JOURNAL OF MULTIVARIATE ANALYSIS 14, 83-93 (1984)

On a Class of Stopping Times for *M*-Estimators

WINFRIED STUTE

University of Siegen, Siegen, West Germany Communicated by J. Pfanzagl

For a given score function $\psi = \psi(x, \theta)$, let θ_n be Huber's *M*-estimator for an unknown population parameter θ . Under some mild smoothness assumptions it is known that $n^{1/2}(\theta_n - \theta)$ is asymptotically normal. In this paper the stopping times $\tau_c(m) = \inf\{n \ge m: n^{1/2} |\theta_n - \theta| > c\}$ associated with the sequence of confidence intervals for θ are investigated. A useful representation of *M*-estimators is derived, which is also appropriate for proving laws of the iterated logarithm and Donskertype invariance principles for $(\theta_n)_n$.

0. INTRODUCTION AND MAIN RESULT

Let $\mathscr{P} = \{P_{\theta} : \theta \in \Theta\}, \ \Theta \subset \mathbb{R}$, be some parametric family of probability distributions on the real line. Suppose that $\xi_1, ..., \xi_n, ...,$ is a sequence of independent random variables with common distribution $P = P_{\theta_0}$ for some unknown $\theta_0 \in \Theta$. Lai [4] then investigated the possibility of constructing a sequence of confidence regions $C_n(\xi_1, ..., \xi_n)$ such that

$$\mathbb{P}_{\theta}(\theta \in C_n(\xi_1, ..., \xi_n) \text{ for all } n \ge m) \ge 1 - \alpha, \tag{1}$$

where $m \in \mathbb{N}$ and $1 - \alpha$ is a prescribed coverage probability. Here \mathbb{P}_{θ} , $\theta \in \Theta$, denotes a probability measure on the sample space such that $\xi_1, ..., \xi_n$ have distribution P_{θ} under \mathbb{P}_{θ} . Suppose that $\theta_n = T_n(\xi_1, ..., \xi_n)$ is a sequence of estimates for θ_0 such that under \mathbb{P}_{θ_0}

$$n^{1/2}(\theta_n - \theta_0) \to N(0, \sigma_{\theta_0}^2), \tag{2}$$

in distribution as $n \to \infty$, where $N(0, \sigma_{\theta_0}^2)$ is a centered normal random variable with variance $\sigma_{\theta_0}^2 > 0$. Assume for simplicity that $\sigma^2 = \sigma_{\theta}^2$ is independent of θ , and let c_{α} denote the $1 - \alpha/2$ quantile of $N(0, \sigma^2)$. Then,

Received May 14, 1982.

AMS 1980 subject classifications: Primary 60G40, 62F25; Secondary 60F05, 60F15.

Key words and phrases: *M*-estimator, stopping time, representation, law of the iterated logarithm, invariance principle.

0047-259X/84 \$3.00

WINFRIED STUTE

asymptotically, the intervals $C_n := [\theta_n - c_\alpha n^{-1/2}, \theta_n + c_\alpha n^{-1/2}]$ form a sequence of confidence regions with coverage probability $1 - \alpha$,

$$\mathbb{P}_{\theta}(\theta \in C_n) \to 1 - \alpha \qquad \text{as} \quad n \to \infty.$$
(3)

Condition (3) has to be clearly distinguished from (1). In fact, in most cases the sequence $(\theta_n)_n$ fulfills a law of the iterated logarithm so that for the above C_n ,

$$\mathbb{P}_{\theta}(\theta \in C_n \text{ for all } n \ge m) = 0, \qquad m \in \mathbb{N}.$$
(4)

Similarly, a sequential test based on $[\theta'_0 - c_\alpha n^{-1/2}, \theta'_0 + c_\alpha n^{-1/2}]$ leads one with probability to a rejection of the hypothesis $\theta_0 = \theta'_0$, though it is true.

