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For a given score function c = I&X, B), let 8, be Huber’s M-estimator for an 
unknown population parameter 8. Under some mild smoothness assumptions it is 
known that n”*(tV,, - 0) is asymptotically normal. In this paper the stopping times 
f,(m) = inf(n > m: n”’ 10, - I!? > c associated with the sequence of confidence / 
intervals for 0 are investigated. A useful representation of M-estimators is derived, 
which is also appropriate for proving laws of the iterated logarithm and Donsker- 
type invariance principles for (~9,)~. 

0. INTRODUCTION AND MAIN RESULT 

Let .9 = {P, : f? E 0 ), 0 c R, be some parametric family of probability 
distributions on the real line. Suppose that rl ,..., r,,..., is a sequence of 
independent random variables with common distribution P = PO0 for some 
unknown B0 E 0. Lai [4] then investigated the possibility of constructing a 
sequence of confidence regions C,(<, ,..., <,,) such that 

P,(B E C,(& ,*.., <,) for all n > m) > 1 - cf, (1) 

where m E N and 1 - a is a prescribed coverage probability. Here P,, 
BE 0, denotes a probability measure on the sample space such that <I ,..., 4, 
have distribution P, under P,. Suppose that 8, = T,,(t, ,..., <,) is a sequence 
of estimates for 8, such that under PO0 

n”*(e, - S,) + N(0, c&), (2) 

in distribution as n + 03, where N(0, c&) is a centered normal random 
variable with variance a& > 0. Assume for simplicity that a* = r~i is 
independent of 8, and let c, denote the 1 - a/2 quantile of N(0, a’). Then, 
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asymptotically, the intervals C, := [e,, - c,n ~ I’*, 9, + c,n- “‘1 form a 
sequence of confidence regions with coverage probability 1 - a, 

IP,(BEC,)+l-a as n-co. (3) 

Condition (3) has to be clearly distinguished from (1). In fact, in most cases 
the sequence (e,),, fulfills a law of the iterated logarithm so that for the 
above C,, 

P,(B E C, for all n > m) = 0, mE iN. (4) 

Similarly, a sequential test based on [f$, - c, n -I’*, 0; + c, n - “2 ] leads one 
with probability to a rejection of the hypothesis 8, = 0/,, though it is true. 

Now, fix 8 E 0 and define A m := {0 E C, for all IZ > m), m E N. Then 
o E A, if and only if tc,(8, m, w) = co, where rc(O, m) denotes the stopping 
time. 

t, = Tc(e, m) := inf{n > m: n”* le, - 81 > c}, c > 0. 

Under (4) r, is almost surely finite. So it makes sense to investigate 
E(r,) = lE@(tJ, the expected time for 0, to leave the interval(s) [0 - cn-‘I*, 
B + cn- “‘1 for the first time after m, if 6’ is the true parameter. In a 
hypothesis-testing framework rc, is the first time after m, such that the 
hypothesis 8, = 8 is rejected on a level a against a two-sided alternative. 
Information about E(s,) provides one further tool for judging procedures 
based on (0,)“. 

If t9 is the true parameter, then clearly estimates are preferred which in the 
mean yield a large sC, c > 0, while it shoud be small if 0 is the wrong 
parameter. In this paper we shall deal with the class of M-estimators as 
introduced by Huber [3]. To be specific, let ~(x, 0), x E R, BE 0, be a 
(smooth) score function which is Fisher-consistent, i.e., 

i ~(4 8) P,(~x) = 0 for all e E 0. 

Denote with F, the empirical distribution function (d.f.) of the sample 
<, ,,.., &, and assume that the equation, 

1 ‘/4x, 0) F,(dx) = 0 (within l/n), (5) 

has a root 8,. We shall always deal with functions v which are nonin- 
creasing in 0 for each fixed x. Hence 8, is essentially unique. Under a 
smoothness assumption 8, is a minimum contrast estimator as considered by 
Pfanzagl [ 5 1. 
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It is known (cf. Huber [3]) that (2) holds with 

It is the purpose of this paper to prove the following: 

THEOREM. Let v be a smooth-bounded score function, nonincreasing in 6 
for each x E IR. Then for each 8 E 0 

(i) EO(r,(m, 13)) < 00 for each c < a, and every m E N. 

(ii) E,(r,(m, e)) = f 03 or each c > u8 and m > m,(c, t9), where m,(c, 0) 
is some integer increasing with c as c 1 CT,. 

