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Abstract

Light linear logic (Girard, Inform. Comput. 14 (1998) 175–204) is a re1nement of the
propositions-as-types paradigm to polynomial-time computation. A semantic setting for the un-
derlying logical system is introduced here in terms of 1bred phase spaces. Strong completeness
is established, with a purely semantic proof of cut elimination as a consequence. A number
of mathematical examples of 1bred phase spaces are presented that illustrate subtleties of light
linear logic. c© 2002 Published by Elsevier Science B.V.

1. Introduction

Typed lambda calculi have long been recognized as analogous to formal logical
calculi of intuitionistic logic. In technical terms this correspondence is known as the
Curry–Howard isomorphism or the propositions-as-types paradigm. Logic provides
not only basic input=output speci1cations (i.e., types or formulas), but also a setting
for well-typed programs (i.e., terms or formal proofs), as well as a mode of execution
of well-typed programs by means of term reduction or normalization [4]. The advent
of linear logic [3] with its intrinsic ability to re;ect computational resources has made
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it possible to re1ne the propositions-as-types paradigm to computational complexity
speci1cations. A bounded version of linear logic (BLL) was introduced in [6], in
which the reuse of resources is bounded in advance, and in which any functional term
of appropriate type encodes a polynomial-time algorithm. Conversely, any polynomial-
time function arises in this way. A detailed comparison of this approach to various
other logical characterizations of polynomial-time functions may be found in [6, 5]. A
major advantage of BLL is that the system itself is (locally) polynomial time. The
run-time normalization complexity is implicit in the system and does not need to be
enforced explicitly in the syntax.

From a strictly logical point of view, however, BLL still suHers from the presence
of explicit resource parameters (whose technical role is to indicate input=output size
ratios.) In this sense BLL is not a purely logical system. This diIculty is resolved
in Girard’s light linear logic (LLL) [5], which keeps all the advantages of BLL, but
avoids mentioning the resources altogether. In LLL resources can be synthesized by
purely logical means.

The basic idea in [5] is to set up the structural rules and the logical rules for
modalities more carefully than in linear logic so that the computational power of nor-
malization can be well controlled. In the course of setting up such well-controlled
rules, central points are to dispense with the principles !A(A and !A( !!A, but to
retain the exponential isomorphism !A⊗ !B �!(A&B). LLL shares some of these and
other technical features with the systems studied in [1, 11]. A more subtle, but equally
important point of LLL is to reject the principle !A⊗ !B( !(A⊗B). In order to com-
pensate for this, LLL adds a self-dual modality § that satis1es !A( §A and §A( ?A
and §A⊗§B( §(A⊗B). Although syntax of LLL is well-understood owing to Girard’s
careful analysis [1], semantics for LLL has remained an open question.

Surprisingly, an answer is suggested by another research direction, namely by the
work of the 1rst author and Ito on extensions of linear logic with certain features of
temporal logic [7]. Models of temporal logic [16] distinguish among semantic objects at
diHerent “points in time” (much as Kripke models distinguish among semantic objects
in diHerent “worlds”.) Temporal logic models also feature a semantic operator “next”
such that “next A” at time t is A at time t +1. Our starting point is that not only does
LLL modality § behave in many ways like the operator “next” (except for the self-dual
nature of §), but that, for instance, the principle !A(A fails in such a strati1ed setting.
Informally, consider a semantic setting for linear logic and repeat it, each time at a
diHerent level t. Let (!A)t be the given de1nition of ! applied to At+1. In this reading,
for any t, (!A)t yields (§A)t but there is no general reason why (!A)t should yield At .
In fact, a closer analysis reveals that the semantic intuition of “levels” or “stages” t
is related to the syntactic notion of nesting depth of proof-boxes in LLL. (The basic
idea described above may be modi1ed slightly by means of explicit transitions between
levels so that semantic de1nitions at a given level t refer to transitions to t rather than
to other levels, see Section 2.)

In this paper this analysis is applied in the context of phase semantics for linear
logic [3, 9, 10, 12–15]. We explain how !A⊗ !B( !(A⊗B) can fail “in nature.” We
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also establish strong completeness for LLL (i.e., valid formulas are provable without
the cut rule), and thus we obtain a purely semantic proof of Cut Elimination (i.e.,
provable formulas are also provable without the cut rule) following the technique in
[12–14]. A preliminary version of this work appears in [8].

Similar analysis may also be carried out in other semantic settings such as coher-
ence spaces, which will be discussed elsewhere. It would also be interesting to see
if such semantic methods can also establish the stronger version of cut elimination
that proof normalization reductions terminate. See [17] for some references on recent
developments of Light Linear Logic and related Light Logics.

2. Fibred phase spaces

A phase space (M;⊥) is a commutative monoid M with a distinguished subset
⊥⊆M , called bottom. For any subset �⊆M , de1ne �⊥ =def {x∈M | x · �⊆⊥}=
{x∈M | ∀y∈ � xy∈⊥}. A subset �⊆M is closed iH �⊥⊥ = �. Writing 1 for the
neutral element of M , let 1 be the subset {1}⊥⊥, that is, ⊥⊥. It is readily seen that
1 is a closed submonoid.

A homomorphism of phase spaces, or simply a phase homomorphism, is a monoid
homomorphism h : M →M ′ such that h(⊥)⊆⊥′.

A phase space induces a natural preorder on the underlying monoid compatible with
monoid multiplication:

x 4 y ⇔def x ∈ {y}⊥⊥:

Note that a phase homomorphism is not required to be monotone in the induced pre-
order.

More generally, a phase structure is a commutative monoid M with a closure op-
erator on M , that is, a mapping Cl from subsets of M to subsets of M satisfying the
following four properties for any �; �⊆M :

(Cl1) �⊆Cl(�),
(Cl2) Cl(Cl(�)) = Cl(�),
(Cl3) �⊆ �⇒Cl(�)⊆Cl(�),
(Cl4) Cl(�) ·Cl(�)⊆Cl(� · �).

A subset �⊆M is said to be closed iH Cl(�) = �. One can again de1ne a preorder
compatible with monoid multiplication: x4y iH Cl({x})⊆Cl({y}). A phase space is
a special case where Cl(�) =def �⊥⊥.

For a given mapping g : M →M ′, let us consider its lower approximations, that is,
mappings f : M →M ′ such that for every a∈M there exists b∈M such that b4 a
and f(a)4 g(b). In this case we also say that f is bounded by g.

We are particularly interested in lower approximations that satisfy a certain continuity
property. A mapping f : M →M ′ has the intermediate value property iH for every
a; b∈M such that f(a)∈ 1′ and f(b)∈ 1′, there exists c∈M such that c4 a, c4 b, and



528 M.I. Kanovich et al. / Theoretical Computer Science 294 (2003) 525–549

f(a)f(b) = f(c). Note that the identity function has the intermediate value property
with c = ab. However, in our applications, f will be bounded by 1′, which will provide
that f(a)4 ′1′ for all a∈M .

