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A ring S is said to have square stable range one (written ssr(S) = 1)
if aS + bS = S implies that a2 + bx is a unit for some x ∈ S . In the
commutative case, this extends the class of rings of stable range 1,
and allows many new examples such as rings of real-valued
continuous functions, and real holomorphy rings. On the other
hand, ssr(S) = 1 sometimes forces S to have stable range 1. For
instance, this is the case for exchange rings S , for which ssr(S) = 1
is characterized by S/rad S being reduced (or abelian, or right
quasi-duo). We also characterize rings S whose (von Neumann)
regular elements are strongly regular, by using an element-wise
notion of square stable range one. Extending a result of Estes and
Ohm, we show that a possibly noncommutative infinite domain
with stable range one or square stable range one must have a non-
artinian group of units.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

After Bass’s study [Ba] of the (injective and surjective) stability properties of the functor K1, the
notion of the stable range of rings has attracted a lot of attention. Early papers written on this topic
include, for instance, [EO,Va1,Va2]. The case of stable range one turned out to be especially popular,
perhaps because it is a Morita invariant property, and has various applications to the problem of
cancellation and substitution of modules. The relevant literature here includes [GM,Ca,Yu1,CY,Ar,Ch1,
Ch2,KL], among many others; for a partial survey, see [La5].
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Our goal in this paper is to study certain algebraic variants of the notion of stable range 1. Recall
that a ring S is said to have stable range 1 (written sr(S) = 1) if aS + bS = S implies that, for some
x ∈ S , a + bx ∈ U(S) (the unit group of S). It is well known (albeit nontrivial) that this property is
left–right symmetric. Our goal in this paper is to study a variant of the stable range 1 property,
which we call “square stable range 1”. A bit surprisingly, the path leading to the discovery of this
notion emerged in linear algebra (instead of ring theory or K -theory). In considering the problem of
factoring the matrix

( b 0
a 0

)
into a product of two Toeplitz matrices, Khurana, Lam, and Shomron were

led to ask for units of the form a2 +bx, given that aS +bS = S . This prompted the following definition.

Definition 1.1. A ring S is said to have (right) square stable range 1 (written ssr(S) = 1) if, for any
a,b ∈ S , aS + bS = S implies that a2 + bx ∈ U(S) for some x ∈ S .

The square stable range 1 property has some, but not all, of the well-known features of stable
range 1. For instance, both properties force the ring S in question to be Dedekind-finite, and are in-
herited by corner rings, factor rings, and power series rings. These facts are developed in Section 2
of this paper. For commutative rings S , sr(S) = 1 ⇒ ssr(S) = 1, but not conversely in general. In-
deed, one thing that makes the notion ssr(S) = 1 interesting and worthwhile is that it allows for
many new examples, including rings of continuous real-valued functions on topological spaces, and
real holomorphy rings in formally real fields. The latter class leads to many examples of commutative
finite-dimensional Prüfer domains S with ssr(S) = 1 �= sr(S), as we’ll see in Section 3. Indeed, many of
these new examples have the stronger property that

∑
i ai S = S ⇒ ∑

i a2
i ∈ U(S). This “Artin–Schreier

Property” (named in honor of the authors of the seminal paper [AS]) turns out to be left–right sym-
metric, according to Theorem 4.2.

Section 4 begins with the key result that a ring S with ssr(S) = 1 must be right quasi-duo; that
is, maximal right ideals of S are always ideals. This fact implies that a matrix ring Mn(S0) cannot
have square stable range 1 (if n > 1 and S0 �= 0). For a (von Neumann) regular ring S , the same fact
shows that ssr(S) = 1 iff S is strongly regular,2 while it is classically well known that sr(S) = 1 iff S
is unit-regular (see [Go2, (4.12)]). Thus, for regular rings S , ssr(S) = 1 turned out to be stronger than
sr(S) = 1. This prompted us to consider the more general case of exchange rings. In Theorem 4.4, we
show that, for any exchange ring S , ssr(S) = 1 iff S is right quasi-duo, iff S/rad S is a reduced ring,
and these properties imply that sr(S) = 1. Moreover, any abelian3 exchange ring S has ssr(S) = 1: this
generalizes earlier results of Chen [Ch1] and Yu [Yu1] on such rings.

In Section 5, we reexamine the idea of square stable range 1 from an “element-wise” point of
view, defining an element a ∈ S to have ssr(a) = 1 if aS +bS = S (for any b ∈ S) implies that a2 +bx ∈
U(S) for some x ∈ S . This is shown to be closely related to the notion of strongly regular elements
in S (that is, elements a ∈ S such that a ∈ a2 S ∩ Sa2). Prompted by the work in [KL], we show in
Theorem 5.4 that regular elements in S are strongly regular iff ssr(a) = 1 for all regular a ∈ S . For
exchange rings S , the former property turns out to be another characterization for ssr(S) = 1. This
provides an interesting parallel to an earlier result of Camillo and Yu [CY], which states that sr(S) = 1
iff regular elements in S are unit-regular.

In the last two sections of the paper, we study the unit groups of rings with (square) stable
range 1. This was first done by Estes and Ohm in the commutative case for sr(S) = 1. Generalizing
their work in [EO], we show in Theorem 6.8 that, if S is a possibly noncommutative infinite domain
with sr(S) = 1 or ssr(S) = 1, then the group of units U(S) is non-artinian (and hence infinite). The
proof of this ultimately rests on an analysis of D∗ = U(D) for an infinite division ring D . In this case,
a combination of methods from number theory and field theory shows (in (7.4)) that D∗ actually
contains an infinite direct sum of nontrivial cyclic groups. In the preparation work for proving the
above results, we also obtain a new characterization for strongly π -regular rings: a ring S is strongly

2 A ring S is called strongly regular if a ∈ a2 S for all a ∈ S . This notion came from the work of Arens and Kaplansky on the
topological representation of algebras; see [AK].

3 A ring is called abelian if its idempotents are all central.
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π -regular iff sr(S) = 1 and all chains of the form K (aS) ⊇ K (a2 S) ⊇ · · · stabilize, where for any x ∈ S ,
K (xS) := U(S) ∩ (1 + xS) ⊆ U(S).

Throughout this paper, S denotes an arbitrary ring with unity, and rad(S) denotes the Jacobson
radical of S . The notions and notations introduced earlier in this section will be used freely in the
rest of the paper. Standard facts in ring theory used without mention in the text can be found in [Go2,
La2,La4]. In Section 3, the level of a commutative ring S is defined to be the smallest integer n such
that −1 is a sum of n squares in S . If no such n exists, S is said to be a semireal ring (following [La7]),
and its level is taken to be the symbol ∞. (A semireal field is classically known as a formally real field,
after Artin and Schreier [AS]; see [La6, Chapter 8].)

2. Basic properties of square stable range one

In studying the problem of decomposing a 2 × 2 matrix over a ring S into the product of two
Toeplitz matrices, Khurana, Lam, and Shomron [KLS] came across the following three equivalent con-
ditions on the ring S:

(A) aS + bS = S ⇒ a2 + bx ∈ U(S) for some x ∈ S.
(B) aS + bS = S ⇒ a2 + (a + b)y ∈ U(S) for some y ∈ S.
(C) aS + bS = S ⇒ ab + (a + b)z ∈ U(S) for some z ∈ S.

The equivalence proof (given in [KLS, (3.4)]) is easy, and works for any (possibly noncommutative)
ring S . In view of the resemblance of condition (A) to the standard stable range one condition for S
(denoted in Section 1 by sr(S) = 1), we introduce the following central definition for this paper.

Definition 2.0. If the condition (A) above is satisfied, we say that S has (right) square stable range 1,
and write ssr(S) = 1.

While it is well known that sr(S) = 1 is a left–right symmetric notion (see, e.g. [Va2]), we have
not been able to prove the same result for ssr(S) = 1. Thus, the notation ssr(S) = 1 in the rest of the
paper should be taken to mean strictly “right square stable range 1” in the sense of Definition 2.0.
However, for certain classes of rings (e.g. exchange rings), we’ll be able to show that “left” and “right”
square stable range one are equivalent.

We can easily express ssr(S) = 1 in a first-order statement on S as follows.

Proposition 2.1. For any ring S, ssr(S) = 1 iff, for any a, s ∈ S, there exists x ∈ S such that a2 + (1 − as)x ∈
U(S). (E.g., choosing a = 2, s = 4 shows that ssr(Z) �= 1.)

Proof. First suppose ssr(S) = 1, and let a, s ∈ S . We have obviously aS + (1 − as)S = S , so there exists
x ∈ S such that a2 + (1 −as)x ∈ U(S). Conversely, suppose the condition in the proposition is satisfied,
and consider any equation aS + bS = S . Then there exist r, s ∈ S such that as + br = 1. By assumption,
there exists x ∈ S such that a2 + (1 − as)x ∈ U(S). This means that a2 + b(rx) ∈ U(S), checking that
ssr(S) = 1. (Of course, a similar result holds for the condition sr(S) = 1.) �
Remark 2.2. Professor K. Goodearl pointed out to us that, for commutative rings S, ssr(S) = 1 is related
to the notion of power-substitution studied in [Go1]. Indeed, for such S , the condition ssr(S) = 1
(interpreted in the light of Proposition 2.1) is easily seen to be equivalent to the following matrix-
theoretic property (where a,b, s ∈ S):

(†) as + b = 1 ⇒ aI2 + b X ∈ GL2(S) for some X ∈ M2(S).

(See [Go1, (3.2)].) Thus, by [Go1, (2.1)], ssr(S) = 1 (for S commutative) is equivalent to the “power-
substitution property for n = 2” for right modules A (over any ring k) with endomorphism ring S .
In particular, if ssr(S) = 1, then A has the following “power-cancellation property”: if A ⊕ B ∼= A ⊕ C
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for right k-modules B , C , then B ⊕ B ∼= C ⊕ C . For a much sharper version of this remark, see the
Epilogue (after Section 7).