Remark. The function x -+ ~(x, O,,)/ [.. .] is the influence function of the 
statistical functional defining the On%. Hence the theorem may be viewed as 
giving a sort of stochastic interpretation of the role played by the influence 
function in parameter estimation. When 8, is the (nonrobust) sample mean, 
part (ii) of the theorem is due to Chow, Robbins, and Teicher [ 11, with 
m&O)= 1 and c>ua,. Their method of proof is strongly based on a second 
order version of Wald’s identity. In our case such an argument is not 
applicable, since under P,B, is of the form n(B, - B) = S, + R,, where S, is 
a partial sum of independent identically distributed (i.i.d.) zero-mean random 
variables and R, is a nonvanishing error term. There is little known about 
the dependence structure of the sequence (R,),. The only information will be 
contained in an estimate showing that n- “*R” is small with high probability, 
at least for large n. For small n we shall have no control on the value of R “. 
For the sample mean part (i) is due to Gundy and Siegmund (21. For testing 
the hypothesis 0, = f3/,, the constant c = c, is usually larger than a,; ; hence, 
b;(r,(m, 84)) = 03. 

EXAMPLES. (1) The location case: F,(x) = P,(-co, x] = F(x - 0) with 
some known or unknown F. In most cases F is to be considered symmetric. 
For invariance reasons take w  of the form I&C, f3) = w,,(x - O), where w,, is a 
smooth-bounded, nondecreasing function of one variable. To obtain Fisher- 

consistency (with F symmetric), wO has to be chosen skew-symmetric. Also, 
uO is independent of 8. The fundamental paper of Huber [3] treats the 
question how to find minimax solutions for w,, if F is only approximately 
known. 

(2) For 
we(x) = -1, x < 0, 

= 0, x = 0, 

=Pl(l -PI, x > 0, 
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the resulting estimate is the p-quantile of the distribution (0 < p < 1). Though 
w0 is not smooth the assertion of the theorem is also valid for this particular 
vO. This is because for the proof of the theorem one needs, for a given d.f. F, 
smoothness of the function H(B) = s wO(x - B)P(dx) together with some 
appropriate fluctuation bounds for the associated empirical process. But 
H(e) = (P - F(d - O))/U -P> is smooth whenever F is smooth, and the fluc- 
tuation may be controlled using results of Stute [7]. For smooth empirical 
processes related results are contained in Stute [8]. 

1. LEMMAS AND PROOFS 

Fix 8 E 0 and replace Ip, by ip. As mentioned in the Introduction 
n(B, - 0) = T, will be of the form T,, = S, + R,, S, being a sum of n i.i.d. 
random variables. The error term R, will be asymptotically smaller than S,. 
We have thus to study stopping times, 

5, = r,(m) = inf(n > m: ] r,] > cn”*}, mEN, c>o, (6) 

under a control condition for (R,),. For our purposes it will be enough to 
consider 

f n*P(n-“* lR,,j > E) < co for each E > 0. 

In fact, it will be shown that for 8, we have iP(n - “* 1 R, 1 > E) + 0 exponen- 
tially fast. 

The following two lemmas will be needed for part (i) of the theorem. For 
this, let 11,) y/* ,..., be a sequence of i.i.d. random variables defined on a 
probability space (0, CPG, Ip). Assume E(q,) = 0 and [E(qf) = 1, with 1 vi] ,< M 
for some finite M > 4. Define S, = C: vi and let (R,), be some sequence of 
random variables satisfying (7). Assume that (9J, is an increasing family 
of sub-u-fields of &’ such that both (S,), and (R,), are adapted to (Fn),. 
and such that vn+ I , qnt2 ,..., are independent of ST, for each n > 1. Put 
T,, = S, + R, and let tC(m) be defined by (6). Then r,(m) is a stopping time 
w.r.t. (YJ, . Similarly, put r,(m) := inf{ n > m: ] S, / > cr2”* ). The following 
estimate extends, in a sense, the lemma in Gundy and Siegmund [2]. 

LEMMA 1. Fort< 1 andmEN wehaue 

E(r,(m)) < M2m/( 1 - c)‘. 



STOPPING TIMES FORM-ESTIMATORS 87 

proof. Fix m E iN and let, for n > m, r = r,(m) A n. By the second order 
version of Wald’s equation, 

E(r) = qs;> = qs;- *> + 2E(S,- 1%) + Wf) 

,< qs:- ,) + 24 @(S,z- ,) + M2. 