Example 2.1. Consider the reals with addition, where ⊥ consists of the negative reals.
In this phase space a4 b iH a ≤ b. Any linear function h(x) = kx, with a positive k,
is certainly a phase homomorphism. Let f be a continuous function such that f6h
and f60.

f has the intermediate value property, both in the ordinary sense and as a mapping of
phase spaces. The latter is a special case of the former on (−∞; min{a; b}] because
limx→−∞ f(x) =−∞.

Example 2.2. Let the phase structure M0 consist of the nonpositive integers, with
a · b=def min{a; b}. Let Cl(�) =def {z ∈M0 | ∃x∈ � : z 6 x}. The properties (Cl1)–(Cl4)
hold. Note that all elements of M0 are idempotent, that is, aa = a for all a. Also, 1 is
the entire monoid.

Let M1 be the integers with addition. The properties (Cl1)–(Cl4) again hold if
Cl(�) =def {z ∈M1 | ∃x∈ � : z 6 x}. In this case, 1= (−∞; 0], here meaning the in-
tegers 60.

Let h0 : M1 →M0 be the constant function 0 and let f0 : M1 →M0 be the function

f0(a) =
{

0; if a ¿ 0;
a − 1; if a 6 0:

f0 has the intermediate value property: if a6b take c = a, and if b¡a then take c = b.
Then f0(a)f0(b) = min{f0(a); f0(b)}= f0(c).

A :bred phase space is a family {(Mn;⊥n); hn; fn}n¿0, where for each integer
n¿0, (Mn;⊥n) is a phase space, hn : Mn+1 →Mn is a phase homomorphism, and
fn : Mn+1 →Mn is a mapping with the intermediate value property such that fn is
bounded by hn. A :bred phase structure is de1ned similarly, but each hn is only
required to be a monoid homomorphism.

Given a 1bred phase structure, consider a family � = {�n}n¿0, where each �n ⊆Mn is
closed in Mn. One says that � is closed. For any closed � = {�n}n¿0 and � = {�n}n¿0
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one de1nes 1; �&�; �⊕ �, and �⊗ � in the natural way induced from the original
de1nition in [3]:

(1)n = 1n;

(�)n = Mn;

(0)n = Cln(∅);
(�&�)n = �n ∩ �n;

(� ⊕ �)n = Cln(�n ∪ �n);

(� ⊗ �)n = Cln(�n ·n �n);

(� ( �)n = {z ∈ Mn | z ·n �n ⊆ �n}:

§� and !� are de1ned in the following way:

(§�)n = Cln(hn(�n+1));

(!�)n = Cln(fn(�n+1) ∩ 1n ∩ Jn);

where Jn ⊆Mn is a submonoid of Mn such that every element of Jn is a weak idem-
potent, i.e., ∀a∈ Jn; a4na ·n a (after Y. Lafont).

In a 1bred phase space one further de1nes:

(⊥)n = ⊥n;

(�⊥)n = �⊥n
n ;

(�o�)n = (�⊥n
n ·n �⊥n

n )⊥n ;
T§� = (§(�⊥))⊥;

(?�)n = (f(�⊥n+1
n+1 ) ∩ 1n ∩ Jn)⊥n

Example 2.2 (Continued). Let h0; f0 : M1 →M0 be as in Example 2.2 For n¿1, let
Mn = M1 and hn(x) = fn(x) = x for all x. Let J0 = M0, �1 = (−∞;−1], and let �n be any
closed subset of Mn, n �= 1. Then (!�)0 = Cl(f0(�1)) = (−∞;−2]. Thus (!�⊗ !�)0 =
(−∞;−2]. We show that (!(�⊗ �))0 = (−∞;−3], that is, (!�⊗ !�)0 is not a subset of
(!(�⊗ �))0. Indeed, �1 ⊗ �1 = Cl(�1+�1) = (−∞;−2]. Thus (!(�⊗ �))0=Cl(f0(�1⊗�1))
= Cl(f0((−∞;−2])) = (−∞;−3].

Also note that (!1)0 = Cl(f0((−∞; 0])) = (−∞;−1], which does not include the
neutral element 0 of M0.

3. Fibred phase semantics

In this section we de1ne the 1bred phase semantics for propositional LLL. We shall
extend our 1bred phase semantics to the second-order case (i.e., to the full LLL [5])
in Section 5.
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Let us recall basic elements of the syntax of propositional LLL from [5]. A propo-
sitional formula is de1ned in the same way as in linear logic, but one adds the new
modalities § and T§, namely, if A is a formula then §A and T§A are formulas. As usual
in linear logic, linear negation A⊥ is used as an abbreviation in the sense of the de
Morgan dual, except for atomic formulas p⊥. T§ and § are duals of each other, 4 i.e.,
(§A)⊥ =def T§(A⊥), and (T§A)⊥ =def §(A⊥).

In addition to formulas, the syntax of LLL involves several punctuation marks that
facilitate the management of contexts. Intuitively, if A and B are formulas, an expression
A; B is intended to represent A⊕B, an expression A; B is intended to represent AoB,
and an expression [A] is intended to represent ?A. These expressions are themselves
not formulas. Formally, a block is either a multiset A1; A2; : : : ; A‘ of formulas, where
‘¿1, or an expression [A], where A is a formula. A sequent is an expression � �,
where � is a multiset A1;A2; : : : ;Ak of blocks, where k¿0. Note that sequents are
allowed to be empty, but the blocks are not. We shall observe the following notation:
Roman capitals for formulas, boldface Roman capitals for blocks, and Greek capitals
for 1nite multisets of blocks mutually separated by semicolons. The inference rules of
LLL are included in Appendix A.

Given a 1bred phase space {(Mn;⊥n); hn; fn}n¿0, for each propositional formula A
one associates a closed family A∗ = {(A∗)n}n¿0 in the obvious way by using the se-
mantic operations described in the previous section, starting with any valuation, i.e.,
any assignment of closed families to propositional atoms. That is, given an assignment
that to each propositional atom p associates a closed family p∗, one de1nes 1∗ = 1, ⊥∗

=⊥, �∗ =�; 0∗ = 0; (p⊥)∗ = p∗⊥; (A⊗B)∗ = A∗ ⊗B∗; (AoB)∗ = A∗oB∗; (A&B)∗=
A∗&B∗; (A⊕B)∗=A∗ ⊕B∗; (!A)∗=!(A∗); (?A)∗ = ?(A∗); (§A)∗= §(A∗), and (T§A)∗=
T§(A∗). A∗ is called the inner value of A. It is readily shown that (A⊥)∗ = A∗⊥. A valua-
tion satis:es a formula A iH for each n, 1n ∈ (A∗)n. A formula is valid iH it is satis1ed
in any valuation in any 1bred phase space. These notions are readily extended to
sequents by using the intended representation of punctuation marks. That is, [A]∗ =
?A∗, (A1; : : : ; A‘)∗ = A∗

1 ⊕ · · · ⊕ A∗
‘ , and (A1; : : : ;Ak)∗ =A∗

1o · · ·oA∗
k .