Now, fix $\theta \in \Theta$ and define $A_m := \{\theta \in C_n \text{ for all } n \ge m\}$, $m \in \mathbb{N}$. Then $\omega \in A_m$ if and only if $\tau_{c_\alpha}(\theta, m, \omega) = \infty$, where $\tau_c(\theta, m)$ denotes the stopping time,

$$\tau_c = \tau_c(\theta, m) := \inf\{n \ge m : n^{1/2} |\theta_n - \theta| > c\}, \qquad c > 0.$$

Under (4) τ_c is almost surely finite. So it makes sense to investigate $\mathbb{E}(\tau_c) = \mathbb{E}_{\theta}(\tau_c)$, the expected time for θ_n to leave the interval(s) $[\theta - cn^{-1/2}]$, $\theta + cn^{-1/2}$] for the first time after *m*, if θ is the true parameter. In a hypothesis-testing framework $\tau_{c_{\alpha}}$ is the first time after *m*, such that the hypothesis $\theta_0 = \theta$ is rejected on a level α against a two-sided alternative. Information about $\mathbb{E}(\tau_c)$ provides one further tool for judging procedures based on $(\theta_n)_n$.

If θ is the true parameter, then clearly estimates are preferred which in the mean yield a large τ_c , c > 0, while it shoud be small if θ is the wrong parameter. In this paper we shall deal with the class of *M*-estimators as introduced by Huber [3]. To be specific, let $\psi(x, \theta)$, $x \in \mathbb{R}$, $\theta \in \Theta$, be a (smooth) score function which is Fisher-consistent, i.e.,

$$\int \psi(x,\theta) P_{\theta}(dx) = 0 \quad \text{for all } \theta \in \Theta.$$

Denote with F_n the empirical distribution function (d.f.) of the sample $\xi_1, ..., \xi_n$ and assume that the equation,

$$\int \psi(x,\theta) F_n(dx) = 0 \qquad \text{(within 1/n)}, \tag{5}$$

has a root θ_n . We shall always deal with functions ψ which are nonincreasing in θ for each fixed x. Hence θ_n is essentially unique. Under a smoothness assumption θ_n is a minimum contrast estimator as considered by Pfanzagl [5].

It is known (cf. Huber [3]) that (2) holds with

$$\sigma_{\theta_0}^2 = \frac{\int \psi^2(x,\,\theta_0) P_{\theta_0}(dx)}{\left[\partial/\partial\theta \int \psi(x,\,\theta) P_{\theta_0}(dx)\right]_{\theta=\theta_0}^2}.$$

It is the purpose of this paper to prove the following:

THEOREM. Let ψ be a smooth-bounded score function, nonincreasing in θ for each $x \in \mathbb{R}$. Then for each $\theta \in \Theta$

(i) $\mathbb{E}_{\theta}(\tau_c(m, \theta)) < \infty$ for each $c < \sigma_{\theta}$ and every $m \in \mathbb{N}$.

(ii) $\mathbb{E}_{\theta}(\tau_c(m,\theta)) = \infty$ for each $c > \sigma_{\theta}$ and $m \ge m_0(c,\theta)$, where $m_0(c,\theta)$ is some integer increasing with c as $c \downarrow \sigma_{\theta}$.

Remark. The function $x \to \psi(x, \theta_0)/[...]$ is the influence function of the statistical functional defining the θ_n 's. Hence the theorem may be viewed as giving a sort of stochastic interpretation of the role played by the influence function in parameter estimation. When θ_n is the (nonrobust) sample mean, part (ii) of the theorem is due to Chow, Robbins, and Teicher [1], with $m_0(c, \theta) = 1$ and $c \ge \sigma_{\theta}$. Their method of proof is strongly based on a second order version of Wald's identity. In our case such an argument is not applicable, since under $\mathbb{P}_{\theta} \theta_n$ is of the form $n(\theta_n - \theta) = S_n + R_n$, where S_n is a partial sum of independent identically distributed (i.i.d.) zero-mean random variables and R_n is a nonvanishing error term. There is little known about the dependence structure of the sequence $(R_n)_n$. The only information will be contained in an estimate showing that $n^{-1/2}R_n$ is small with high probability, at least for large n. For small n we shall have no control on the value of R_n . For the sample mean part (i) is due to Gundy and Siegmund [2]. For testing the hypothesis $\theta_0 = \theta'_0$, the constant $c = c_{\alpha}$ is usually larger than $\sigma_{\theta'_0}$; hence, $\mathbb{E}_{\theta_0'}(\tau_c(m,\theta_0')) = \infty.$

EXAMPLES. (1) The location case: $F_{\theta}(x) = P_{\theta}(-\infty, x] = F(x - \theta)$ with some known or unknown F. In most cases F is to be considered symmetric. For invariance reasons take ψ of the form $\psi(x, \theta) = \psi_0(x - \theta)$, where ψ_0 is a smooth-bounded, nondecreasing function of one variable. To obtain Fisherconsistency (with F symmetric), ψ_0 has to be chosen skew-symmetric. Also, σ_{θ} is independent of θ . The fundamental paper of Huber [3] treats the question how to find minimax solutions for ψ_0 if F is only approximately known.