The first result connecting ssr(S) = 1 to sr(S) = 1 is through the use of the notion of right quasi-
duo rings.

Theorem 2.3. If S is a right quasi-duo ring (that is, every maximal right ideal in S is an ideal), and sr(S) = 1,
then ssr(S) = 1.

Proof. Given any equation aS +bS = S , we claim that a2 S +bS = S . Indeed, if this is not the case, then
there exists a maximal right ideal m ⊇ a2 S + bS . Since S is right quasi-duo, m is an ideal, and S/m

is a division ring. But then a2 ∈ m implies that a ∈ m. Thus, m contains aS + bS = S , a contradiction.
Having proved that a2 S + bS = S , the assumption that sr(S) = 1 implies that a2 + bx ∈ U(S) for some
x ∈ S . This shows that ssr(S) = 1. �

We will show later that Theorem 2.3 has actually a partial converse: namely, if ssr(S) = 1, then S
must be right quasi-duo. (In particular, for rings of stable range 1, ssr(S) = 1 would be equivalent to S
being right quasi-duo.) This converse part will appear later in Theorem 4.1(1). At the moment, from
Theorem 2.3, we have the following corollary giving the first good supply of classes of rings S with
ssr(S) = 1. (As was recalled in the Introduction, a ring S is called strongly regular if b ∈ b2 S for all
b ∈ S .)

Corollary 2.4. If S is a commutative ring with sr(S) = 1, or a local ring (e.g. a division ring), or a strongly
regular ring (e.g. a reduced algebraic algebra over a field k), then ssr(S) = 1.

Proof. All rings listed above are right quasi-duo, and they have stable range 1, so Theorem 2.3 applies.
(The fact that strongly regular rings have these properties is proved in [La4]; see Exercises (12.6C),
(20.10D), and (22.4B). The fact that reduced algebraic k-algebras are strongly regular is due to Jacob-
son, Arens, and Kaplansky: a proof of this can be found in [La4, Exercise 12.6B].) �

For general rings S , however, the two properties sr(S) = 1 and ssr(S) = 1 turn out to be logically
independent. This important point will be illustrated by the three key Examples 2.5, 2.6 and 2.7
below.

Example 2.5. Let S be a ring with aS + bS = S holding for some a,b ∈ S such that a2 = 0 and b is
not right-invertible. Then ssr(S) �= 1, for otherwise there would exist a unit of the form a2 + bx = bx
(for some x ∈ S), which would have implied that b is right-invertible. For a concrete example, let
S = M2(F ) (where F is any field), and let a, b be the matrix units E12 and E21 respectively. The
desired properties on a, b above are easily seen to be all satisfied, so we must have ssr(S) �= 1.
However, S is a semilocal ring, so sr(S) = 1 by [La2, (20.9)]. The idea of this construction can be
sharpened into the formulation of some strong necessary conditions for rings of square stable range 1:
this will be done in Theorem 4.1 below.

Example 2.6. The ring used in the above example is not reduced. However, even if S is a (noncom-
mutative) domain, it is possible that sr(S) = 1, but ssr(S) �= 1. To see this, we can utilize an example
of Fuller and Shutters. In [FS], these authors have constructed a noncommutative semilocal domain S
such that S/rad S ∼= M2(F ) where F is a field. Since sr(M2(F )) = 1, we have also sr(S) = 1. However,
we have shown in Example 2.5 above that ssr(M2(F )) �= 1. From this, we see easily that ssr(S) �= 1.
For more details on this, see Proposition 2.10(1) below.

Example 2.7. Let S = C[0,3] be the ring of real-valued continuous functions on the interval [0,3].
In Section 3, we’ll show that ssr(S) = 1. However, sr(S) �= 1. To see this, recall that a (possibly non-
commutative) ring S of stable range 1 always has the (right) “unique-generator property”; that is,
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whenever f S = g S , we have f = gu for some u ∈ U(S) (see [Ca, (4.5)], or [KL, (6.3)]). For S = C[0,3],
Kaplansky has noted in [Ka, p. 466] that S does not have the unique-generator property. Thus,
sr(S) �= 1. Another perhaps more direct way to see this is to work instead with S = C[−1,1]. If
we use Vaserstein’s unimodular row (x,1 − x2) (where the two coordinates are viewed as polynomial
functions on [−1,1]), then for any h ∈ C[−1,1], the function H := x + h(1 − x2) has values 1 at x = 1,
and −1 at x = −1. Thus, H has a zero value somewhere on [−1,1], and so H /∈ U(S). This shows once
more that sr(S) �= 1.

In the next few results, we’ll develop a number of basic properties of rings of square stable range 1.
These are analogues of some of the best known properties of rings of stable range 1, though in general
it would be a mistake to think that every such property has a valid analogue. To begin with, the very
desirable Dedekind-finite property of rings of stable range 1 does carry over to the case of ssr(S) = 1.
Proceeding somewhat gingerly, we’ll formulate this idea via Theorem 2.8 and its Corollary 2.9 below.

Theorem 2.8. Suppose that, for all a,b ∈ S, aS +bS = S ⇒ (a2 +bx)S = S for some x ∈ S. Then S is Dedekind-
finite.

Proof. Suppose ua = 1 ∈ S . We would like to prove that a ∈ U(S). As in the proof of Proposition 2.1,
we have aS + (1 −au)S = S , so by assumption, v := a2 + (1 −au)x is right-invertible (i.e. it has a right
inverse) for some x ∈ S . Then

uv = ua2 + u(1 − au)x = a + ux − ux = a,

so u2 v = ua = 1. This shows that v is also left-invertible. Thus, v ∈ U(S), and so u2 = v−1 ∈ U(S). It
follows that u ∈ U(S), and hence also a ∈ U(S), as desired. �
Corollary 2.9. To show that ssr(S) = 1 for a ring S, it suffices to check that the condition in the above theorem
holds.

Proof. Suppose that condition holds. If aS + bS = S , then for some x, a2 + bx is right-invertible. By
Theorem 2.8 above, a2 + bx ∈ U(S). This checks that ssr(S) = 1. �
Proposition 2.10.

(1) If ssr(S) = 1, then for any ideal J ⊆ S, ssr(S/ J ) = 1.
(2) If S = ∏

i Si , then ssr(S) = 1 iff ssr(Si) = 1 for all i.

Proof. (2) is clear. For (1), let S = S/ J , and assume that aS + bS = S . For some r, s ∈ S , we have
as + br = 1 + j where j ∈ J . Since ssr(S) = 1, aS + (br − j)S = S implies that a2 + (br − j)x ∈ U(S) for
some x ∈ S . Passing to S yields a2 + b(rx) ∈ U(S). This checks that ssr(S) = 1, as desired. �
Theorem 2.11.

(1) For any ideal J ⊆ rad S, ssr(S) = 1 iff ssr(S/ J ) = 1.
(2) If R = S[[x]], then ssr(R) = 1 iff ssr(S) = 1.
(3) If E = End(Mk) where Mk is a uniserial module over any ring k, then ssr(E) = 1.

Proof. (1) follows easily from the observation that u ∈ U(S) ⇔ u ∈ U(S/ J ) (under the assumption
that J ⊆ rad S). Next, (2) follows from (1), since the ideal (x) ⊆ R = S[[x]] is in rad(R), and R/(x) ∼= S .
Finally, let E be as in (3). By a theorem of Facchini [Fa] (see also [La2, (20.15)]), E/rad(E) is either
a division ring or a direct product of two division rings. Therefore, by (1) again (plus Corollary 2.4),
ssr(E) = 1. �
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Our next theorem gives an analogue of Vaserstein’s result on the passage of stable range one to
corner rings [Va2, (2.8)]. A slight adaptation of Vaserstein’s proof enables us to get a similar result in
the case of square stable range 1.

Theorem 2.12. If ssr(S) = 1, then for any idempotent e ∈ S, we have ssr(eSe) = 1.

Proof. Let S ′ = eSe, and let f = 1 − e. Suppose a,b ∈ S ′ are such that aS ′ + bS ′ = S ′; say as + br = e,
where r, s ∈ S ′ . Then (a + f )S + bS contains both (a + f )s + br = e and (a + f ) f = f , so it contains 1.
Since ssr(S) = 1, there exists x ∈ S such that u := (a + f )2 + bx = a2 + f + bx ∈ U(S). Also, v :=
1 − bxf ∈ U(S) (with inverse 1 + bxf ). Letting w := vu = a2 + f + bx − bxf = a2 + f + bxe ∈ U(S), we
have

S ′ = e(w S)e = e
(
a2 + f + bxe

)
Se = (

a2 + bxe
)
eSe = (

a2 + b(exe)
)

S ′. (2.13)

According to Corollary 2.9, this is enough to show that ssr(S ′) = 1. (Actually, the use of Corollary 2.9
is not essential here, since a calculation similar to the one above also shows that S ′ = S ′(a2 + b(exe)),
so a2 + b(exe) ∈ U(S ′).) �

In [Ch1], a ring S is said to have (right) idempotent stable range 1 (written isr(S) = 1) if aS +
bS = S ⇒ a + be ∈ U(S) for some idempotent e ∈ S . According to Chen (see [Ch1, Corollary 6]), this
condition is left–right symmetric. As recalled in footnote 2, a ring S is abelian if all idempotents in S
are central. For example, any reduced ring (and hence any domain) is abelian; see [La4, p. 187]. From
Example 2.6, we know that, if S is abelian, sr(S) = 1 need not imply that ssr(S) = 1. In the following
result, we’ll show, however, that this implication will hold if the condition sr(S) = 1 is strengthened
to isr(S) = 1.

Theorem 2.14. Let S be an abelian ring with isr(S) = 1. Then S is a clean ring; that is, every element of S is
the sum of a unit and an idempotent. Moreover, S is left and right quasi-duo, and S has left and right square
stable range 1.