Lemma 3.1. In any :bred phase structure; (!�)n ⊆ (§�)n.

Proof. It suIces to show f(�n+1)∩ 1n ∩ Jn ⊆Cln(hn(�n+1)). But fn is bounded by hn

and �n+1 is closed, hence fn(�n+1)⊆Cln(hn(�n+1)).

Lemma 3.2. Let � and � be closed families in a :bred phase structure. Then ((!�)⊗
(!�))n ⊆ (!(�&�))n.

4 Contrary to [5], we do not assume §= T§ because this is not needed for the main features of LLL related
to polynomial time. In particular, polynomial-time functions are naturally represented in an “intuitionistic”
version of LLL [5], which, as a type system, is a re1nement of system F [2, 4].
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Proof. Since (!�)n ⊗ (!�)n = Cln((!�)n · (!�)n), it suIces to show (!�)n · (!�)n ⊆
(!(�&�))n. Then by (Cl4), it suIces to show

(fn(�n+1) ∩ 1n ∩ Jn) · (fn(�n+1) ∩ 1n ∩ Jn) ⊆ Cln(fn(�n+1 ∩ �n+1) ∩ 1n ∩ Jn):

Take an arbitrary element d from the left hand side. d is of the form fn(a) ·fn(b) for
some a∈ �n+1, b∈ �n+1. First, notice that fn(a) ·fn(b)∈ Jn. This is because fn(a)∈ Jn,
fn(b)∈ Jn and Jn is a submonoid (of Mn). Also, fn(a) ·fn(b)∈ 1n; this is because
fn(a)∈ 1n, fn(b)∈ 1n, and 1n is a submonoid of Mn. We need to show that fn(a) ·fn(b)
= fn(c) for some c∈ (�&�)n+1. By the intermediate value property of fn, ∃c∈
Mn+1c 4n+1 a; c4n+1b and fn(a) ·fn(b) = fn(c). But c4n+1a∈ �n+1 implies c∈ �n+1

and c4n+1b∈ �n+1 implies c∈ �n+1 since �n+1 and �n+1 are Cln+1-closed.

Theorem 3.1 (Soundness). If a formula is provable in propositional LLL; then it is
valid.

Proof. The argument is by induction on the length of LLL proof. Let us consider only
the modality rules, since all other cases are standard [3]. Indices of monoid operations
are omitted throughout the argument for the sake of readability.
Case 1. §-rule
(1:1) §-rule of the form:

� B1; : : : ; B‘; : : : ; C1; : : : ; Cj; A1; : : : ; Ai; D

� [B1]; : : : ; [B‘]; : : : ; [C1]; : : : ; [Cj]; T§A1; : : : ; T§Ai; §D
:

Let �1 = B∗
1 ; : : : ; �‘ = B∗

‘ , "1 = C∗
1 ; : : : ; "j = C∗

j ; �1 = A∗
1 ; : : : ; �i = A∗

i , and let # = D∗. By
the induction hypothesis, for any integer n¿0,

1n+1 ∈ (((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · (("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

· (�1)
⊥n+1
n+1 · : : : · (�i)

⊥n+1
n+1 · #⊥n+1

n+1 )⊥n+1 ;

that is,

((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · (("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

· (�1)
⊥n+1
n+1 · : : : · (�i)

⊥n+1
n+1 · #⊥n+1

n+1 ⊆ ⊥n+1:

Hence,

((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · (("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

· (�1)
⊥n+1
n+1 · : : : · (�i)

⊥n+1
n+1 ⊆ #n+1:

Because each hn is a monoid homomorphism,

hn((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · hn(("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

· hn((�1)
⊥n+1
n+1 ) · : : : · hn((�i)

⊥n+1
n+1 ) ⊆ hn(#n+1):
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Hence by the properties of Cln,

Clnhn((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · Clnhn(("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

·Clnhn((�1)
⊥n+1
n+1 ) · : : : · Clnhn((�i)

⊥n+1
n+1 ) ⊆ Clnhn(#n+1):

Then by Lemmas 3.1 and 3.2,

Cln(fn((�1)
⊥n+1
n+1 ) ∩ 1n ∩ Jn) · : : : · Cln(fn((�‘)

⊥n+1
n+1 ) ∩ 1n ∩ Jn) · : : :

·Cln(fn(("1)
⊥n+1
n+1 ) ∩ 1n ∩ Jn) · : : : · Cln(fn(("j)

⊥n+1
n+1 ) ∩ 1n ∩ Jn)

·Clnhn((�1)
⊥n+1
n+1 ) · : : : · Clnhn((�i)

⊥n+1
n+1 ) ⊆ Clnhn(#n+1):

Therefore,

[�1]⊥n
n · : : : · [�‘]⊥n

n · : : : · ["1]⊥n
n · : : : · ["j]⊥n · ( T§�1)⊥n

n · : : : · ( T§�i)⊥n
n ⊆ (§#)n;

that is,

[�1]⊥n
n · : : : · [�‘]⊥n

n · : : : · ["1]⊥n
n · : : : · ["j]⊥n

· ( T§�1)⊥n
n · : : : · ( T§�i)⊥n

n · (§#)⊥n
n ⊆ ⊥n:

In other words, the conclusion of the rule is satis1ed.
(1.2) §-rule of the form:

� B1; : : : ; B‘; : : : ; C1; : : : ; Cj; A1; : : : ; Ai

� [B1]; : : : ; [B‘]; : : : ; [C1]; : : : ; [Cj]; T§A1; : : : ; T§Ai
:

Let us continue the notation from (1:1). By the induction hypothesis, as in (1:1),

((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · (("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

· (�1)
⊥n+1
n+1 · : : : · (�i)

⊥n+1
n+1 ⊆ ⊥n+1:

Therefore,

hn((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · hn(("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

· hn((�1)
⊥n+1
n+1 ) · : : : · hn((�i)

⊥n+1
n+1 ) ⊆ hn(⊥n+1):

Since hn(⊥n+1)⊆⊥n,

hn((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · : : : · hn(("1)

⊥n+1
n+1 ∩ · · · ∩ ("j)

⊥n+1
n+1 )

· hn((�1)
⊥n+1
n+1 ) · : : : · hn((�i)

⊥n+1
n+1 ) ⊆ ⊥n:

Then, as in (1:1),

[�1]⊥n
n · : : : · [�‘]⊥n

n · : : : · ["1]⊥n
n · : : : · ["j]⊥n

· ( T§�1)⊥n
n · : : : · ( T§�i)⊥n

n ⊆ Cln(⊥n) = ⊥n

and the conclusion of the rule is satis1ed.
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Case 2. !-rule:

� B1; : : : ; B‘; A
� [B1]; : : : ; [B‘]; !A

;

where ‘¿1. Let �1 = B∗
1 ; : : : ; �‘ = B∗

‘ , and let � = A∗. By the induction hypothesis, for
any integer n¿0,

1n+1 ∈ (((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · �⊥n+1

n+1 )⊥n+1 ;

that is,

((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) · �⊥n+1

n+1 ⊆ ⊥n+1;

and hence

(�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ⊆ �n+1:

Therefore,

fn((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) ⊆ fn(�n+1);

and consequently,

Cln(fn((�1)
⊥n+1
n+1 ∩ · · · ∩ (�‘)

⊥n+1
n+1 ) ∩ 1n ∩ Jn) ⊆ Cln(fn(�n+1) ∩ 1n ∩ Jn):

Then by Lemma 3.2,

[�1]⊥n
n · · · · · [�‘]⊥n

n ⊆ (!�)n;

that is,

[�1]⊥n
n · · · · · [�‘]⊥n

n · (!�)⊥n
n ⊆ ⊥n;

and therefore the conclusion of the !-rule is satis1ed. Note that the argument does not
apply if ‘ = 0, which is not allowed in LLL. In the case when ‘ = 0 the argument
would apply if it were the case that 1n4nfn(1n+1) for each integer n¿0.

