

The first term of the logical OR is the case of an insertion at the end of somew
(P [j ])
j .

The second term (Eq.(A.1)) is the case of a deletion or a substitution (or a match) a
end of all thew(P [j ])’s.
j
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Proof. For each(s,P,D) ∈ Σ� ×P × Z
n we denote byΓ [s,P,D] the boolean value o

the assertion:

∀i ∈ [1, n] dE

(
s,w

(P [i])
i

)
� D[i].

This notation allows us to shorten the proof since:

∆[P,D] ⇔ ∃s ∈ Σ�, Γ [s,P,D].
Let P ∈ P with P �= (0,0, . . . ,0) andD ∈ Z

n.

We first show the“ if ” part.

• Assume that the first term of the logical OR is true. I.e., suppose it existsj ∈ supp(P )

ands ∈ Σ� such thatΓ [s,P −1j ,D −dE(wj [P [j ]], ε)1j ] is true. For anyi ∈ [1, n] \ {j},
asP [i] = (P − 1j )[i], we get

dE

(
s,w

(P [i])
i

) = dE

(
s,w

((P−1j )[i])
i

)
�

(
D − dE

(
wj

[
P [j ]], ε)1j

)[i]
= D[i].

Forwj , if we rewrite its prefix of lengthP [j ] in its prefix of lengthP [j ]− 1 concatenated
with its P [j ]th letter, we obtain

dE

(
s,w

(P [j ])
j

) = dE

(
s,

(
w

((P−1j )[j ])
j

)
wj

[
P [j ]])

� dE

(
s,w

((P−1j )[j ])
j

) + dE

(
ε,wj

[
P [j ]]) by Theorem A.1

�
(
D − dE

(
wj

[
P [j ]], ε)1j

)[j ] + dE

(
ε,wj

[
P [j ]]) by hyp.

= D[j ].
It follows thatΓ [s,P,D] holds and that∆[P,D] is true.

• Now, assume that the second term of the logical OR is true. I.e., it existsa ∈ Σ and
J ⊆ supp(P ) ands′ ∈ Σ� such that

Γ

[
s′,P − 1J ,D − dE(a, ε)1[1,n]\J −

∑
j∈J

dE

(
a,wj

[
P [j ]])1j

]

is true. On one hand, for anyi ∈ [1, n] \ J , by decomposing the prefixes of thewi ’s we get

dE

(
s′a,w

(P [i])
i

) = dE

(
s′a,w

((P−1J )[i])
i

)
sincei /∈ J

� dE

(
s′,w((P−1J )[i])

i

) + dE(a, ε) by Theorem A.1

�
(

D − dE(a, ε)1[1,n]\J −
∑
j∈J

dE

(
a,wj

[
P [j ]])1j

)
[i]

+ dE(a, ε) by hyp.

= D[i].



F. Nicolas, E. Rivals / Journal of Discrete Algorithms 3 (2005) 390–415 413

e

.

t
een

roof
On the other hand, for anyi ∈ J , we have

dE

(
s′a,w

(P [i])
i

) = dE

(
s′a,

(
w

((P−1i )[i])
i

)
wi

[
P [i]])

� dE

(
s′,w((P−1i )[i])

i

) + dE

(
a,wi

[
P [i]]) by Theorem A.1

�
(

D − dE(a, ε)1[1,n]\J −
∑
j∈J

dE

(
a,wj

[
P [j ]])1j

)
[i]

+ dE

(
a,wi

[
P [i]]) by hyp.

= D[i].
It follows thatΓ [s′a,P,D] holds, which implies that∆[P,D] is true. This completes th
first part of the proof.

Let us now show the“only if” part.
Suppose it existss ∈ Σ� satisfyingΓ [s,P,D]. Two cases arise.

• First, assume there existsj ∈ supp(P ) such that:

(A.2)dE

(
s,w

(P [j ])
j

) = dE(s,w
(P [j ]−1)
j ) + dE

(
ε,wj

[
P [j ]]).

In this case, we obtain thatΓ [s,P − 1j ,D − dE(ε,wj [P [J ]])1j ] is true and we are done

Note that Eq.(A.2) means it exists an alignment betweens andw
(P [j ])
j with minimum cost

dE(s,w
(P [j ])
j ) ending by(ε,wj [P [j ]]) (i.e., by the deletion of the last letter ofw

(P [j ])
j ).

• Conversely, assume that for eachj ∈ supp(P ), Eq.(A.2) is false.
This assumption requiress �= ε and thus, it existsa ∈ Σ ands′ ∈ Σ� such thats = s′a.

Furthermore, for eachj ∈ supp(P ), an alignment betweens andw
(P [j ])
j with minimum

costdE(s,w
(P [j ])
j ) ends either by(a, ε) (deletion of the last letter ofs) or by(a,wj [P [j ]])

(match or substitution between the last letters of both words). Let us denote byJ the subse
of j ∈ supp(P ) that are in the last case, i.e., such that there exists an alignment betws

andw
(P [j ])
j with costdE(s,w

(P [j ])
j ) that ends by(a,wj [P [j ]]), then:

∀j ∈ J dE

(
s,w

(P [j ])
j

) = dE

(
s′,w(P [j ]−1)

j

) + dE

(
a,wj

[
P [j ]]).

On the other hand, for anyj ∈ [1, n] \ J , an alignment betweens andw
(P [j ])
j with cost

dE(s,w
(P [j ])
j ) ends by(a, ε) (note that ifj /∈ supp(P ) thenanyalignment betweens and

w
(P [j ])
j = ε ends by(a, ε)). Hence we obtain

∀j ∈ [1, n] \ J dE

(
s,w

(P [j ])
j

) = dE

(
s′,w(P [j ])

j

) + dE(a, ε).

And so

Γ

[
s′,P − 1J , D − dE(a, ε)1[1,n]\J −

∑
j∈J

dE

(
a,wj

[
P [j ]])1j

]

is true, what we wanted. This completes both the proof of the “only if” part and the p
of the theorem. �
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Theorem A.3. Assumen ∈ N
∗ is fixed and consider theCENTER STRING problem under

dE for finite languagesW ⊆ Σ� of cardinalityn. It exists an algorithm that computes t
radius and a center ofW underdE in polynomial timeO(#Σ × M2n), whereM is length
of a longest string inW .

Proof. We store in memory the restriction of∆ toP×[0,EM]n in a 2n-dimensional table
of boolean values. The algorithm proceeds in two steps.

1. Initialization. According toLemma A.2, we set, for eachD ∈ [0,EM]n, the bit cod-
ing for ∆[(0,0, . . . ,0),D] to �. This step takes O(#P × (1 + EM)n) time, which is
roughly bounded by O(#Σ × M2n).

2. Recurrence. We enumerate allP ∈ P in lexicographical order, and for eachP , we
compute all the entries∆[P,D] for D ∈ [0,EM]n; for this #P × (1+ EM)n boolean
values are computed. The recurrence relation given inTheorem A.2allows us to
compute each entry in O(#Σ) time (note that Eq.(A.1) has to be evaluated for a
a ∈ Σ and negative values inD are handled byLemma A.1). So, the whole step take
O(#Σ × #P × (1+ EM)n) time, which is bounded by O(#Σ × M2n).

Altogether to compute the radius ofW , the algorithm requires O(#Σ × M2n) time as
stated. A center ofW can then be obtained by backtracking in the matrix that stores∆. �
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