Proof. To make the proof self-contained, we’ll interpret isr(S) = 1 as meaning “left idempotent stable
range 1”. For any a ∈ S , the equation Sa + S(−1) = S implies that u := a + e(−1) ∈ U(S) for some
idempotent e ∈ S . Thus, a = u + e, proving that S is clean. (The abelian assumption on S is not
needed here.) It remains now to prove that S is right quasi-duo, and that ssr(S) = 1 (since the rest
will follow from Chen’s result on the left–right symmetry of isr(S) = 1). For any x, y ∈ S , we have
S(yx − 1)+ Sx = S , so the assumption that S has left idempotent stable range 1 implies that yx − 1 +
ex ∈ U(S) for some idempotent e ∈ S . Since S is abelian, ex = xe. Thus, we have (yx − 1)S + xS = S .
As this holds for all x, y ∈ S , [LD, Theorem 3.2] implies that S is right quasi-duo. On the other hand,
S having left idempotent stable range 1 obviously implies that sr(S) = 1. Thus, Theorem 2.3 gives
ssr(S) = 1, as desired. �

We conclude this section with the following strengthening of a result of Estes and Ohm [EO] on
the stable range of rings of algebraic integers.

Theorem 2.15. Let S be the full ring of algebraic integers in a finite number field K . Then ssr(S) �= 1 (so in
particular sr(S) �= 1).

Proof. The proof here is an adaptation of the argument originally given in [EO, (7.6)]. Let S0 be an
integrally closed domain with quotient field K0, and let S be the integral closure of S0 in a finite
separable extension K of K0. Following [EO], one can show that there exists an integer n (which can
be taken to be [K ′ : K0] where K ′ is the normal hull of K over K0), such that, for any a,b ∈ S0 with
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aS0 + bS0 = S0 and a2 + bs ∈ U(S) for some s ∈ S , there exists s0 ∈ S0 such that a2n + bs0 ∈ U(S0).4

Given this fact, let S0 = Z, K0 = Q, and let S and K be as in the statement of Theorem 2.14. After
coming up with the integer n as above, let a = 2, and let b be any odd integer not dividing 22n ± 1.
Then aS0 + bS0 = S0 implies that aS + bS = S , but the choice of n and a, b above guarantees that
there is no s ∈ S such that a2 + bs ∈ U(S). This shows that ssr(S) �= 1. �
Remark 2.16. In the result above, it is essential to assume that K is a finite number field. If K was the
field of all algebraic numbers, the ring of all algebraic integers in K is known to have stable range 1
(and hence also square stable range 1): see [Va2, (1.2)].

3. Artin–Schreier rings

In the class of (possibly noncommutative) rings with square stable range 1, there are some natural
subclasses of rings that are defined by a sequence of curious (but highly “symmetrical”) strength-
enings of Definition 2.0. These subclasses of rings of square stable range 1 will be introduced and
discussed in this section, and various illustrative examples will be given to put them in perspective.
We thank Professor R.G. Swan for his kind input into the formulation of the results in this section.
The acronym “AS” below stands for “Artin–Schreier”, and is chosen to honor the seminal work [AS] of
these authors in 1927 on the role of sums of squares in abstract algebra.

Definition 3.0. For a given integer n � 0, we say that a ring S has the ASn property (or simply S
is ASn)5 if, for any a0, . . . ,an ∈ S ,

∑n
i=0 ai S = S ⇒ ∑n

i=0 a2
i ∈ U(S). If S is ASn for all n, we simply say

that it is AS (or an Artin–Schreier ring).

Clearly, AS0 rings are just the Dedekind-finite rings. Also, if n � 1, any ASn ring is ASn−1, and it has
always square stable range 1 since, in the condition (A) of Definition 2.0, we can simply choose x to
be b. However, if (S,m) is a local ring with 2 ∈ m, then sr(S) = ssr(S) = 1, but S is not ASn for any
n � 1.

Note that the nature of the condition
∑n

i=0 a2
i ∈ U(S) in Definition 3.0 often makes the ASn notion

easier to work with than the condition ssr(S) = 1. The routine proofs for the three properties of ASn

rings in Proposition 3.1 below can be safely omitted.

Proposition 3.1.

(1) Let {Si} be a family of ASn subrings of a ring R. Then the subring S := ⋂
i Si ⊆ R is also ASn.

(2) If R is an ASn ring, and T ⊆ R is a full subring (that is, a subring such that T ∩ U(R) ⊆ U(T )), then T is
also ASn.

(3) The center of an ASn ring is always ASn. The same facts also hold for AS rings.

Of course, these facts cannot be expected to have analogues for rings of (square) stable range 1.
For instance, Z is the intersection of its localizations at all maximal ideals, which all have (square)
stable range 1, but sr(Z) �= 1 �= ssr(Z).

In the case of commutative rings, it turns out that Definition 3.0 can be substantially “simplified”.
We’ll make this point explicit by proving the following result.

Theorem 3.2. Let n � 1 be a fixed integer. For any commutative ring S, the condition that “(1) S is ASn” is
equivalent to each of the following:

4 The proof given for Proposition 7.6 in [EO] was based on the unstated assumption that b �= 0. But if b = 0, then a ∈ U(S0),
in which case the desired conclusion is true for any choice of s0 ∈ S0.

5 Again, a more proper term to use here would have been “right ASn”. But in any case, we shall be able to prove later that
“right ASn” is the same as “left ASn”: see Theorem 4.2.
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(2) 1 + x2
1 + · · · + x2

n ∈ U(S) for all xi ∈ S.
(3) For each maximal ideal m ⊆ S, the field S/m has level > n.

In particular, S is AS iff each S/m above is a formally real field.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are both clear. To prove (3) ⇒ (1), assume that there is a unimodular
sequence (a0, . . . ,an) such that a2

0 +· · ·+a2
n /∈ U(S). Then, by Zorn’s Lemma, this element lies in some

maximal ideal m. Since some ai /∈ m, working modulo m shows that −1 is a sum of n squares in S/m;
that is, S/m has level � n. �

The following two remarks about AS1 are pertinent toward giving some perspective on the general
ASn conditions.

Remark 3.3. Let S be a (not necessarily commutative) ring given with an involution ∗ . The condi-
tion “1 + x∗x ∈ U(S) for every x ∈ S” is known as the G–N (Gelfand–Naimark) property in functional
analysis. (In some books, e.g. [Be, (1.33)], this is also referred to as the “symmetric” property.) Most
importantly, any C∗-algebra with identity has this property. In Theorem 3.2 above where S is a com-
mutative ring, we can take the involution ∗ to be the identity map. In this case, AS1 is exactly the
G–N property for (S, ∗). The more general property “1 + x∗

1x1 + · · · + x∗
nxn ∈ U(S) for all xi ∈ S” has

also shown up in functional analysis and linear algebra.

Remark 3.4. For n = 1, the implication (2) ⇒ (1) for commutative rings in Theorem 3.2 can also be
seen directly (without using Zorn’s Lemma) as follows. Assuming (2) (for n = 1), consider any equation
aS + bS = S . Writing ar + bs = 1 for some r, s and using the 2-square identity, we have

(
a2 + b2)(r2 + s2) = (ar + bs)2 + (as − br)2 = 1 + (as − br)2 ∈ U(S).

Thus, a2 + b2 ∈ U(S), so S is AS1. (The same argument works for AS3 and AS7.) However, in the
noncommutative case, (2) ⇒ (1) in Theorem 3.2 no longer holds, even for n = 1. For instance, there
exist quaternion division algebras S (over suitable fields) such that 1 + x2

1 ∈ U(S) = S \ {0} for all x1,
but there exist nonzero elements a,b ∈ S such that a2 + b2 = 0; see, e.g. [OV, Corollary 3.5(b)].

We record the following two easy consequences of Theorem 3.2. The first one follows from the
fact that the level of a field is always a power of 2 or ∞ (see, e.g. [La6, XI.2.2]), and the second one
follows by a routine localization argument.

Corollary 3.5. Let S be a commutative ring. If 0 � i < r = 2k, then S is ASr iff it is ASr+i . In particular, for
commutative rings, it suffices to work with the notion of AS2k rings: these are the commutative rings S for
which the level of S/m is � 2k+1 for each maximal ideal m ⊆ S.

Corollary 3.6. Let R be a semireal commutative ring (i.e. R has infinite level), and let S be the ring obtained
from R by inverting 1 + x2

1 + · · · + x2
n for all xi ’s and all n. Then S is an Artin–Schreier ring; in particular,

ssr(S) = 1.

Returning to noncommutative rings for the moment, note that a good number of the facts on
rings S with ssr(S) = 1 carry over to AS1 rings, with only slightly modified proofs. We leave it to
the reader to check that the following results all fall within this category: Example 2.5, Example 2.6,
Theorem 2.8, Corollary 2.9, Proposition 2.10(2), Theorem 2.12, and the first two parts of Theorem 2.11.
As for Proposition 2.10(1) (passage to factor rings), the situation is more subtle. To make it work for
AS1 rings, some extra assumption is needed on S , as follows.

Proposition 2.10′ . Let J ⊆ S be an ideal, and assume that either S/ J is commutative or sr(S) = 1. If S is AS1 ,
then so is S := S/ J .
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Proof. If S is commutative, the desired conclusion follows easily from Theorem 3.2. In the general
case, assume instead that sr(S) = 1, and start with any equation aS + bS = S . For some r, s ∈ S , we
have ar + bs + j = 1 where j ∈ J . Since sr(S) = 1, there exists t ∈ S such that a + (bs + j)t ∈ U(S).
As S is AS1, (a + jt) + bst ∈ U(S) implies that (a + jt)2 + b2 ∈ U(S). Passing to S = S/ J then gives
a2 + b2 ∈ U(S). This shows that S is AS1. �

For the rest of this section, we shall restrict our attention to commutative rings. Using Theorem 3.2,
we can produce many examples of ASn Prüfer domains by exploiting a result of A. Dress [Dr] (see
also [La1, (11.4)]). In particular, we get many examples of Artin–Schreier Prüfer domains (all of which
have square stable range 1).