(2) For

$$\psi_0(x) = -1,$$
 $x < 0,$
= 0, $x = 0,$
= $p/(1-p),$ $x > 0,$

WINFRIED STUTE

the resulting estimate is the *p*-quantile of the distribution $(0 . Though <math>\psi_0$ is not smooth the assertion of the theorem is also valid for this particular ψ_0 . This is because for the proof of the theorem one needs, for a given d.f. *F*, smoothness of the function $H(\theta) = \int \psi_0(x-\theta) F(dx)$ together with some appropriate fluctuation bounds for the associated empirical process. But $H(\theta) = (p - F(\theta - 0))/(1-p)$ is smooth whenever *F* is smooth, and the fluctuation may be controlled using results of Stute [7]. For smooth empirical processes related results are contained in Stute [8].

1. LEMMAS AND PROOFS

Fix $\theta \in \Theta$ and replace \mathbb{P}_{θ} by \mathbb{P} . As mentioned in the Introduction $n(\theta_n - \theta) \equiv T_n$ will be of the form $T_n = S_n + R_n$, S_n being a sum of *n* i.i.d. random variables. The error term R_n will be asymptotically smaller than S_n . We have thus to study stopping times,

$$\tau_{c} = \tau_{c}(m) = \inf\{n \ge m : |T_{n}| > cn^{1/2}\}, \qquad m \in \mathbb{N}, \quad c > 0, \tag{6}$$

under a control condition for $(R_n)_n$. For our purposes it will be enough to consider

$$\sum_{1}^{\infty} n^2 \mathbb{P}(n^{-1/2} |R_n| > \varepsilon) < \infty \qquad \text{for each } \varepsilon > 0.$$
 (7)

In fact, it will be shown that for θ_n we have $\mathbb{P}(n^{-1/2} |R_n| > \varepsilon) \to 0$ exponentially fast.

The following two lemmas will be needed for part (i) of the theorem. For this, let $\eta_1, \eta_2,...$, be a sequence of i.i.d. random variables defined on a probability space $(\Omega, \mathcal{A}, \mathbb{P})$. Assume $\mathbb{E}(\eta_i) = 0$ and $\mathbb{E}(\eta_i^2) = 1$, with $|\eta_i| \leq M$ for some finite $M \geq 4$. Define $S_n = \sum_{i=1}^n \eta_i$ and let $(R_n)_n$ be some sequence of random variables satisfying (7). Assume that $(\mathcal{F}_n)_n$ is an increasing family of sub- σ -fields of \mathscr{A} such that both $(S_n)_n$ and $(R_n)_n$ are adapted to $(\mathcal{F}_n)_n$, and such that $\eta_{n+1}, \eta_{n+2},...$, are independent of \mathcal{F}_n for each $n \geq 1$. Put $T_n = S_n + R_n$ and let $\tau_c(m)$ be defined by (6). Then $\tau_c(m)$ is a stopping time w.r.t. $(\mathcal{F}_n)_n$. Similarly, put $r_c(m) := \inf\{n \geq m: |S_n| > cn^{1/2}\}$. The following estimate extends, in a sense, the lemma in Gundy and Siegmund [2].