Since 

we obtain 

E(r)<c%(r)+m-1+2Mc~t2Mj/~tM2 

< c21E(r) t 2h4c v%!?@ t mM2, 

where the first inequality follows from @ < fi + fi; a, b > 0. It 
follows that with x2 = mM2/lE(r), 1 < c2 t 2cx t x2 = (c t x)‘, and 
therefore [E(r) < M*m/( 1 - c)‘. The assertion now follows by letting n tend 
to infinity. I 

Lemma 1 will be needed to bound the mean of rc = T,(m). This is the 
content of 

LEMMA 2. Let (7) be sat&fled. Then 

U?-) < a3 jiorallO<c< 1. 

ProoJ We shall only consider the case m = 1. The proof for a general m 
will be similar. Now, for each E > 0, let t, := sup{n> 1: n-‘I* lRnj > E}. By 
(7) and the Borel-Cantelli lemma n-“‘R, --) 0, almost surely, i.e., t, is well 
defined. Observe that t, is not a stopping time. Furthermore, put 

s,(s) = s, := inf{ n > t, : 1 S, 1 > cn ‘I2 }, 

which is finite (almost surely) according to the finiteness of t, and the law of 
the iterated logarithm for (S,), . Since t, = k implies k- “* (R,I > E we get 
from (7), 

5 kiP(t,= k) < co, 

i.e., t, has finite expectation. To prove the lemma it therefore remains to 
show 
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for some appropriate small F > 0. Now, choose E > 0 so small that 
c* := c + E < 1. Then, on (r, > tE}, 

1 S, / < cn ‘I2 + En ‘j2 = c*n ‘12, 

for t, < n < rc, i.e., s,, > t, and hence, 

Let us show that the last integral is finite. But 

j’s,,dlP=T [ 
T ‘(fc=k) 

s,e dlP. 

Fix k and write, for n > k, 

S,=Sktrlk+, t 1.. +r,ln=Sk+&!. 

Given that vi = xi for 1 < i < k, the condition, 

~x,+'~~+x,+~k+,t~~~tI~,~~c*n"2, 

implies 

Now, there exists some large constant C and some c** < 1 such that the 
term in brackets is less than or equal to c**, provided that n > Ck2. Thus, 
defining 

s,,,(k) := inf{n > Ck2: IScl > c** Jn-k}, 

we get, on {t, = k}, s,, ,< s,,,(k). Hence, 

I s,, dIP < s,*,(k) dP. 
I ItE=kl lt,=kl 

s,,,(k) dIP <j 
(k-“*IRkI > E) 

Since R, is ST,-measurable, we have by independence of r,rk+, , v~+~,..., that 
the last integral is equal to 

P(k-“2 jRkj > E) j+(k)dtP. 
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Hence it remains to show 

f w-“* IRkI > E)jS,**(k)dP < al. 
1 

By stationarity the last integral is equal to E(r,,.(Ck’ - k)). The result now 
follows from Lemma 1 and (7). 1 

If rll v**, have finite variance u*, then E(rc) < co for each 0 < c < (T. The 
following lemma will be needed for the second part of the theorem. 

LEMMA 3. Under the assumptions of Lemma 2, for each c > 1 there 
exists some m,,(c), which increases as c 1 1, such that 

for all m > m,(c). 

Proof. Choose E > 0 such that c * = c - E > 1, and let t, be defined as in 
the proof of Lemma 2. Fix m E N and suppose that E(f,) < co, r, = r,(m). 
Remember T, = S, + R,. By the second order version of Wald’s identity, 

Clearly, 1 T,,I > cry’* and 1 RTCl < eriJ2, and hence, 

Kc - R.r)’ > c*q on (sc > tE}. 

Thus 

On the other hand, 

i 
r,dlP< t,dp < t,d!‘= F W(t,= k) 

fT,<tcf k=m 

< g kP(k-“* (R,( > E)@ 1?*1P(k-“~ lRkl > E) 
k=m 1 

In summary, we get 

lqz,) > c*E(s,) -c* j t, diP > c*E(r,) - c*A/m, 
lTc$t,l 
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and therefore, 
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Us,) < 
C*A 

m(c* - 1) - 
B. 