Theorem 3.7. For a fixed integer n � 1, let F be any field of level > n, and let

Σn = {(
1 + x2

1 + · · · + x2
n

)−1
: xi ∈ F

} ⊆ F . (3.8)

(1) Any subring S ⊆ F containing Σn is an ASn Prüfer domain with quotient field F .
(2) A valuation ring V of F is ASn iff V ⊇ Σn.
(3) Let {(V i,mi)} be any family of valuation rings of F such that V i/mi has level > n. Then H := ⋂

i V i is an
ASn Prüfer domain with quotient field F .

Proof. (1) Since Σn contains (1 + x2)−1 for all x ∈ F , the fact that S is a Prüfer domain with quotient
field F follows from [Dr, p. 390]. Thus, it only remains to show that S is ASn . For any x1, . . . , xn ∈ S ,
we have both s := 1 + x2

1 + · · · + x2
n ∈ S and s−1 ∈ Σn ⊆ S . This implies that s ∈ U(S), so S is ASn

according to Theorem 3.2.
(2) In view of (1), it suffices to prove the “only if” part, so assume that V is ASn . For any

x1, . . . , xn ∈ F , we want to show that the inverse of s := 1 + x2
1 + · · · + x2

n is in V . After a reindex-
ing, we may assume that xi/x1 ∈ V for all i. If x1 ∈ V , then all xi ∈ V , and hence s ∈ U(V ) (since V
is ASn). In this case, certainly s−1 ∈ V . Now assume x1 /∈ V . Then 1/x1 ∈ V (since V is a valuation
ring of F ), and so

v := s/x2
1 = (1/x1)

2 + 1 + (x2/x1)
2 + · · · + (xn/x1)

2 ∈ U(V ). (3.9)

Thus, s−1 = (1/x1)
2 v−1 ∈ V · V ⊆ V , as desired.

(3) By Theorem 3.2, each V i is ASn . Thus, by (2) above, we must have Σn ⊆ V i . This implies that
Σn ⊆ H , so by (1), H is an ASn Prüfer domain with quotient field F . (Of course, the fact that H is ASn

also follows from Proposition 3.1(1).) �
Example 3.10. An important special case of the construction in Theorem 3.7(3) is as follows. Let F
be any formally real field, and let {(V i,mi)} be the family of all valuation rings of F such that the
residue field V i/mi is formally real. The intersection H(F ) := ⋂

i V i in this case is known as the real
holomorphy ring of F (see [La1, Section 9]). By Theorem 3.7(3) above (applied for all n), H(F ) is an
Artin–Schreier Prüfer domain with quotient field F . In particular, ssr(H(F )) = 1.

Next, we’ll show that combining Theorem 3.7 with a result of Swan leads to interesting exam-
ples of commutative domains S that are AS (so that ssr(S) = 1), but have sr(S) �= 1. In fact, S may
be chosen to be a Prüfer domain with arbitrary finite Krull dimension. To do this, we first recall a
construction of Swan from [Sw, Section 1]. Let F be a field that has no element with square −1. For
any subring B ⊆ F , let B# be the subring of F generated by B and the set Σ1 = {(1 + x2)−1: x ∈ F }.
In [Sw], elements of the form x/(1 + x2) are also adjoined to B to form B#. However, in our situation
this is unnecessary since 1/2 ∈ Σ1, and Dress’s identity [Dr, (10)]

x/
(
1 + x2) = [(

1 + y2)−1 − (
1 + y−2)−1]

/2
(
with y := (x − 1)/(x + 1)

)
(3.11)
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implies that x/(1 + x2) ∈ B# for all x ∈ F . By Theorem 3.7, B# is an AS1 Prüfer domain with quotient
field F ; in particular, ssr(B#) = 1. To produce examples of B# with finite Krull dimension and with
stable range not 1, we can now simply invoke the following result of Swan [Sw, Theorem 5] (see
also [He]), where the general stable range of a ring is defined as in [Ba] or [Va1].

Theorem 3.12. Let Bn (n � 1) be the real coordinate ring of the n-sphere; that is, Bn = R[x0, . . . , xn], with the
relation x2

0 + · · · + x2
n = 1. Let Fn be the quotient field of Bn. Then the ring B#

n ⊆ Fn is an AS1 Prüfer domain
of Krull dimension n, and the unimodular sequence (x0, . . . , xn) is not “stabilizable” to a shorter unimodular
sequence over B#

n . In particular, ssr(B#
n ) = 1, but sr(B#

n ) = n + 1 � 2.

In private communication to the authors, Professor Swan has pointed out that the topological
methods used in [Sw] to prove Theorem 3.12 can be applied in similar fashion to show that the
equation sr(S) = n + 1 also holds if S is the n-dimensional ring denoted by A#

n or A%
n in [Sw]. In

particular, from the discussions in Section 6 of [Sw], it follows that the real holomorphy ring Hn of
the rational function field in n variables over R is a Prüfer domain with stable range n+1. Here, Hn is
an Artin–Schreier ring by Example 3.10; in particular, its square stable range is 1. Noetherian examples
can be obtained by applying Vaserstein’s results in [Va1] to the ring S constructed in Corollary 3.6,
taking the ring R there to be the real polynomial ring R[t1, . . . , tn].

Motivated in part by the ideas used earlier in this section, we shall now discuss another major
source of commutative rings S with ssr(S) = 1, but possibly sr(S) �= 1. These examples are drawn
from the study of (commutative) algebras of functions. Following [GJ], for any topological space X ,
let C(X) denote the ring of continuous real-valued functions on X , and let C∗(X) denote the subring
of C(X) consisting of the bounded functions.

Theorem 3.13. For any topological space X, let S be a full subring of C(X) or of C∗(X) (in the sense of Propo-
sition 3.1(2)). Then S is an AS ring. In particular, ssr(S) = 1.

Proof. By Proposition 3.1(2), it is enough to handle the cases where S = C(X) or S = C∗(X). First let
S = C(X), and consider any equation

∑
i f i S = S . Clearly, the functions f i ’s have no common zero

on X . Thus,
∑

i f 2
i is nowhere zero on X , and is therefore in U(S) (see [GJ, (1.12)]). This shows that

S is an AS ring. Next, let S = C∗(X). This may not be a full subring of C(X), so we cannot invoke the
case we have settled above. However, to show that S is Artin–Schreier, we can appeal to Theorem 3.2.
For any f1, . . . , fn ∈ S = C∗(X), the continuous function (1 + f 2

1 +· · ·+ f 2
n )−1 is clearly bounded by 1.

Therefore, (1 + f 2
1 + · · · + f 2

n )−1 ∈ S , which shows that 1 + f 2
1 + · · · + f 2

n ∈ U(S). From Theorem 3.2,
we conclude that S is an AS ring. �

In general, commutative rings of the type S = C(X) are rarely of stable range one. Indeed, if X is a
completely regular Hausdorff space, then according to Vaserstein [Va1], sr(C(X)) = 1 iff dim(X) = 0.
(Here, the topological invariant “dim(X)” is as defined in [Va1]; see also [Az], and [FY].) Thus, any
completely regular Hausdorff space X with dim(X) > 0 leads to a commutative ring S = C(X) with
ssr(S) = 1 �= sr(S).

As is pointed out by Professor M. Rieffel, the fact that in Theorem 3.13 we can take any full
subring S ⊆ R = C(X) allows us to name many more examples of Artin–Schreier rings. For instance,
if X = R, take S to be the subring of infinitely differentiable 2π -periodic functions. (We can also
think of S as a subring of the ring C(T ), where T denotes the unit circle.) Since S is obviously a full
subring of R = C(X), Theorem 3.13 implies that S is an Artin–Schreier ring; in particular, ssr(S) =
1. Similar examples can be constructed readily upon replacing “infinitely differentiable” by various
other conditions (e.g. in terms of the Fourier coefficients of a function). In conclusion, we might also
observe that, for possible future applications to analysis, it should be worthwhile to generalize the
material of this section by working with rings with involution (S, ∗), and developing the theory using
the expression

∑
i x∗

i xi throughout in place of
∑

i x2
i : see Remark 3.3.
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4. Right quasi-duo rings and exchange rings

We begin this section by proving Theorem 4.1 below, which provides some pretty strong necessary
conditions on rings S of square stable range one, including the fact that S must be right quasi-duo. The
basic idea of this theorem comes from the construction in Example 2.5. However, a proper formulation
of this idea is best given in the setting of the Density Theorem in the classical theory of rings.

Theorem 4.1. For any ring S with ssr(S) = 1, we have the following.

(1) S is right quasi-duo.
(2) Any right-primitive factor ring of S is a division ring.
(3) Any semiprimitive factor ring of S (e.g. S/rad S) is a subdirect product of division rings (and is thus a

reduced ring).
(4) If R = Mn(R0) �= {0}, then ssr(R) = 1 iff n = 1 and ssr(R0) = 1.

Proof. We start by recalling (say, from [KKJ, Lemma 7]) that (1) and (2) are equivalent for all rings S
(without assuming ssr(S) = 1). Indeed, (1) ⇒ (2) appeared in [Yu2, p. 23] and in [LD, (4.1)]. The
converse can be proved by “reversing” the argument in the latter. Indeed, suppose (2) holds. If m ⊆ S
is any maximal right ideal, then the simple right S-module S/m has annihilator J that is a right-
primitive ideal. By (2), S/ J is a division ring, so we must have m = J , which is an ideal. This shows
that S is right quasi-duo. In the following, it thus suffices to prove (2), (3), and (4).