LEMMA 1. For c < 1 and $m \in \mathbb{N}$ we have

$$\mathbb{E}(r_c(m)) \leq M^2 m/(1-c)^2.$$

Proof. Fix $m \in \mathbb{N}$ and let, for n > m, $r = r_c(m) \wedge n$. By the second order version of Wald's equation,

$$\mathbb{E}(r) = \mathbb{E}(S_r^2) = \mathbb{E}(S_{r-1}^2) + 2\mathbb{E}(S_{r-1}\eta_r) + \mathbb{E}(\eta_r^2)$$
$$\leq \mathbb{E}(S_{r-1}^2) + 2M\sqrt{\mathbb{E}(S_{r-1}^2)} + M^2.$$

Since

$$S_{r-1}^2 = S_{r-1}^2 \mathbf{1}_{\{r > m\}} + S_{r-1}^2 \mathbf{1}_{\{r = m\}}$$

we obtain

$$\mathbb{E}(r) \leq c^2 \mathbb{E}(r) + m - 1 + 2Mc \sqrt{\mathbb{E}(r)} + 2M \sqrt{m-1} + M^2$$
$$\leq c^2 \mathbb{E}(r) + 2Mc \sqrt{m\mathbb{E}(r)} + mM^2,$$

where the first inequality follows from $\sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$; $a, b \geq 0$. It follows that with $x^2 = mM^2/\mathbb{E}(r)$, $1 \leq c^2 + 2cx + x^2 = (c+x)^2$, and therefore $\mathbb{E}(r) \leq M^2m/(1-c)^2$. The assertion now follows by letting *n* tend to infinity.

Lemma 1 will be needed to bound the mean of $\tau_c = \tau_c(m)$. This is the content of

LEMMA 2. Let (7) be satisfied. Then

$$\mathbb{E}(\tau_c) < \infty$$
 for all $0 < c < 1$.

Proof. We shall only consider the case m = 1. The proof for a general m will be similar. Now, for each $\varepsilon > 0$, let $t_{\varepsilon} := \sup\{n \ge 1: n^{-1/2} |R_n| > \varepsilon\}$. By (7) and the Borel-Cantelli lemma $n^{-1/2}R_n \to 0$, almost surely, i.e., t_{ε} is well defined. Observe that t_{ε} is not a stopping time. Furthermore, put

$$s_c(\varepsilon) = s_c := \inf\{n > t_{\varepsilon} : |S_n| > cn^{1/2}\},$$

which is finite (almost surely) according to the finiteness of t_{ε} and the law of the iterated logarithm for $(S_n)_n$. Since $t_{\varepsilon} = k$ implies $k^{-1/2} |R_k| > \varepsilon$ we get from (7),

$$\sum_{1}^{\infty} k \mathbb{P}(t_{\varepsilon} = k) < \infty,$$

i.e., t_{ε} has finite expectation. To prove the lemma it therefore remains to show

$$\int_{(\tau_c>t_6)}\tau_c\,d\mathbb{P}<\infty,$$

for some appropriate small $\varepsilon > 0$. Now, choose $\varepsilon > 0$ so small that $c^* := c + \varepsilon < 1$. Then, on $\{\tau_c > t_{\varepsilon}\}$,

$$|S_n| \leq cn^{1/2} + \varepsilon n^{1/2} = c^* n^{1/2},$$

for $t_{\varepsilon} < n < \tau_c$, i.e., $s_{c^*} \ge \tau_c$ and hence,

$$\int_{\{\tau_c > t_{\ell}\}} \tau_c \, d\mathbb{P} \leqslant \int_{\{\tau_c > t_{\ell}\}} s_{c^*} \, d\mathbb{P} \leqslant \int s_{c^*} \, d\mathbb{P}.$$

Let us show that the last integral is finite. But

$$\int s_c, d\mathbb{P} = \sum_{1}^{\infty} \int_{\{t_e=k\}} s_c, d\mathbb{P}.$$

Fix k and write, for n > k,

$$S_n = S_k + \eta_{k+1} + \dots + \eta_n = S_k + S_k^n.$$

Given that $\eta_i = x_i$ for $1 \le i \le k$, the condition,

$$|x_1+\cdots+x_k+\eta_{k+1}+\cdots+\eta_n|\leqslant c^*n^{1/2},$$

implies

$$|S_k^n| = |\eta_{k+1} + \dots + \eta_n| \le Mk + c^* n^{1/2}$$

= $\sqrt{n-k} \left[\frac{Mk + c^* n^{1/2}}{\sqrt{n-k}} \right].$

Now, there exists some large constant C and some $c^{**} < 1$ such that the term in brackets is less than or equal to c^{**} , provided that $n \ge Ck^2$. Thus, defining