Case 3. ?-rule:

� �; [A]
� �; ?A

:

This case is obvious since (?A)∗ = [A]∗.
Case 4. M-weakening:

� �
� �; [A]

:

By the induction hypothesis, for any integer n¿0, (�∗)⊥n
n ⊆ ⊥n. Because 1n =⊥⊥n

n , it
follows that (�∗)⊥n

n · 1n ⊆ ⊥n. But 1n is closed, hence

(�∗)⊥n
n · Cln(fn((A∗)⊥n+1

n+1 ) ∩ 1n ∩ Jn) ⊆ (�∗)⊥n
n · 1n ⊆ ⊥n;

and thus the conclusion of the M-weakening rule is satis1ed.
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Case 5. M-contraction:

� �; [A]; [A]
� �; [A]

:

Recall that for any integer n¿0, every a∈ Jn is a weak idempotent, that is, a∈Cln{a·a}.
Thus

fn((A∗)⊥n+1
n+1 ) ∩ 1n ∩ Jn ⊆ Cln((fn((A∗)⊥n+1

n+1 ) ∩ 1n ∩ Jn) · (fn((A∗)⊥n+1
n+1 ) ∩ 1n ∩ Jn))

⊆ Cln(Cln(fn((A∗)⊥n+1
n+1 ) ∩ 1n ∩ Jn) · Cln(fn((A∗)⊥n+1

n+1 ) ∩ 1n ∩ Jn)):

Therefore,

Cln(fn((A∗)⊥n+1
n+1 ) ∩ 1n ∩ Jn) ⊆ Cln(Cln(fn((A∗)⊥n+1

n+1 ) ∩ 1n ∩ Jn)

·Cln(fn((A∗)⊥n+1
n+1 ) ∩ 1n ∩ Jn)):

On the other hand, by the induction hypothesis,

(�∗)⊥n
n · Cln(fn((A∗)⊥n+1

n+1 ) ∩ 1n ∩ Jn) · Cln(fn((A∗)⊥n+1
n+1 ) ∩ 1n ∩ Jn) ⊆ ⊥n:

But (�∗)⊥n
n and ⊥n are closed, thus by the properties of Cln,

(�∗)⊥n
n · Cln(Cln(fn((A∗)⊥n+1

n+1 ) ∩ 1n ∩ Jn) · Cln(fn((A∗)⊥n+1
n+1 ) ∩ 1n ∩ Jn))

⊆ Cln(⊥n) = ⊥n:

Thus,

(�∗)⊥n
n · Cln(fn((A∗)⊥n+1

n+1 ) ∩ 1n ∩ Jn) ⊆ ⊥n;

that is, the conclusion of the M-contraction rule is satis1ed.

The soundness of ordinary phase semantics for linear logic is a special case of
Theorem 3.1 when for every n, Mn = Mn+1 and hn and fn are the identity functions.
There is also an important generalization of Theorem 3.1 to 1bred phase structures,
where every valuation satis1es every formula provable in an “intuitionistic” version of
propositional LLL, ILLL [5]. (A more detailed discussion of syntax and semantics of
ILLL is included in Appendix A.) Viewed in this way, our Example 2.2 provides a
natural mathematical setting in which the ILLL formulas !A⊗ !A( !(A⊗A) and !1 are
not satis1ed. Note that in Example 2.2, rede1ning f0(0) to be 0 instead of −1 yields
an example in which !1 is satis1ed but !A⊗ !A( !(A⊗A) is not.

4. Strong completeness

The completeness theorem may be proved in the following strong form.
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Theorem 4.1 (Strong Completeness). If a propositional formula is valid; then it is
provable in propositional LLL without the cut rule.

This implies the cut-elimination theorem.

Theorem 4.2 (Cut-Elimination). If a formula is provable in propositional LLL; then
it is provable in propositional LLL without the cut rule.

Proof. If A is provable in LLL, then A is valid by the Soundness Theorem. Then by
the Strong Completeness Theorem, A is cut-free provable in LLL.

Remark. Cut-Elimination fails if one adds to LLL the !-rule with the empty context,
i.e., when ‘ = 0 (see Appendix A) Indeed, let p be a propositional atom. The sequent
�!(p⊥ & 1); ?p; ?⊥ is cut-free provable in LLL itself, the sequent �!1 is cut-free prov-
able as an instance of the new rule, and hence the sequent �!(p⊥ & 1); ?p is provable
by cut. But this sequent has no cut-free proofs.

We prove the Strong Completeness Theorem in the same manner as in Okada [12–14].
For that purpose, we consider the commutative monoid M of 1nite multisets of

blocks, with multiset union as the monoid operation (which we continue to indicate by
semicolon concatenation). The empty set ∅ is the neutral element of M .
Let us write

�cf $

for
“� $ is provable in propositional LLL without the cut rule”.

Given a sequent $, de1ne the outer value ‖$‖ as

‖$‖ = {� : �cf �; $}:

Recall that the original de1nition of the canonical phase model for linear logic in [3]
uses, in the present notation, ‖$‖= {� : � �; $ is provable}.

Let ⊥⊆M be the subset ‖∅‖. Note that the outer value ‖$‖ is closed since $∈‖$‖⊥.

Proposition 4.1. �cf �;⊥ i< �cf �. That is; ‖∅‖= ‖⊥‖.

Proof. By a standard induction on cut-free LLL derivations.

Let J be the submonoid {[A1]; [A2]; : : : ; [Ak ] : Ai is a formula and k¿0}. The M -
contraction rule of LLL states precisely that every element of J is a weak idempotent.

In turn, A-weakening rule of LLL provides us with the following:

Proposition 4.2. Let A be a comma expression. If �cf A; $ then �cf A; B; $. That
is, A; B4A.
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The fundamental Lemma 3.1 is reformulated in terms of our canonical model as
follows:

Proposition 4.3. If �cf T§A; $ then �cf [A]; $. In other words; [A]4 T§A.