(2) Since the hypothesis that ssr(S) = 1 is preserved by factor rings (by Proposition 2.10(1)), we
may assume that S itself is a right-primitive ring. By the basic structure theorem on such rings
(see, e.g. [La2, (11.19)]), S acts faithfully on the right as a dense ring of linear endomorphisms on
a left vector space V over some division ring k. If we can show that dimk V = 1, then S ∼= k, as
desired. Assume for the moment that dimk V > 1. Let v1, v2 be k-linearly independent vectors in V .
By density, there exists f ∈ S such that v1 f = v2 and v2 f = 0. Likewise, there also exists g ∈ S
such that v2 g = v1. Since ssr(S) = 1, Proposition 2.1 implies that there exists some h ∈ S such that
f 2 + (1 − f g)h ∈ U(S). Then

v1
(

f 2 + (1 − f g)h
) = v2 f + (

v1 − (v2 g)
)
h = 0 + (v1 − v1)h = 0,

contradicting the fact that f 2 + (1 − f g)h is an invertible operator on V .
(3) A semiprimitive factor ring of S has the form S/ J where J is a semiprimitive ideal of S . By

[La2, (11.5)], J is the intersection of all of the right-primitive ideals { J i} containing J . Thus S/ J is a
subdirect product of the right-primitive rings {S/ J i}. By Proposition 2.10(1), ssr(S/ J i) = 1 for every i.
This proves (3) since each S/ J i is a division ring by (2).

The reducedness of S/rad S as a necessary condition for ssr(S) = 1 will be used rather heavily in
the sequel. For this reason, it is of interest to record here a direct proof of this fact, independently of any
use of the density theorem. Letting J := rad(S), it suffices to show that, if a ∈ S is such that a2 ∈ J , then
a ∈ J . Consider any element s ∈ S . By Proposition 2.1, there exists x ∈ S such that a2 + (1−as)x ∈ U(S).
With a2 ∈ J , this implies that (1 − as)x ∈ U(S). Thus, 1 − as is right-invertible. Since this holds for all
s ∈ S , a standard result on the Jacobson radical [La2, (4.1)] guarantees that a ∈ J .

(4) It suffices to prove the “only if” part. So assume that R = Mn(R0) and ssr(R) = 1. Since
R/rad R ∼= Mn(R0/rad R0), (3) implies that the matrix ring Mn(R0/rad R0) is reduced. This is possible
only if n = 1, in which case ssr(R0) = ssr(R) = 1. �

A remarkable application of Theorem 4.1 is the following result on left–right symmetry.

Theorem 4.2. For any n � 0, a ring S is left ASn iff it is right ASn. (In particular, being AS is a left–right
symmetric property for rings.)
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Proof. If n = 0, both conditions mean that S is Dedekind-finite. For n � 1, it suffices to prove the “if”
part, so assume that S is right ASn . Then ssr(S) = 1, so by Theorem 4.1(1) above, S is right quasi-duo.
Consider any equation

∑n
i=0 Sai = S . Then we also have

∑n
i=0 ai S = S by [LD, Theorem 3.2], and so

the fact that S is right ASn implies that
∑n

i=0 a2
i ∈ U(S). This work shows that S is left ASn! �

Next, we shall apply Theorem 4.1 to the well-studied class of exchange rings. Theorem 4.3 below
shows why this class of rings is particularly interesting for our investigation. The focus of the rest
of the section will be on this class of rings, and on some of its subclasses; e.g. regular rings, π -
regular rings, and strongly π -regular rings. The basic results on exchange rings and on the lifting of
idempotents modulo ideals in exchange rings (from [Wa] and [Ni1]) will be used freely throughout.

Theorem 4.3. Let S be an abelian exchange ring. Then (1) ssr(S) = 1, and (2) S is an AS1 ring iff, in every
division factor ring of S, −1 is not a product of two squares. In this case, S/rad S is a subdirect product of
division rings in which −1 is not a product of two squares.

Proof. (1) Assume for the moment that ssr(S) �= 1. Then there exist a,b ∈ S such that aS + bS = S ,
but a2 + bx /∈ U(S) for every x ∈ S . Let C be the family of ideals I ⊆ S such that a2 + bx /∈ U(S/I)
for every x ∈ S/I . Clearly, (0) ∈ C . After checking easily that C is an inductive family (with respect to
inclusion), we can apply Zorn’s Lemma to show that C has a maximal member, say I0. Then S/I0 is
indecomposable as a ring. (For, if S/I0 = I1/I0 × I2/I0 is a nontrivial ring decomposition, then I1, I2 /∈
C , and we can quickly get a contradiction to I0 ∈ C by a direct product argument.) Now idempotents
can be lifted modulo I0 (since S is an exchange ring), so S/I0 remains an abelian exchange ring.
As it has only trivial central idempotents, it must have only trivial idempotents. This means that
the exchange ring S/I0 is a local ring (see [Ni1]); in particular, by Corollary 2.4, ssr(S/I0) = 1. This
contradicts the fact that I0 ∈ C .

(2) It suffices to prove the first statement, since it implies the second statement via Theorem 4.1(3).
For the “only if” part of the first statement, assume that S is AS1, and consider any division factor
ring D of S . Since S is an abelian exchange ring, Yu’s result in [Yu1] gives sr(S) = 1.6 Therefore, by
Proposition 2.10′ (in Section 3), D is also AS1. This means that −1 is not a product of two squares
in D . For the “if” part, assume S is not AS1. Repeating the Zorn’s Lemma argument in the proof of (1)
above, we get an ideal I0 ⊆ S such that S/I0 is a local ring that is not AS1. From this, we see easily
as before that −1 is a product of two squares in the residue division ring D of S/I0. This gives what
we want, since D is also a division factor ring of S . �

Combining Theorem 4.1(3) and Theorem 4.3(1) with some results from [Yu2] and [LD] leads to the
following characterization theorem for ssr(S) = 1 in case S/rad S is an exchange ring. (In particular,
the theorem applies when S itself is an exchange ring.)

Theorem 4.4. Let S be any ring such that S/ J is an exchange ring, where J := rad(S). The following four
statements are equivalent:

(1) ssr(S) = 1. (2) S/ J is reduced. (3) S/ J is abelian. (4) S is right quasi-duo.

In particular, since (2) and (3) are left–right symmetric, it follows that (1) and (4) are also left–right sym-
metric.

Proof. The equivalence of (2), (3) and (4) is proved in [Yu2, (4.1)]; see also [BS], [St, (4.10)], and
[LD, (4.6)].7 To relate these statements to (1), note that Theorem 4.1(1) gives (1) ⇒ (4) without any

6 In fact, according to Theorem 4.4 below, Yu’s result that sr(S) = 1 will actually follow from ssr(S) = 1, which is already
proved in (1). But at this point, it is probably easier to use Yu’s original result.

7 In Corollary 3.12 of [Yu3], more equivalent conditions are given for (2) and (3) above. Some of these conditions involve, for
instance, properties of the factor rings of S/ J .
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conditions on S . (Of course, Theorem 4.1(3) also gives (1) ⇒ (2) without any conditions on S .) To see
that (3) ⇒ (1), assume that S/ J is abelian. Since S/ J is an exchange ring, Theorem 4.3(1) implies
that ssr(S/ J ) = 1. Therefore, by Theorem 2.11(1), ssr(S) = 1, proving (1). (Alternatively, we can use
again Yu’s result [Yu1] that the abelian exchange ring S/ J has stable range 1. Since S/ J is also right
quasi-duo (by (4)), Theorem 2.3 gives ssr(S) = 1.) �

For exchange rings, the three stable range conditions introduced so far (“sr”, “ssr”, and Chen’s “isr”
in Theorem 2.14) are related to one another as in the following corollary.

Corollary 4.5. Let S be an exchange ring. Then

(∗) S is abelian ⇒ ssr(S) = 1 ⇒ isr(S) = 1 ⇒ sr(S) = 1.

If S is a commutative exchange ring, all four conditions hold.

Proof. Let S = S/ J , where J = rad(S). The first implication is just Theorem 4.3(1). For the second
implication, assume that ssr(S) = 1. Since S remains an exchange ring, it is abelian by Theorem 4.4.
Thus, by Chen’s Theorem 12 in [Ch1], isr(S) = 1, and Theorem 9 in the same paper implies that
isr(S) = 1 (keeping in mind that idempotents can be lifted modulo J ). This proves the second impli-
cation, and the third one is a tautology. The last statement in Corollary 4.5 is clear since commutative
rings are obviously abelian. �
Examples 4.6. The first implication in (∗) above cannot be reversed (in the noncommutative case).
For instance, let S be the ring of n × n upper triangular matrices over a division ring, where n > 1.
This is an exchange ring, with ssr(S) = 1 by Theorem 2.11(1). However, S is not abelian, since the
idempotent diag(1,0, . . . ,0) ∈ S is not central. The second implication in (∗) above also cannot be
reversed. Indeed, if S = Mn(D) where n > 1 and D is any division ring, then S is an exchange ring
with ssr(S) �= 1 (by Theorem 4.1(4)). However, the main result in [WC] implies that isr(S) = 1. As for
the third implication in (∗), we have no examples to show that it cannot be reversed. Indeed, in [WC,
(3.7)], it is shown that this implication can be reversed for regular rings.

Corollary 4.7. (1) A (von Neumann) regular ring S has ssr(S) = 1 iff S is reduced, iff S is abelian, iff S is right
quasi-duo. (2) A semilocal ring S has ssr(S) = 1 iff S/rad S is a finite direct product of division rings.

Proof. (1) We have here rad(S) = 0, and S is an exchange ring. Thus, (1) follows directly from The-
orem 4.3. For (2), in view of Theorem 2.11(1), we may replace S by S/rad S to assume that S is
semisimple. By the Wedderburn–Artin Theorem, S is a finite direct product of matrix rings over di-
vision rings. In this case, (2) follows from (1) and the obvious fact that, if D is a division ring, the
regular ring Mn(D) is abelian iff n = 1. �

Concerning (1) above, we shall be using freely the well-known fact that abelian regular rings
are exactly the strongly regular rings in Corollary 2.4 (i.e. rings S in which b ∈ b2 S for every b ∈ S);
see [La4, Exercise 12.6A].8 On the other hand, regular rings of stable range 1 are exactly the unit
regular rings [La4, Exercise 20.10D]. Therefore, if S is any unit-regular ring that is not strongly regular,
then sr(S) = 1, but ssr(S) �= 1. This adds to our stock of examples of sr(S) = 1 � ssr(S) = 1. Nev-
ertheless, it is of interest to note (again) that, for commutative rings (or even right quasi-duo rings),
sr(S) = 1 ⇒ ssr(S) = 1, while for regular rings (or even exchange rings), ssr(S) = 1 ⇒ sr(S) = 1.