$$s_{c^{**}}(k) := \inf\{n \ge Ck^2 \colon |S_k^n| > c^{**}\sqrt{n-k}\},$$

we get, on $\{t_{\varepsilon} = k\}, s_{c^*} \leq s_{c^{**}}(k)$. Hence,

$$\int_{\{t_{\varepsilon}=k\}} s_{c^*} d\mathbb{P} \leqslant \int_{\{t_{\varepsilon}=k\}} s_{c^{**}}(k) d\mathbb{P} \leqslant \int_{\{k^{-1/2} |R_k| > \varepsilon\}} s_{c^{**}}(k) d\mathbb{P}.$$

Since R_k is \mathcal{F}_k -measurable, we have by independence of $\eta_{k+1}, \eta_{k+2}, \dots$, that the last integral is equal to

$$\mathbb{P}(k^{-1/2}|R_k|>\varepsilon)\int s_{c^{**}}(k)\,d\mathbb{P}.$$

Hence it remains to show

$$\sum_{1}^{\infty} \mathbb{P}(k^{-1/2} | R_k| > \varepsilon) \int s_{c^{**}}(k) d\mathbb{P} < \infty.$$

By stationarity the last integral is equal to $\mathbb{E}(r_{c}..(Ck^2 - k))$. The result now follows from Lemma 1 and (7).

If $\eta_1,...$, have finite variance σ^2 , then $\mathbb{E}(\tau_c) < \infty$ for each $0 < c < \sigma$. The following lemma will be needed for the second part of the theorem.

LEMMA 3. Under the assumptions of Lemma 2, for each c > 1 there exists some $m_0(c)$, which increases as $c \downarrow 1$, such that

$$\mathbb{E}(\tau_c(m)) = \infty \qquad \text{for all } m \ge m_0(c).$$

Proof. Choose $\varepsilon > 0$ such that $c^* = c - \varepsilon > 1$, and let t_{ε} be defined as in the proof of Lemma 2. Fix $m \in \mathbb{N}$ and suppose that $\mathbb{E}(\tau_c) < \infty$, $\tau_c = \tau_c(m)$. Remember $T_n = S_n + R_n$. By the second order version of Wald's identity,

$$\mathbb{E}(\tau_c) = \mathbb{E}(S_{\tau_c}^2) \geqslant \int_{\{\tau_c > t_c\}} (T_{\tau_c} - R_{\tau_c})^2 d\mathbb{P}.$$

Clearly, $|T_{\tau_c}| > c\tau_c^{1/2}$ and $|R_{\tau_c}| \le \varepsilon \tau_c^{1/2}$, and hence,

$$(T_{\tau_c} - R_{\tau_c})^2 \ge c^* \tau_c \qquad \text{on} \quad \{\tau_c > t_{\varepsilon}\}.$$

Thus

$$\mathbb{E}(\tau_c) \geqslant c^* \int_{\{\tau_c > t_c\}} \tau_c \, d\mathbb{P}.$$

On the other hand,

$$\int_{\{\tau_c \leq t_{\ell}\}} \tau_c \, d\mathbb{P} \leq \int_{\{\tau_c \leq t_{\ell}\}} t_{\varepsilon} \, d\mathbb{P} \leq \int_{\{m \leq t_{\ell}\}} t_{\varepsilon} \, d\mathbb{P} = \sum_{k=m}^{\infty} k \mathbb{P}(t_{\varepsilon} = k)$$
$$\leq \sum_{k=m}^{\infty} k \mathbb{P}(k^{-1/2} | R_k | > \varepsilon) \leq \frac{1}{m} \sum_{i}^{\infty} k^2 \mathbb{P}(k^{-1/2} | R_k | > \varepsilon)$$
$$\equiv A/m.$$

In summary, we get

$$\mathbb{E}(\tau_c) \ge c^* \mathbb{E}(\tau_c) - c^* \int_{\{\tau_c \le \iota_c\}} \tau_c \, d\mathbb{P} \ge c^* \mathbb{E}(\tau_c) - c^* A/m,$$

and therefore,

$$\mathbb{E}(\tau_c) \leqslant \frac{c^*A}{m(c^*-1)} \equiv B.$$

But, since $\tau_c \ge m$, $\mathbb{E}(\tau_c) \ge m$, so that $m \le B$. This is impossible for $m^2 > c^*A/(c^*-1)$. Thus the assertion holds with $m_0(c) = \langle \sqrt{c^*A/(c^*-1)} \rangle$, an integer.