Proof. The proof is by induction on the size of cut-free LLL derivations. All the cases
are standard save the axiom case and the case where the formula T§A is a principal
formula of §-rule:

� A; B1| : : : |Bk ; A1; : : : ; Am−1; Am

� T§A; [B1]; : : : ; [Bk ]; T§A1; : : : ; T§Am−1;∇Am
:

(Where ∇ is either § or T§, and where each | is either a semicolon or a comma, namely,
B1| : : : |Bk means that formulas B1; : : : ; Bn are separated by commas or semicolons.)
In the latter case, we apply the other version of just the same §-rule:

� A; B1| : : : |Bk ; A1; : : : ; Am−1; Am

� [A]; [B1]; : : : ; [Bk ]; T§A1; : : : ; T§Am−1;∇Am
:

In the case of the axiom: � T§A; §A⊥, we may use the following one-step derivation:

� A; A⊥

� [A]; §A⊥ §-rule:

In order to establish a direct correlation between comma expressions and plus formulas,
let us observe the following propositions, each readily shown by induction on the length
of cut-free proofs.

Proposition 4.4. If �cf A⊕B; $; then �cf A⊕(B⊕C); $. That is; A⊕(B⊕C)4A⊕B.

Proposition 4.5. �cf A⊕B; $ i< �cf B⊕A; $.

Proposition 4.6. �cf (A⊕B)⊕C; $ i< �cf A⊕ (B⊕C); $.

Proposition 4.7. �cf A; $ i< �cf A⊕A; $.

The direct correlation between comma expressions and plus formulas is established
in the following two propositions by a standard induction on cut-free LLL derivations.

Proposition 4.8. If �cf (A1 ⊕A2 ⊕ · · · ⊕A‘); $; then �cf A1; A2; : : : ; A‘; $.

Proposition 4.9. If �cf A1; A2; : : : ; A‘; $; then �cf (A&(1) ⊕A&(2) ⊕ · · · ⊕A&(‘)); $ for
any permutation & of 1; 2; : : : ; ‘.

Now, Proposition 4.3 is generalized as follows.
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Proposition 4.10. If �cf T§(A1⊕A2⊕ · · · ⊕A‘); $ then �cf [A1]; [A2]; : : : ; [A‘]; $; which
results in

[A1]; [A2]; : : : ; [A‘] 4 T§(A1 ⊕ A2 ⊕ · · · ⊕ A‘):

Proof. Again we develop induction on the size of cut-free LLL derivations.
The only nonstandard case is that where the formula T§(A1 ⊕A2 ⊕ · · · ⊕A‘) is a

principal formula of §-rule:
� (A1 ⊕ A2 ⊕ · · · ⊕ A‘); B1| : : : |Bk ; C1; : : : ; Cm−1; Cm

� T§(A1 ⊕ A2 ⊕ · · · ⊕ A‘); [B1]; : : : ; [Bk ]; T§C1; : : : ; T§Cm−1;∇Cm
:

(Where ∇ is either § or T§, and where each | is either a semicolon or a comma.)
By the inductive hypothesis, Proposition 4.8 yields that

�cf A1; A2; : : : ; A‘; B1| : : : |Bk ; C1; : : : ; Cm−1; Cm:

Now, by applying the corresponding version of §-rule, we obtain that

�cf [A1]; [A2]; : : : ; [A‘]; [B1]; : : : ; [Bk ]; T§C1; : : : ; T§Cm−1;∇Cm:

The case of the axiom:

� T§(A1 ⊕ A2 ⊕ · · · ⊕ A‘); §(A⊥
1 &A⊥

2 & · · ·& A⊥
‘ )

is readily handled with the help of the following derivation:

� A1; A⊥
1

...
� A1; A2; : : : ; A‘; A⊥

1

� A2; A⊥
2

...
� A1A2; : : : ; A‘; A⊥

2 · · ·

� A‘; A⊥
1

...
� A1; A2; : : : ; A‘; A⊥

‘
...

� A1; A2; : : : ; A‘; A⊥
1 &A⊥

2 & · · ·&A⊥
‘ )

� [A1]; [A2]; : : : ; [A‘]; §(A⊥
1 &A⊥

2 & · · ·&A⊥
‘ )

The following de1nition formalizes the intended meaning of punctuation marks. We
assume a mapping ' that orders formulas and blocks according to some canonical
ordering. The connectives ⊕ and o are associated to the left. With these conventions,
given a sequent �, the formula �o is de1ned as
1. If � = ∅, then �o =⊥,
2. If � = A1; : : : ; A‘; ‘¿1, then �o = A'(1) ⊕ · · · ⊕A'(‘),
3. If � = [A], then �o = ?A,
4. If � =A1; : : : ;Ak where each Ai is a block and k¿1, then �o =Ao'(1)o · · ·oAo'(k).

Proposition 4.11. If �cf �; $; then �cf �o; $. That is; �o4�.

Proof.
1. For the empty multiset �, it is readily seen that �cf $ implies �cf ⊥; $.
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2. Proposition 4.9 may be used to prove Proposition 4.11 for � being a comma
expression: � = A1; : : : ; A‘;

3. The why-not rule provides Proposition 4.11 for all � of the form [A].
4. Finally, let � be a nondegenerated multiset of blocks:

� = A1;A2;A3; : : : ;Ak ;

where each Ai is a block and k¿2.
By repeatedly applying the above arguments to each of the blocks, we obtain the
following cut-free derivable sequents:

�cf A1;A2;A3; : : : ;Ak ; $;

�cf Ao1 ;A2;A3; : : : ;Ak ; $;

�cf Ao1 ;Ao2 ;A3; : : : ;Ak ; $;

�cf Ao1 ;Ao2 ;Ao3 ; : : : ;Ak ; $;

: : : : : : : : : : : : : : : : : :

�cf Ao1 ;Ao2 ;Ao3 ; : : : ;Aok ; $:

Now, we may complete the proof with the help of the par rule:

�cf (Ao1 oAo2 oAo3 o · · ·oAok ); $:

Let us de1ne a mapping h : M → M as

h(∅) = ∅;

h(A1; : : : ; A‘) = T§(A1; : : : ; A‘)o; ‘ ¿ 1;

h([A]) = T§?A;

h(A1; : : : ;Ak) = h(A1); : : : ; h(Ak); k ¿ 1:

Proposition 4.12. h is a phase homomorphism.