Recall that a ring S is π -regular (resp. strongly π -regular) if, for every a ∈ S , an is regular for some
n � 1 (resp. the chain aS ⊇ a2 S ⊇ · · · stabilizes). We conclude this section by proving the following

8 Indeed, the fact that a regular ring S is strongly regular iff ssr(S) = 1 can be proved directly in a few lines without using
the more general Theorem 4.4. (The “only if” part is already covered by Corollary 2.4.)
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characterization result for π -regular rings of square stable range 1, which may be viewed as a “π -
version” of Corollary 4.7(1).

Theorem 4.8. For any ring S with J = rad(S), the following are equivalent:

(1) S is π -regular and ssr(S) = 1.
(2) S is strongly π -regular and S/ J is reduced.
(3) S is strongly π -regular and S/ J is abelian.
(4) S is strongly π -regular and right quasi-duo.
(5) S/ J is strongly regular, and J is nil.

If these statements hold, then sr(S) = 1.

Proof. Recall that strongly π -regular rings are π -regular (see [La4, Exercise 23.6(1)]), and π -regular
rings are exchange rings. Thus, by Corollary 4.5, (1) implies that sr(S) = 1. On the other hand, it is
clear that a ring S is right quasi-duo iff S/rad S is right quasi-duo. Thus, the equivalence of (2), (3),
and (4) follows as in the proof of Theorem 4.4. It remains only to prove that (3) ⇒ (1) ⇒ (5) ⇒ (2).

(3) ⇒ (1). Assume (3). Then S is an exchange ring, so Theorem 4.4 shows that ssr(S) = 1.
(1) ⇒ (5). Assume (1); in particular, S is an exchange ring. For any a ∈ J , there exists n � 1 such

that an = anxan . Thus, (1 − anx)an = 0. Since 1 − anx ∈ U(S), we have an = 0. This shows that J is nil.
From ssr(S) = 1, we also know (from Theorem 4.1(3)) that S/ J is reduced, and hence abelian. Since
S/ J remains π -regular, a result of Badawi [B, Theorem 3] on abelian π -regular rings implies that S/ J
is regular, and therefore strongly regular.

(5) ⇒ (2). Assume (5). Then S is an exchange ring (since S/ J is an exchange ring and idempotents
can be lifted modulo the nil ideal J = rad S: see [Wa]). As the strongly regular ring S/ J is reduced,
Theorem 4.4 implies that S is right quasi-duo. Also, since J is nil, it coincides with the prime radical
of S , and the reducedness of S/ J implies that J is exactly the set of all nilpotent elements of S .9

Given these facts on S , we can infer from [KKJ, Proposition 8] that S is strongly π -regular, prov-
ing (2). �
Remark 4.9. As far as the stable range is concerned, Ara [Ar] has proved that any strongly π -regular
ring S has sr(S) = 1. Theorem 4.8 above covers this result only in the special case where S is 1-
sided quasi-duo. But of course, the main focus of Theorem 4.8 is on the case of square stable range 1.
A prototypal example for the rings satisfying the conditions in Theorem 4.8 is the ring of n × n upper
triangular matrices over a division ring, or a commutative ring of Krull dimension zero (see [La4,
Exercise 4.15]).

5. Strongly regular elements and square stable range one

In this section, we’ll study the problem of square stable range one from an “element-wise” point
of view. Unless otherwise stated, S denotes any ring below. At the end of the section, however, we’ll
return to the theme of exchange rings, and provide (in addition to Theorem 4.4) another criterion for
such rings S to have ssr(S) = 1 in terms of the behavior of the (von Neumann) regular elements in S .

We begin by recalling the “element-wise” perspective in studying the stable range. In [KL], the
first two authors defined an element a in a ring S to have (right) stable range 1 (written sr(a) = 1) if
aS + bS = S (for any b ∈ S) implies that a + bx ∈ U(S) for some x ∈ S . In this spirit, we can similarly
define a ∈ S to have (right) square stable range 1 (written ssr(a) = 1) if aS + bS = S (for any b ∈ S)
implies that a2 + by ∈ U(S) for some y ∈ S . Thus, ssr(S) = 1 amounts to ssr(a) = 1 for all a ∈ S. The
advantage of working with ssr(a) = 1 is that it allows us to look at rings where only certain elements
have this property.

9 A ring is called “2-primal” if all its nilpotent elements lie in the prime radical. This step showed that S is 2-primal, which
is a hypothesis needed for the ensuing application of [KKJ, Proposition 8].
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To properly study the element-wise condition ssr(a) = 1, let us first set up the notations for several
basic sets of elements in a ring S which arise from notions related to (von Neumann) regularity.
Recall that an element a ∈ S is called regular if a ∈ aSa, unit-regular if a ∈ a U(S)a, and strongly regular
if a ∈ a2 S ∩ Sa2. The sets of regular, unit-regular, and strongly regular elements in S are denoted,
respectively, by reg(S), ureg(S), and sreg(S). It is not hard to show that sreg(S) ⊆ ureg(S) ⊆ reg(S);
see, e.g. [Ni2, p. 3283], where one of the many membership criteria for sreg(S) gives the crucial first
inclusion. We begin with a lemma on Dedekind-finiteness which is probably well known. For the sake
of completeness, we’ll include its proof.

Lemma 5.1. Let a ∈ reg(S); say a = axa (x ∈ S), and let e = ax, which is an idempotent. The following are
equivalent:

(1) The right module aS is Dedekind-finite.
(2) The left module Sa is Dedekind-finite.
(3) The ring eSe is Dedekind-finite.

Proof. Note that aS = eS . Thus, EndS (aS) = EndS (eS) ∼= eSe. This shows that (1) ⇔ (3). Next, recall
that aS = eS ⇒ Sa ∼= Se (see [La4, Exercise 1.17]). Thus, we also have EndS(Sa) ∼= EndS (Se) ∼= eSe.
From this, we have (2) ⇔ (3). �

In [KL, (3.2), (3.5)], it is proved that a ∈ ureg(S) implies that sr(a) = 1, and that the converse holds if
a ∈ reg(S). In the following, we’ll prove a (somewhat) analogous result for ssr(a) = 1 in relation to the
set of strongly regular elements sreg(S).

Theorem 5.2. If a ∈ sreg(S), then ssr(a) = 1. The converse holds if a ∈ reg(S) and the right module aS is
Dedekind-finite.

Proof. Assume that a ∈ sreg(S) ⊆ ureg(S), and consider any equation aS + bS = S . By [Ni2, p. 3283],
we can write a = aua for some u ∈ U(S) commuting with a. Thus, a2 = a2u2a2, so a2 ∈ ureg(S); in
particular, by [KL, Theorem 3.2], sr(a2) = 1. Since aS = a2 S , aS + bS = S ⇒ a2 S + bS = S . Therefore,
a2 + bx ∈ U(S) for some x ∈ S . This shows that ssr(a) = 1.

Conversely, assume that ssr(a) = 1, and that a ∈ reg(S), with aS Dedekind-finite. Write a = axa
(for some x), and let f = ax, so that f S = aS . Since aS + (1 − f )S = S , ssr(a) = 1 implies that u :=
a2 + (1 − f )y ∈ U(S) for some y. Left-multiplying this by f gives f u = f a2 = a2. This shows that a2

is a product of an idempotent and a unit, so a2 ∈ ureg(S) ⊆ reg(S) by [La4, Exercise 4.14B)]. It also
shows that a2 S = f uS = f S = aS , which implies that Sa2 ∼= Sa (again by [La4, Exercise 1.17]). Since
a2 ∈ reg(S), Sa2 is a direct summand of S , and hence of Sa. But by (1) ⇒ (2) of Lemma 5.1, Sa is
Dedekind-finite. This forces Sa2 ⊆ Sa to be an equality; that is, Sa = Sa2. This equation, together with
aS = a2 S , shows that a ∈ sreg(S), as desired. �

In [KL], a ring S is said to have the internal cancellation property (or, S is an IC ring) if, for any
decompositions S = A ⊕ B = C ⊕ D where A, B, C, D are right ideals, A ∼= C ⇒ B ∼= D . In [KL, (1.1)
and (4.2)], it was shown that

S is IC ⇔ reg(S) = ureg(S) ⇔ sr(a) = 1 for all a ∈ reg(S). (5.3)

(In particular, “IC ring” is a left–right symmetric notion.) In the following theorem, we’ll obtain similar
results, with the equation reg(S) = ureg(S) strengthened to reg(S) = sreg(S).

Theorem 5.4. For any ring S, the following are equivalent:

(1) reg(S) = sreg(S).
(2) ax + e = 1 with e = e2 implies that a2 + ey ∈ U(S) for some y ∈ S.
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(3) ax + e = 1 with e = e2 and a ∈ reg(S) implies that a2 + ey ∈ U(S) for some y ∈ S.
(4) For all b ∈ S, b ∈ reg(S) ⇒ b ∈ b2 S.
(5) ssr(a) = 1 for all a ∈ reg(S).

If any one of these conditions holds for S, we say that S is a strongly IC ring. For instance, any ring S with
ssr(S) = 1 is strongly IC.

Proof. We first prove the equivalence of (1)–(4). After this, we’ll complete the proof by showing
(1) ⇒ (5) ⇒ (3). To begin with, (2) ⇒ (3) is a tautology, and (3) ⇒ (4) can be proved by the argument
in the second paragraph of the proof of Theorem 5.2.