We now show, that under \mathbb{P}_{θ} ,

$$n(\theta_n - \theta) \equiv T_n = S_n + R_n,$$

where $(R_n)_n$ satisfies (7). As before, let $\psi = \psi(x, \theta)$ be any smooth and bounded nonincreasing score-function, and let F be a fixed d.f. Suppose that the equation $\int \psi(x, \theta) F(dx) = 0$ has a root θ_0 . Define

$$H(\theta) = \int \psi(x,\,\theta)\,F(dx),$$

and let

$$\alpha_n(\theta) := n^{1/2} \int \psi(x,\theta) [F_n(dx) - F(dx)],$$

denote the empirical process pertaining to the family $\{\psi(\cdot, \theta): \theta \in \Theta\}$. Write

$$H(\theta_n) = (\theta_n - \theta_0) H'(\theta_0) + (\theta_n - \theta_0)^2 H''(\theta^*)/2,$$

for some θ^* between θ_0 and θ_n . Hence, up to an error term $\mathcal{O}(1)$,

$$T_n H'(\theta_0) \equiv n(\theta_n - \theta_0) H'(\theta_0) = -n^{1/2} \alpha_n(\theta_0) - n^{1/2} [\alpha_n(\theta_n) - \alpha_n(\theta_0)] - n(\theta_n - \theta_0)^2 H''(\theta^*)/2 = \sum_{i=1}^n \eta_i + R_n,$$

where

$$R_n = -n^{1/2} [\alpha_n(\theta_n) - \alpha_n(\theta_0)] - n(\theta_n - \theta_0)^2 H''(\theta^*)/2$$

and $\eta_i = -\psi(\xi_i, \theta_0)$. Of course, $\eta_1, \eta_2,...$, are i.i.d. random variables with zero means and variance $\int \psi^2(x, \theta_0) F(dx)$. The boundedness of ψ yields boundedness of the η 's. For \mathscr{F}_n we may take $\sigma(\xi_1,...,\xi_n)$. Thus according to Lemmas 2 and 3 it remains to show that for every $\varepsilon > 0$ both

$$\mathbb{P}(|\alpha_n(\theta_n) - \alpha_n(\theta_0)| > \varepsilon) \to 0 \tag{8}$$

90

and

$$\mathbb{P}(n^{1/2}(\theta_n - \theta_0)^2 > \varepsilon) \to 0, \tag{9}$$

exponentially fast as $n \to \infty$. The second assertion may be of interest in itself. For (8) and (9) the following exponential bound (see, e.g., Strassen and Dudley [6]) will be useful.

LEMMA 4. Let $\eta_1, ..., \eta_n$ be independent random variables with expectation zero and bounded by some constant M > 0. Then for every $\varepsilon > 0$,

$$\mathbb{P}\left(\left|\sum_{1}^{n} \eta_{i}\right| > \varepsilon\right) \leq 2 \exp\left[-\varepsilon^{2}/(9nM^{2})\right]$$

Now, for $0 < \delta < 1$,

$$\{\theta_n-\theta_0>\delta\}=\{\theta_n>\theta_0+\delta\}\subset\left\{\int\psi(x,\theta_0+\delta)F_n(dx)>0\right\}.$$

But

$$n^{1/2} \int \psi(x, \theta_0 + \delta) F_n(dx) = \alpha_n(\theta_0 + \delta) - \alpha_n(\theta_0)$$
$$+ n^{1/2} H(\theta_0 + \delta) + \alpha_n(\theta_0).$$

By boundedness and smoothness, $|(\partial/\partial\theta) \psi(x, \theta)| \leq C < \infty$ for all $x \in \mathbb{R}$ and θ (in a neighbourhood of θ_0). In this situation Lemma 6 from Stute [8] yields a stochastic upper bound for the fluctuation of α_n in a (small) neighbourhood Θ_0 of θ_0 .