Proof. Indeed, whatever multisets of blocks � and $:

� =A1;A2; : : : ;Ak ;

$ =B1;B2; : : : ;Bn;

we take, by de1nition

h(�) = h(A1); h(A2); : : : ; h(Ak);

h($) = h(B1); h(B2); : : : ; h(Bn);

and

h(�; $) = h(A1); h(A2); : : : ; h(Ak); h(B1); h(B2); : : : ; h(Bn):
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It is readily seen that

h(�); h($) = h(�; $):

It remains to show that h(‖∅‖)⊆‖∅‖, that is, if �cf $, then �cf h($). There are four
cases.
Case 1: $ = ∅. Then h($) = ∅ and this case is a tautology.
Case 2: $ is of the form A1; : : : ; A‘, where ‘¿1. h(A1; : : : ; A‘) = T§(A1; : : : ; A‘)o =

T§(A'(1) ⊕ · · · ⊕A'(‘)). But if �cf A1; : : : ; A‘, then �cf A'(1) ⊕ · · · ⊕A'(‘) by Proposi-
tion 4.9, and therefore �cf T§(A'(1) ⊕ · · · ⊕A'(‘)) by the §-rule.
Case 3: $ is of the form [A]. In this case h($) = T§?A. But if �cf [A], then �cf?A

by the ?-rule, and hence �cf T§?A by the §-rule.
Case 4: $ is of the form A1; : : : ;Ak ; k¿1. h($) = h(A1); : : : ; h(Ak) = T§Ao1 ; : : : ; T§Aok .

But if �cf A1; : : : ;Ak , then by several applications of Proposition 4.11 it follows that
�cf Ao1 ; : : : ;Aok , and therefore �cf T§Ao1 ; : : : ; T§Aok by the §-rule.

Consider the function f : M → M de1ned as

f(�) =
{

[A1]; : : : ; [A‘] if � = A1; : : : ; A‘ for ‘ ¿ 1;
[�o] otherwise:

In particular, if � = ∅, then �o =⊥ by de1nition, and hence f(∅) = [⊥]. The M-
weakening rule of LLL implies that f(∅)4 ∅. In fact, it is clearly the case that
f(�)∈ 1∩ J for any sequent �. We also have the following lemma.

Lemma 4.1. f has the intermediate value property. Furthermore; f is bounded by h.

Proof. Let � and $ be multisets of blocks. There are three cases to be considered.
Case 1: Suppose that � and $ are nondegenerated comma expressions:

� = A1; : : : ; A‘ for ‘ ¿ 2;

$ = B1; : : : ; Bk for k ¿ 2:

Take the following comma expression C:

C := A1; : : : ; A‘; B1; : : : ; Bk :

By Proposition 4.2, both C4� and C4$.
According to the 1rst line of the de1nition of f:

f(�); f($) = [A1]; : : : ; [A‘]; [B1]; : : : ; [Bk ] = f(C):

Case 2: Suppose that � is a nondegenerated comma expression, and $ is not of that
kind:

� = A1; : : : ; A‘ for ‘ ¿ 2;

f(�) = [A1]; : : : ; [A‘];

f($) = [$o]:
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In that case, take the desired comma expression C as

C := A1; : : : ; A‘; $o:

According to Propositions 4.2 and 4.11, both C4� and C4$.
A simple calculation shows that

f(�); f($) = [A1]; : : : ; [A‘]; [$o] = f(C):

Case 3: Finally, assume that both � and $ are not nondegenerated comma expres-
sions, and, hence,

f(�) = [�o];

f($) = [$o]:

Now we take the following comma expression C:

C := �o; $o:

Again, by Propositions 4.2 and 4.11, both C4� and C4$.
And we complete the proof that f satis1es the intermediate value property by the
equation:

f(�); f($) = [�o]; [$o] = f(C):

It remains to show that f is bounded by h. Namely, for any � we have to construct
�′ such that

�′ 4 �;

f(�) 4 h(�′):

If � is a nondegenerated comma expression:

� = A1; : : : ; A‘ for ‘ ¿ 2;

we take �′= �, else we take �′= �o.
According to Proposition 4.11, �′4�.
If � is the above nondegenerated comma expression, then

f(�) = [A1]; : : : ; [A‘];

h(�′) = T§(A1; : : : ; A‘)o;

and, because of Proposition 4.10,

f(�) 4 h(�′):
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Otherwise,

�′ = �o;

f(�) = [�o];

h(�′) = T§(�o):

And Proposition 4.3 may be used to show that

f(�) 4 h(�′):

Our canonical model is the 1bred phase space {(Mn; ⊥n); hn; fn}n¿0, where Mn = M ,
⊥n =⊥, hn = h, and fn = f. We shall drop the indices for the rest of this section.
Finally, we consider the valuation p∗ = ‖p‖ for any atomic formula p.

The following lemma is obtained in the manner similar to Okada [12–14].

Lemma 4.2 (Main Lemma). For any propositional formula A; A∗ ⊆‖A‖.

Strong Completeness follows from the Main Lemma.

Proof (Strong Completeness): Assume that A is valid. Hence 1∈A∗ for any model, in
particular for this canonical model. Therefore, ∅∈A∗ in this model. On the other hand,
A∗ ⊆‖A‖. Hence ∅∈ ‖A‖. By de1nition, this means “A is provable in LLL without the
cut rule”.

Let us also note another consequence of the Main Lemma.

Corollary 4.1. For any propositional formula A; A∈A∗⊥.

Proof. By the Main Lemma, A∗ ⊆‖A‖. It suIces to show A∗; A⊆⊥, namely,
∀$∈A∗($; A∈⊥). But A∗ ⊆‖A‖ means that for any $∈A∗, �cf $; A. Therefore
A∗; A⊆⊥.

The Main Lemma has another formulation, which will be essential for the second-
order case in the next section.

Lemma 4.3. For any propositional formula A; A⊥ ∈A∗ ⊆‖A‖.

Proof. By the Main Lemma, A∗ ⊆‖A‖ for any A. By Corollary 4.1 for A⊥, A⊥ ∈
A∗⊥⊥ = A∗.

Before we prove the Main Lemma, let us observe

Proposition 4.13. If �cf $; B then �cf h($); §B.
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Proof.
Case 1: $ is empty ∅. Then h($) = ∅. If �cf B; then �cf §B by the §-rule.
Case 2: $ is of the form A1; : : : ; A‘, where ‘¿1. h(A1; : : : ; A‘) =

T§(A1; : : : ; A‘)o = T§ (A'(1) ⊕ · · · ⊕A'(‘)). But if �cf A1; : : : ; A‘; B, then �cf A'(1) ⊕ · · ·
⊕A'(‘); B by Proposition 4.11, and thus �cf T§(A'(1) ⊕ · · · ⊕A'(‘)); §B by the §-rule.
Case 3: $ is of the form [A]. In this case h($) = T§?A. But if �cf [A]; B, then

�cf?A; B by the ?-rule, and hence �cf T§?A; §B by the §-rule.
Case 4: $ is of the form A1; : : : ;Ak ; k¿1. h($) = h(A1); : : : ; h(Ak) = T§Ao1 ; : : : ; T§Aok .

But if �cf A1; : : : ;Ak ; B, then by several applications of Proposition 4.11 it follows
that �cf Ao1 ; : : : ;Aok ; B, and therefore �cf T§Ao1 ; : : : ; T§Aok ; §B by the §-rule.