But, since t, > m, lE(r,) > m, so that m < B. This is impossible for .___ ~~ 
m2 > c*A/(c* - 1). Thus the assertion holds with m,(c) = (m/(c* - l)), 
an integer. I 

We now show, that under P,, 

n(e,-e)=T,=S,+R,, 

where (R,), satisfies (7). As before, let w  = ~(x, 8) be any smooth and 
bounded nonincreasing score-function, and let F be a fixed d.f. Suppose that 
the equation J” ~(x, 0) F(dx) = 0 has a root 8,. Define 

and let 

a,(B) := n I” I’ y(x, e)[F,(dx) - F(dx) J, 

denote the empirical process pertaining to the family { w(., 0): 8 E 0). Write 

~(0,) = (e, - e,) ~‘(8,) + (8, - soy ffye*)p, 

for some 8” between 19~ and 8,. Hence, up to an error term P(l), 

zyzye,) = n(e, - e,) w(e,) = -d%,(e,) - d+,(e,) - ~~,(e,)j 

- n(e, - e,)2 wye*)/2 = 2 vi + R,, 

where 

R, = -n~l*[a,(e,) - a,(e,)l - n(e, - e,)2 wye*)/2 

and vi = -v/(&, 0,). Of course, q,, v2 ,..., are i.i.d. random variables with zero 
means and variance J‘ v2(x, 19,) F(dx). The boundedness of I+Y yields boun- 
dedness of the $s. For ;r, we may take o(rI ,..., <,). Thus according to 
Lemmas 2 and 3 it remains to show that for every F > 0 both 

VI a,(RJ - a&J > G--$0 (8) 
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and 

lP(n”*(e, - l9,)2 > E) -+ 0, (9) 

exponentially fast as n --) co. The second assertion may be of interest in itself. 
For (8) and (9) the following exponential bound (see, e.g., Strassen and 
Dudley (61) will be useful. 

LEMMA 4. Let q,,..., q,, be independent random variables with expec- 
tation zero and bounded by some constant A4 > 0. Then for every E > 0, 

p(l$4ii >s)92exp[-s’i(gnM’)]. 

Now,for Ot6< 1, 

{e, - 8, > 61 = {e, > 8, + 61 c 
I j 

V(X, e. + 6) F,(dx) > 0 

But 

n”* f V(X, 8, + 6) F&ix) = a,(e, + a) - a,(e,) 

+ n”2H(f$ + 8) + a,(e,). 

By boundedness and smoothness, ](a/@) ~(x, e)] < C < co for all x E R 
and 0 (in a neighbourhood of 0,). In this situation Lemma 6 from Stute [B] 
yields a stochastic upper bound for the fluctuation of OL,, in a (small) 
neighbourhood 0, of BO. 

LEMMA 5. For each (small enough) 0 < 6 < 1 and every s > 0, 

I?( sup la,(O) - a,(&)( > 64sk5(ln &‘)r/‘) < C, exp(-s*/9), 
ie-B’l$6 
B,B’EB, 

where C, is some constant depending on O0 but not on 6, s, and n. 

This implies, in particular, that for 6 = 6, = e”2/n”4. 

P((a,(B, + e/n”*) - a@,)/ > n-“4(in n)‘) -+ 0, 

exponentially fast (i.e., P(,) = O(exp(-nA)) for some ;I > 0). Furthermore, 
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as -r~“~. Thus it remains to show that P(Ia,(8,)1 > c,) -+ 0. exponentially 
fast, whenvever c, + +co as n ‘I4 However, this is an easy consequence of . 
Lemma 4. The case (0, - 8, < -S/ is treated similarly, whence (9). Condi- 
tion (8) is an easy consequence of (9) and Lemma 5. 1 

2. SOME LIMIT RESULTS 

We conclude this paper by providing one further application of our 
representation of n(13, - 0) = S, + R,, where S, is a partial sum of 
independent identically distributed bounded random variables and R, is an 
error term satisfying (7). 

First it follows from the Bore&Cantelli lemma that along with (S,),, the 
sequence (19,), fulfills a law of the iterated logarithm, 

‘iFf~p (2 In In n)“’ erg = ’ 
with probability one. 

Second, defining the process G, by 

G,(t) = (no, ‘)l’* [e,,,, - 81, O<t<l, 

then G, -P B in distribution as n -+ co, where B is a standard Brownian 
motion. This follows at once from Donsker’s invariance principle applied to 
S,, since n-l’* suplGmGn /R, 1 is asymptotically negligible. In fact, for E > 0 
and n, > 1 we have 

P(n-“* sup (R,l > E),< I+-“* sup lRmj > E) 
I<mGn lCm<no 

t x iP(m-"*&I > E), 
no<m 

which, by (7), can be made arbitrarily small by choosing n, large and then 
letting n tend to infinity. 
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