LEMMA 5. For each (small enough) $0 < \delta < 1$ and every s > 0,

$$\mathbb{P}(\sup_{\substack{|\theta-\theta'| \leq \delta\\ \theta, \theta' \in \Theta_0}} |\alpha_n(\theta) - \alpha_n(\theta')| \ge 64s\delta(\ln \delta^{-1})^{1/2}) \le C_0 \exp(-s^2/9),$$

where C_0 is some constant depending on Θ_0 but not on δ , s, and n.

This implies, in particular, that for $\delta = \delta_n = \varepsilon^{1/2}/n^{1/4}$,

$$\mathbb{P}(|\alpha_n(\theta_0+\varepsilon/n^{1/2})-\alpha_n(\theta_0)| \ge n^{-1/4}(\ln n)^2) \to 0,$$

exponentially fast (i.e., $\mathbb{P}(\cdot) = O(\exp(-n^{\lambda}))$ for some $\lambda > 0$). Furthermore,

$$n^{1/2}H(\theta_0+\delta_n)=n^{1/2}\delta_n\frac{H(\theta_0+\delta_n)-H(\theta_0)}{\delta_n}\to-\infty,$$

as $-n^{1/4}$. Thus it remains to show that $\mathbb{P}(|\alpha_n(\theta_0)| \ge c_n) \to 0$, exponentially fast, whenvever $c_n \to +\infty$ as $n^{1/4}$. However, this is an easy consequence of Lemma 4. The case $\{\theta_n - \theta_0 < -\delta\}$ is treated similarly, whence (9). Condition (8) is an easy consequence of (9) and Lemma 5.

2. Some Limit Results

We conclude this paper by providing one further application of our representation of $n(\theta_n - \theta) = S_n + R_n$, where S_n is a partial sum of independent identically distributed bounded random variables and R_n is an error term satisfying (7).

First it follows from the Borel-Cantelli lemma that along with $(S_n)_n$, the sequence $(\theta_n)_n$ fulfills a law of the iterated logarithm,

$$\limsup_{n \to \infty} \frac{n^{1/2} |\theta_n - \theta|}{(2 \ln \ln n)^{1/2} \sigma_{\theta}} = 1 \qquad \text{with probability one}$$

Second, defining the process G_n by

$$G_n(t) = (n\sigma_{\theta}^{-1})^{1/2} [\theta_{\langle nt \rangle} - \theta], \qquad 0 \leq t \leq 1,$$

then $G_n \to B$ in distribution as $n \to \infty$, where B is a standard Brownian motion. This follows at once from Donsker's invariance principle applied to S_n , since $n^{-1/2} \sup_{1 \le m \le n} |R_m|$ is asymptotically negligible. In fact, for $\varepsilon > 0$ and $n_0 \ge 1$ we have

$$\mathbb{P}(n^{-1/2} \sup_{1 \le m \le n} |R_m| > \varepsilon) \le \mathbb{P}(n^{-1/2} \sup_{1 \le m \le n_0} |R_m| > \varepsilon) + \sum_{n_0 \le m} \mathbb{P}(m^{-1/2} |R_m| > \varepsilon),$$

which, by (7), can be made arbitrarily small by choosing n_0 large and then letting *n* tend to infinity.

REFERENCES

- [1] CHOW, Y. S., ROBBINS, H., AND TEICHER, H. (1965). Moments of randomly stopped sums. Ann. Math. Statist. 36 789-799.
- [2] GUNDY, R., AND SIEGMUND, D. (1967). On a stopping rule and the central limit theorem. Ann. Math. Statist. 38 1915-1917.
- [3] HUBER, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101.
- [4] LAI, T. L. (1976). On confidence sequences. Ann. Statist. 4 265-280.

- 5] PFANZAGL, J. (1969). On the measurability and consistency of minimum contrast estimates. *Metrika* 14 249-272.
- 6] STRASSEN, V., AND DUDLEY, R. M. (1969). The Central Limit Theorem and ε-Entropy. Lecture Notes in Math., No. 89, pp. 224–231. Springer-Verlag Berlin/New York.
- 7] STUTE, W. (1982). The oscillation behavior of empirical processes. Ann. Probab. 10 86-107.
- 8] STUTE, W. (1981). Parameter estimation in smooth empirical processes. In Math. Forschungsber. 64/81. University of Siegen, West Germany.