Proof (Main Lemma): By induction on the structure of the formula A.
Basis. There are 1ve cases.
When A is of the form p where p is a propositional atom, the claim is obvious

since p∗ = ‖p‖ by de1nition.
When A is of the form ⊥, then ⊥∗=‖∅‖ by de1nition. But by Proposition 4.1,

‖∅‖= ‖⊥‖.
When A is of the form 1; then by de1nition 1∗ = 1= ‖∅‖⊥. Thus it suIces to show

that ‖∅‖⊥ ⊆‖1‖. Let �∈‖∅‖⊥, i.e.; for any (, if �cf (, then �cf �; (. In particular,
if ( is the formula 1, then �cf �; 1. In other words, �∈‖1‖, as required.

When A is of the form �, �∗ = M by de1nition. But M = ‖�‖ by the �-rule.
When A is of the form 0, then by de1nition 0∗ = 0= M⊥. It suIces to show that

M⊥ ⊆‖0‖. Let �∈M⊥, i.e., for any (, �cf �; (. In particular, if ( is the formula 0;
then �cf �; 0. In other words, �∈‖0‖, as required.
Induction step. There are nine cases, depending on the main connective.
Case 1: When A is of the form p⊥ where p is a propositional atom, p⊥ ∈p∗ since

p∗ = ‖p‖. Assume �∈p∗⊥. Then p⊥; �∈‖⊥‖, i.e., �cf p⊥; �;⊥, and thus �cf p⊥; �.
Hence �∈‖p⊥‖.
Case 2. A is of the form B & C: By the induction hypothesis, B∗⊆‖B‖ and C∗⊆‖C‖.

Hence B∗ & C∗ = B∗ ∩C∗ ⊆‖B‖∩ ‖C‖. On the other hand, since

�cf �; B �cf �; C
�cf �; B&C

;

‖B‖∩ ‖C‖⊆‖B & C‖. Therefore B∗ & C∗ ⊆‖B & C‖.
Case 3. A is of the form B⊕C: By the induction hypothesis, B∗⊆‖B‖ and C∗⊆‖C‖.

Hence B∗ ∪C∗ ⊆‖B‖∪ ‖C‖. On the other hand, since

�cf �; B
�cf �; B ⊕ C

and
�cf �; C

�cf �; B ⊕ C
:

Hence ‖B‖⊆‖B⊕C‖ and ‖C‖⊆‖B⊕C‖. Therefore B∗∪C∗⊆‖B⊕C‖. Since ‖B⊕C‖
is closed, B∗ ⊕C∗ = Cl(B∗ ∪C∗)⊆‖B⊕C‖.
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Case 4. A is of the form B⊗C: By the induction hypothesis, B∗⊆‖B‖ and C∗⊆‖C‖.
Hence B∗; C∗ ⊆‖B‖; ‖C‖. On the other hand,

�cf �; B �cf $; C
�cf �; $; B ⊗ C

:

Therefore B∗; C∗ ⊆‖B⊗C‖. B∗ ⊗C∗ = Cl(B∗; C∗)⊆‖B⊗C‖ since ‖B⊗C‖ is closed.
Case 5. A is of the form BoC: Let �∈B∗oC∗ = (B∗⊥; C∗⊥)⊥. Therefore, if

$∈B∗⊥; (∈C∗⊥ then �cf �; $; (. On the other hand, by the induction hypothe-
sis, B∗ ⊆‖B‖ and C∗ ⊆‖C‖. Then, B∈B∗⊥ and C ∈C∗⊥ by Corollary 4.1. Take B
for $ and C for ( above. Then � �; B; C. Therefore, �∈‖BoC‖.

Case 6. A is of the form !B: Because f(�)∈ 1∩ J for any sequent �, it suIces to
show that Cl{f(B∗)}⊆‖!B‖. But ‖!B‖ is closed, hence it actually suIces to show that
f(B∗)⊆‖!B‖. By the induction hypothesis, B∗ ⊆‖B‖. Let �∈B∗. Then �cf �; B. There
are two cases. If � = A1; : : : ; A‘ for ‘ ¿ 1, then by the !-rule, �cf [A1]; : : : ; [A‘]; !B.
That is, f(�)∈‖!B‖, as required. Otherwise, �cf �o; B by Proposition 4.11, and then
�cf [�o]; !B by the !-rule. That is, again f(�)∈‖!B‖, as required.
Case 7. A is of the form ?B: Assume �∈ (?B)∗ = (f(B∗⊥))⊥, that is, f(B∗⊥); �⊆

‖∅‖. By the induction hypothesis, B∗ ⊆‖B‖. Hence by Corollary 4.1, B∈B∗⊥. Because
f(B) = [B], it is the case that �cf [B]; �, and thus �cf?B; � by the ?-rule. Therefore,
�∈‖?B‖.
Case 8. A is of the form §B. By the induction hypothesis, B∗ ⊆‖B‖. Hence for any

$∈B∗, it is the case that �cf $; B. But then �cf h($); §B by Proposition 4.13. Hence
h(B∗)⊆‖§B‖. Therefore, (§B)∗ = Cl(h(B∗))⊆‖§B‖ since ‖§B‖ is closed.

Case 9. A is of the form T§B: (T§B)∗=(h(B∗⊥))⊥, so it suIces to show that (h(B∗⊥))⊥

⊆‖T§B‖. Let �∈ (h(B∗⊥))⊥, i.e., for any (∈ h(B∗⊥), �cf �; (. By induction hypothe-
sis, B∗ ⊆‖B‖, and hence by Corollary 4.1, B∈B∗⊥. Thus, T§B = h(B)∈ h(B∗⊥) and we
may pick ( to be the formula T§B. Thus �cf �; T§B as required.

5. Second-order completeness

Girard [5] formulated LLL as a second-order propositional system. Let us adjust the
underlying idea in Okada [12–14] to extend the 1bred phase semantics to the second-
order case so that the soundness, strong completeness and cut-elimination theorems
apply to the full LLL. A further extension to higher-order (1nite-order) LLL may
also be possible using a modi1ed version of higher-order phase models introduced in
Okada [12–14].

Let us write A{X } to indicate that X is a vector of propositional variables containing
the free variables of A. Let A{B=X } or A{B} denote the formula obtained from A{X }
by substituting the vector of formulas B for X . Let A∗{�=X } or A∗{�} denote the result
of the inner value construction starting with the vector of closed families � as the value
of the variable list X . In this section we use Form to denote the set of second-order
formulas.
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Let {(Mn;⊥n; fn; hn)}n¿0 be a 1bred phase space. Consider an assignment that to any
formula A (possibly with free propositional variables), associates a set 〈A〉 of closed
families. 〈A〉n denotes {(�)n : �∈ 〈A〉}. ⋂

i∈- �i denotes {⋂i∈-(�i)n}n¿0,
⋃

i∈- �i de-
notes {⋃i∈-(�i)n}n¿0, and Cl(

⋃
i∈- �i) denotes {Cln(

⋃
i∈-(�i)n)}n¿0. In this notation

the second-order propositional quanti1ers may be interpreted as follows:

(∀XA)∗ =def

⋂
�∈〈B〉; B∈Form

A∗{�=X };

(∃XA)∗ =def Cl


 ⋃

�∈〈B〉; B ∈ Form

A∗{�=X }

 :