(4) ⇒ (1). Assuming (4), we first show that S is Dedekind-finite. If xy = 1, then y = yxy ∈ reg(S)

implies that y = y2z for some z ∈ S (by (4)). Left-multiplying by x then gives 1 = xy2z = yz, so
y ∈ U(S). To prove (1), consider any b ∈ reg(S). By (4), b2 S = bS , which is generated by an idempotent.
Thus, b2 ∈ reg(S), and Sb ∼= Sb2 (again by [La4, Exercise 1.17]). As S is Dedekind-finite, the direct
summand Sb2 in Sb must equal Sb. Therefore, b ∈ Sb2, which, together with (4), shows that b ∈
sreg(S).

(1) ⇒ (2). This is perhaps the most subtle implication in the proof of the theorem. Since S is not
assumed to be regular, the key step in proving (2) is to “create” a regular element from the equation
ax + e = 1 given there. For this, we’ll use an idea from the proof of Theorem 3 in [CY] (although our
ring S is not assumed to be an exchange ring here). Write f := ax = f 2, and let b := axa = f a. Then

bxb = ( f a)x( f a) = f 3a = f a = b, (5.5)

so b ∈ reg(S). By (1), b = b2s for some s ∈ S . Using this, we have

b2(sx) + e = bx + e = ( f a)x + e = f 2 + e = f + e = 1. (5.6)

Now b2 = ( f a)b = (1 − e)ab = ab − eab ∈ a2 S + eS (since b = axa). Combining this with (5.6), we get
1 ∈ a2 S + eS; thus, a2 S + eS = S . But (1) implies that reg(S) = ureg(S), so by (5.3), S is IC. According
to [KL, Theorem 4.3], the condition (3) in that theorem is then valid. Applying this to a2 S + eS = S ,
we see that a2 + ey ∈ U(S) for some y ∈ S , proving (2).

To complete the proof, note that (1) ⇒ (5) follows directly from Theorem 5.2. To prove (5) ⇒ (3),
start with ax + e = 1, where e = e2, and a ∈ reg(S). Since ssr(a) = 1 by (5), we have by definition
a2 + ey ∈ U(S) for some y ∈ S , proving (3). �
Remark 5.7. Of course, the expression ssr(a) in (5) above is still understood to be the “right square
stable range”. But the condition (1) is obviously left–right symmetric. From this, it follows that the
conditions (4) and (5) are left–right symmetric as well.

To conclude this section, we now return to exchange rings. In [CY, Theorem 3], Camillo and Yu
proved that an exchange ring S has sr(S) = 1 iff S is an IC ring (that is, reg(S) = ureg(S)). In the
following, we obtain a complete analogue of this result for the square stable range — by proving that
S has ssr(S) = 1 iff S is a strongly IC ring (that is, reg(S) = sreg(S)). Of course, this result shows once
more that ssr(S) = 1 is a left–right symmetric notion for the class of exchange rings.

Theorem 5.8. If S is an exchange ring, then ssr(S) = 1 iff S is strongly IC. In this case, S is a clean ring.

Proof. The “only if” part is true without the exchange ring assumption, as we have noted in the last
statement of Theorem 5.4. For the “if” part, suppose S is an exchange ring that is strongly IC. To
check that ssr(S) = 1, start with any equation aS + bS = S . Since S is an exchange ring, there exists
an idempotent e ∈ S such that e = by and 1 − e = ax for some x, y ∈ S (see [Ni1]). Then ax + e = 1, so
the condition (2) in Theorem 5.4 implies that there exists z ∈ S such that a2 + ez = a2 + b(yz) ∈ U(S).
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This checks that ssr(S) = 1, as desired. Finally, from the second implication in Corollary 4.5(∗), it
follows that isr(S) = 1. This implies that S is a clean ring, as we have observed in the proof of
Theorem 2.14. (Note that the exchange ring assumption on S is essential for the “if” part above. For
instance, a domain S is always strongly IC, since reg(S) = {0} ∪ U(S) = sreg(S). But if S = Z (say), we
have ssr(S) �= 1.) �
6. Infinitude of unit group under (square) stable range one

In this section, we study the unit groups of (possibly noncommutative) rings with stable range 1 or
square stable range 1. The first main result of the section (Theorem 6.2) utilizes Ara’s stable range 1
theorem in [Ar] and Dischinger’s theorem in [Di] to give a new characterization of strongly π -regular
rings in terms of their unit groups. A more or less parallel result in the case of square stable range 1
is given in Theorem 6.4. These culminate in a final result (Theorem 6.8) of the section, which shows
that an infinite domain S with sr(S) = 1 or ssr(S) = 1 must have a non-artinian unit group. This result
calls for a rather long proof since the case where S is a division ring requires a separate argument
(which is completed only in Section 7).

The methods we use in this section are generalizations of the commutative methods used by Estes
and Ohm in [EO]. After [EO] (but more generally in the noncommutative setting), we first introduce
the following notation. For any right ideal J ⊆ S , let K ( J ) := U(S) ∩ (1 + J ). It is a routine exercise to
check that K ( J ) is a subgroup of U(S). If J ′ ⊆ J is another right ideal, we have clearly K ( J ′) ⊆ K ( J ).
If J happens to be an ideal, then K ( J ) is precisely the kernel of the natural homomorphism U(S) →
U(S/ J ). In particular, in this case, K ( J ) would be a normal subgroup of U(S). The beginning point of
our considerations is the following observation on the groups K ( J ) in a ring of stable range one.

Lemma 6.1. Assume that sr(S) = 1, and let c,d ∈ S be such that cS ⊇ dS and (1 + c)S + dS = S. Then
cS = dS iff K (cS) = K (dS).

Proof. We need only prove the “if” part, so assume K (cS) = K (dS). Since sr(S) = 1, we have u :=
(1 + c) − ds ∈ U(S) for some s ∈ S . Then 1 − u = ds − c ∈ cS implies that u ∈ K (cS) = K (dS), so
1 − u ∈ dS . Thus, c = ds − (1 − u) ∈ dS , and hence cS = dS . �
Theorem 6.2.

(A) A ring S is strongly π -regular iff sr(S) = 1 and all group-chains of the form K (aS) ⊇ K (a2 S) ⊇ · · · (with
a ∈ S) stabilize.

(B) A ring S with an artinian unit group is strongly π -regular iff sr(S) = 1.

Proof. (B) obviously follows from (A). To prove (A), first assume S is strongly π -regular Then any
right principal ideal chain aS ⊇ a2 S ⊇ · · · already stabilize, and Ara’s main theorem in [Ar] gives
sr(S) = 1. Conversely, assume that sr(S) = 1 and that all group-chains in (A) of the theorem stabilize.
Let a ∈ S . For any i, j > 0, note that (1 + ai)S + a j S = S . (This equation holds with S replaced by the
commutative subring of S generated by Z · 1 and a, so it also holds for S itself.) Applying Lemma 6.1
to c = ai and d = ai+1, we see that the group-chain condition implies that ai S = ai+1 S for sufficiently
large i, so by Dischinger’s theorem [Di], S is a strongly π -regular ring. �

Using Theorem 6.2, we’ll show that, if sr(S) = 1, then the subgroups K (aS) ⊆ U(S) are infinite
groups of units for “many” choices of a ∈ S .

Corollary 6.3. Let S be any ring with sr(S) = 1, and let a ∈ S be not right-invertible and not a left 0-divisor.
Then K (aS) ⊇ K (a2 S) ⊇ · · · is a strictly descending chain of subgroups of U(S). In particular, K (aS) is a non-
artinian (and hence infinite) group.

Proof. If the conclusion was false, we would have K (ai S) = K (ai+1 S) for some i, and hence ai ∈ ai+1 S
by the proof of Theorem 6.2. Since a is not a left 0-divisor, this would imply that 1 ∈ aS , contradicting
the assumption that a is not right-invertible. �
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Next, we would like to draw “similar” conclusions in the case where ssr(S) = 1. In principle, we
would try to recycle the proof method for Theorem 6.2 and Corollary 6.3, but we must take extra steps
to adapt the arguments for proving Lemma 6.1 to the case ssr(S) = 1. This calls for a considerably
more subtle argument.10

Theorem 6.4. Let a ∈ S where S is any ring with ssr(S) = 1. If either 2 ∈ U(S) or a is not a left 0-divisor in S,
then aS ⊇ a2 S ⊇ · · · stabilize iff K (aS) ⊇ K (a2 S) ⊇ · · · stabilize.

Proof. (“If” part.) To prove this, we argue in the following two cases.

Case 1. 2 /∈ ⋂
i�1 ai S . Fix an integer k � 1 such that 2 /∈ ak S . Pick some n such that K (an S) = K (an+i S)

for all i � 0. We may assume that n � k. Consider the equation (1 + an)S + a2n S = S (as in the proof
of Theorem 6.2). Since ssr(S) = 1, we have

(
1 + an)2 − u = 1 + 2an + a2n − u ∈ a2n S for some u ∈ U(S). (6.5)

Then 1 − u ∈ an S , so u ∈ K (an S) = K (an+k S). This means that 1 − u ∈ an+k S , so (in view of n � k) (6.5)
implies that 2an ∈ an+k S . If 2 ∈ U(S), this gives the desired conclusion an ∈ an+k S . If a is not a left
0-divisor, we have 2 ∈ ak S , which is not the case.

Case 2. 2 ∈ ⋂
i�1 ai S . This time, we work with the equation (1+an)S +a2n+1 S = S (where n is chosen

as in Case 1). As before, we have

(
1 + an)2 − v = 1 + 2an + a2n − v ∈ a2n+1 S for some v ∈ U(S). (6.6)

Here, 2an = an · 2 ∈ ⋂
i�1 ai S . Thus, (6.6) implies that 1 − v ∈ a2n S , so v ∈ K (a2n S) = K (a2n+1 S). With

this, (6.6) gives a2n ∈ a2n+1 S , as desired. �
We can now prove the following “analogue” of Corollary 6.3 for the case ssr(S) = 1. Note that

there is a subtle difference between the statement below and that of Corollary 6.3.

Corollary 6.7. Let S be any ring with ssr(S) = 1, and let a ∈ S be not right-invertible and not a left 0-divisor.
Then the group-chain K (aS) ⊇ K (a2 S) ⊇ · · · does not stabilize. In particular, K (aS) is a non-artinian (and
hence infinite) group.

Proof. We can repeat the proof of Corollary 6.3, using here Theorem 6.4 instead of Theorem 6.2. �
In the following final result of this section, we provide a “double” generalization of an earlier

theorem of Estes and Ohm. Their original result in [EO, p. 351] is extended not only to the noncom-
mutative case, but also to the case where ssr(S) = 1.

Theorem 6.8. Let S be an infinite domain with either sr(S) = 1 or ssr(S) = 1. Then U(S) is a non-artinian
(and hence infinite) group.

10 We have already explained in Section 2 that the case ssr(S) = 1 is in general logically independent of the case sr(S) = 1.
Thus, the results obtained in Theorems 6.2 and 6.4 are basically independent ones. It is true, however, that the conclusions
of Theorem 6.2 are more penetrating than that of Theorem 6.4, since their proofs made use of two of the deepest results for
strongly π -regular rings.
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Proof. First assume that ssr(S) = 1. If S is a division ring, then U(S) = S \{0}. To prove that this group
is non-artinian requires some field-theoretic and number-theoretic techniques. Since these techniques
have relatively little to do with the theme of stable range 1 and square stable range 1, it seems
better if we defer the proof in this division ring case to the next section, in order to keep our present
focus on the analysis of sr(S) = 1 and ssr(S) = 1. The division ring case will be taken up in full in
Theorem 7.3.

For the rest of the proof, we may thus assume that S is not a division ring. Then there exists a
nonzero element a ∈ S that is not right-invertible (see [La4, Exercise 1.2]). Since a is automatically not
a left 0-divisor, Corollary 6.7 applies to show that K (aS) is not artinian, proving what we want. The
case where sr(S) = 1 is similar (and in fact easier, using instead Corollary 6.3). �
7. A chain-condition theorem on division rings

In Section 6, we have invoked a certain result on chain conditions for the multiplicative groups of
division rings. We return now to this theme, and present here the result that was used in the proof
of Theorem 6.8. We begin with the following number-theoretic proposition, which was shown to (and
proved for) us by Professor Michael Filaseta.

Proposition 7.1. Let n � 1 be a fixed integer, and let E be an infinite set of positive integers. Then there are
infinitely many primes dividing ne − 1 as e varies over E.

Proof. The case n = 1 is just Euclid’s theorem on the infinitude of primes. Suppose now n > 1, and
that the conclusion is false. Then there are finitely many primes p1, . . . , pr such that each integer
ne − 1 with e ∈ E can be factored into pe1

1 · · · per
r (ei � 0 depending on e). We can rewrite this in the

form

ni0 x3 − 1 = pi1
1 · · · pir

r y3, where i0, i1, . . . , ir ∈ {0,1,2}, and x, y ∈ Z. (7.2)

Indeed, by the division algorithm, e = 3s + t for some s � 0 and t ∈ {0,1,2}. Since ne = nt(ns)3,
we can take i0 = t and x = ns . Doing the same thing with each p

e j

j , we arrive at the diophantine
equations (7.2). Since e ∈ E (and hence s) can be arbitrarily large, we get infinitely many integral
solutions (x, y) to (7.2) for at least one of the 3r+1 choices for i0, i1, . . . , ir . But (7.2) is a Thue equation
of the form Ax3 − B y3 = 1, which is known to have only finitely many integral solutions (see, e.g. [Co,
Theorem 12.11.1]). This gives the desired contradiction. �

As was pointed out by Professor Jan Mináč, the proposition above can also be deduced from the
existence of primitive prime divisors of ne − 1 for n > 1 and e > 6: see, for instance, Theorem (P1.7)
in Ribenboim’s book [Ri] on Catalan’s Conjecture.

We can now prove Theorem 7.3 below for a general division ring, which was actually the “begin-
ning case” of our earlier result (Theorem 6.8) on unit groups of infinite domains with stable range 1
or square stable range 1. We include here a detailed proof for Theorem 7.3 since we have not been
able to find a convenient reference for it in the division ring literature.

Theorem 7.3. For any division ring D with multiplicative group D∗ = D \ {0}, the following are equivalent:
(1) D is finite. (2) D∗ is artinian. (3) D∗ is noetherian.

Proof. We need only prove (2) ⇒ (1) and (3) ⇒ (1). Assuming that D is infinite, we would like to show
that D∗ is non-artinian and non-noetherian. In the following, we’ll actually prove a much stronger
result; namely, that

D∗ contains an infinite direct sum of nontrivial cyclic groups. (7.4)
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In the language of module theory, this statement basically amounts to the fact that D∗ has infinite
uniform dimension (see [La3, Section 6]) as a “Z-module”. The only catch is that, if D is not a field,
then D∗ is not quite a “Z-module” in the usual sense since its binary operation (multiplication) is
not commutative. Nevertheless, it is conceptually beneficial to think of (7.4) as a fact on the “uniform
dimension” of D∗ .

To prove (7.4), let F be the center of D , and let K ⊇ F be a maximal subfield of D . If |K | < ∞,
then dimF K < ∞, and so dimK (D K ) < ∞ too (by [La2, Theorem 15.8]). But then |D| < ∞, a con-
tradiction. Thus, K must be an infinite field. We may then “replace” D by K , so in particular, we
are now down to the commutative case. If char(K ) = 0, then we may further replace K by Q, whose
multiplicative group contains a free abelian group of infinite rank — with generators given by the
primes, proving (7.4). We are now left with the case where char(K ) = p (a prime). Let Fp be the
prime field of K . If K/Fp is transcendental, then K contains a rational function field Fp(x), whose
multiplicative group contains again a free abelian group of infinite rank — with generators given by
the monic irreducible polynomials over Fp .11 Thus, we may now assume that K is an algebraic exten-
sion of Fp . Since [K : Fp] is infinite, there exists an infinite chain of finite fields Fp � K1 � K2 � · · ·
within K . Let ei := [Ki : Fp], and let E := {e1, e2, . . .}, which is an infinite set of distinct positive in-
tegers. By Proposition 7.1, there are infinitely many primes, say p1, p2, . . . , such that each p j divides
some pei −1 = |K ∗

i |. By Cauchy’s theorem, K ∗
i (and hence also K ∗) contains an element of (multiplica-

tive) order p j . Therefore, K ∗ contains a copy of the infinite direct sum
⊕∞

j=1 Z/p jZ, as desired. �
Epilogue. We take this opportunity to point out that the main results of this paper can be further
generalized, as follows. In modification of Definition 2.0, we may define a ring S to have (right) power
stable range 1 (written psr(S) = 1) if aS + bS = S ⇒ an + bx ∈ U(S) for some x ∈ S and some integer
n � 2 depending on a,b ∈ S . (Of course, ssr(S) = 1 implies psr(S) = 1.) Using this modified definition,
one can check that all results in Sections 2, 4, and 5 can be carried over from the ssr(S) = 1 case to
the psr(S) = 1 case. The proofs in the aforementioned sections will only need to be slightly adjusted,
mostly by simply replacing a2 by an (for some n � 2). In a few cases, a little more may need to be
done. For instance, for the crucial Theorem 5.4, one would keep the five equivalent conditions (1)–(5)
as stated, but add (2)′ , (3)′ with a2 replaced by an (for some n � 2), and also add “(5)′: psr(a) = 1 for
all a ∈ reg(S).” The proof that these new conditions are equivalent to the original ones does not really
require any new ideas. The upshot of all these changes is that they lead to a group of stronger and
more encompassing results. For instance, the “new” version of Theorem 4.4 will say that, if S/rad S is
an exchange ring, then psr(S) = 1 is simply equivalent to ssr(S) = 1; the “new” version of Theorem 5.8
will imply that, to check that an exchange ring S is strongly IC, it suffices to verify that psr(a) = 1 for
all a ∈ reg(S).

Among all the “new” results which come to light in the above manner, a most significant one is the
following refinement of Remark 2.2 concerning power-substitution. In the notation of the power stable
range introduced above, Goodearl’s result [Go1, (3.2)] simply states that a commutative ring S has the
power-substitution property iff psr(S) = 1. This is proved by first giving psr(S) = 1 (for commutative S)
the following natural matrix-theoretic interpretation (where a,b, s ∈ S):

(†) as + b = 1 ⇒ aIn + b X ∈ GLn(S) for some X ∈ Mn(S) with n � 2,

after which [Go1, Theorem 2.1] gives the equivalence with power-substitution. In particular, given
psr(S) = 1, power-cancellation holds for any right module Ak with Endk(A) ∼= S .

In general, if a ring S has sr(S) = 1, then psr(S) = 1 is simply equivalent to ssr(S) = 1. (The “only
if” part is proved as follows. If psr(S) = 1, aS + bS = S will give a unit an + bx for some x ∈ S and
n � 2. But then a2 S + bS = S , so sr(S) = 1 guarantees a unit of the form a2 + by for some y ∈ S .)
We note, however, that the class of rings S with psr(S) = 1 is substantially larger than the class of
rings with ssr(S) = 1. For instance, if S is a right duo ring (in the sense that bS is an ideal for all
b ∈ S), and if U(S/bS) is a torsion group for each b �= 0, then we have obviously psr(S) = 1, but not

11 This case is similar to Q, since Fp(x) is a function field analogue of the global field Q.
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necessarily ssr(S) = 1. Thus, for instance, psr(Z) = 1, but ssr(Z) �= 1 �= sr(Z). This simple example also
shows that Theorem 6.8 is not true in the case psr(S) = 1, since Z is an infinite domain with this
property, but it has only two units. Many other examples of rings with power-substitution are given
in [Go1].

Acknowledgments

We are grateful to Professors G. Bergman, M. Filaseta, K. Goodearl, J. Mináč, M. Rieffel, and
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