More generally, second-order operators are de1ned as follows. Let D = {Dn}n¿0 be a
closed family. For any family of mappings . = {.n}n¿0, where .n : Dn →Dn, let

∀X:.(X ) =
⋂

{.(�) : � ∈ 〈B〉; B ∈ Form}

=
⋂

{.n(�n) : �n ∈ 〈B〉n; B ∈ Form}}n¿0;

∃X:.(X ) = Cl
(⋃

{.(�) : � ∈ 〈B〉; B ∈ Form}
)

= Cln

(⋃
{.n(�n) : �n ∈ 〈B〉n; B ∈ Form}

)}
n¿0

:

Then

(∀XA)∗ = ∀XA∗ =




⋂
�n∈〈B〉n; B∈Form

A∗
n{�n=X }




n¿0

;

(∃XA)∗ = ∃XA∗ =


Cln


 ⋃

�n∈〈B〉n; B∈Form

A∗
n{�n=X }






n¿0

:

Note that the usual De Morgan equalities, (∀X A)∗ = (∃X A⊥)∗⊥ and (∃X A)∗ =
(∀XA⊥)∗⊥, are shown easily.

A second-order :bred phase model is a 1bred phase space {(Mn;⊥n; fn; hn)}n¿0

together with an assignment that associates a set 〈A〉 of closed families to any formula
A, such that the following condition holds:

For any formula A{X }, where X = X1; : : : ; Xk is a vector of second-order proposi-
tional variables, for any vector of formulas B = B1; : : : ; Bk , for any vector of closed
families � = �1; : : : ; �k , whenever (�j)n ∈ 〈Bj〉n for all n ¿ 0 and all 1 6 j 6 k,
then it is the case that (A∗)n{(�)n=X }∈ 〈A{B=X }〉n for all n ¿ 0.

A formula is closed iH it has no free variables. A closed formula A is valid iH in any
second-order phase model, 1n ∈ (A∗)n for all n ¿ 0.
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Theorem 5.1 (Soundness, second-order version). Let X = X1; : : : ; Xk be a vector of
second–order propositional variables; containing all free second-order propositional
variables of the formulas A1; : : : ; A‘; : : : ; B1; : : : ; Bm. If the sequent

� A1; : : : ; A‘; : : : ; B1; : : : ; Bm

is provable in LLL; then for any vector of formulas C = C1; : : : ; Ck ; for any second-
order :bred phase model; and for any vector of closed families � = �1; : : : ; �k ; whenever
�j ∈ 〈Cj〉 for all 1 6 j 6 k; then it is the case that

1n ∈ ((A∗
1{�=X } ⊕ · · · ⊕ A∗

‘{�=X })o · · ·o(B∗
1{�=X } ⊕ · · · ⊕ B∗

m{�=X }))n:

In particular; if a closed formula is provable in LLL; then it is valid.

Proof. The argument is carried out by the induction on the length of proof essentially
in the same way as that of the propositional case in Section 3, except for the following
second-order quanti1er cases.
(1) ∀-rule

� �{X }; A{X; Y}
� �{X };∀YA{X; Y} ;

where Y does not appear as a free variable in �.
By the induction hypothesis, for any �∈ 〈D〉; D∈Form, and for any �∈ 〈E〉;

E ∈Form, 1n ∈ (�∗{�}oA∗{�; �})n. Therefore, (�∗⊥{�})n · (A∗⊥{�; �})n ⊆⊥n. Hence
(�∗⊥{�})n ⊆ (A∗⊥⊥{�; �})n = (A∗{�; �})n. Since this holds for any �∈ 〈E〉 and any
E ∈Form,

(�∗⊥{�})n ⊆
⋂

�∈〈E〉; E∈Form

(A∗{�; �})n = (∀YA∗{�; Y})n:

Hence (�∗⊥{�})n ·((∀YA∗{�; Y})n)⊥n ⊆⊥n, which means 1n ∈ (�∗{�}o ∀YA∗{�; Y})n.
(2) ∃-rule

� �{X }; A{B{X }; X }
� �{X };∃YA{Y; X } :

By the induction hypothesis, for any �∈ 〈C〉; C ∈Form, 1n ∈ (�∗{�}oA∗{B∗{�}; �})n,
namely (�∗⊥{�})n ⊆ (A∗{B∗{�}; �})n. By the condition on 〈B{C}〉, B∗{�}∈ 〈B{C}〉.
Therefore,

(�∗⊥{�})n ⊆
⋃

�∈〈D〉; D∈Form

(A∗{�; �})n ⊆ (∃YA∗{Y; �})n:

Hence, for any n, (�∗{�})⊥n
n · (∃YA∗{Y; �})⊥n

n ⊆⊥n, which means 1n ∈
(�∗{�}o ∃YA∗{Y; �})n.
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The canonical phase space is de1ned as in the previous section, but �cf now means
“provable in second-order LLL without the cut rule”. For any formula A, de1ne 〈A〉 as

〈A〉 = {� closed : A⊥ ∈ � ⊆ ‖A‖}:

The set 〈A〉 corresponds to the set of candidates of reducibility of type A in [2, 4].

Lemma 5.1 (Main Lemma, second-order version). For any formulas A{X } and C;
and for any �∈ 〈C〉; A{C=X }⊥ ∈A∗{�=X }⊆‖A{C=X }‖.

Proof. The proof is carried out in the way similar to that of Lemma 4.3 with the help
of Lemma 4.2 except for the following cases, which are treated essentially in the same
way as Okada [12].
Case 1. A{X } is of the form Xi: Then by the de1nition of 〈C〉, A{C=X }⊥ ∈A∗{�=X }

⊆‖A{C}‖ is obvious for any �∈ 〈C〉 and any C ∈Form.
Case 2. A{X } is of the form ∀YB{X; Y}: We prove ∀YB∗{�=X; Y}⊆‖∀YB{C=X; Y}‖

for any �∈ 〈C〉 and any C ∈Form. Assume that

� ∈ ∀YB∗{�; Y} =
⋂

�∈〈D〉; D∈Form

B∗{�; �}:

By the induction hypothesis, B∗{�; �}⊆‖B{C; D}‖. Hence, �∈‖B{C; D}‖. In partic-
ular, for a variable Y that does not occur in �, �∈‖B{C; Y}‖. On the other hand,

�cf �; B{C; Y}
�cf �;∀YB{C; Y}

is a LLL-rule. Hence, �∈‖∀YB{C; Y}‖.
Case 3. A{X } is of the form ∃YB{X; Y}: We prove ∃YB∗{�=X; Y}⊆‖∃YB{C=X; Y}‖

for any �∈ 〈C〉 and any C ∈Form. Take arbitrary C ∈Form and �∈ 〈C〉. Assume that
�∈∃YB∗{�=X; Y}= Cl(

⋃
� ∈ 〈D〉; D ∈ Form B∗{�; �}). It suIces to show that ∃YB{C; Y}

belongs to (
⋃

�∈〈D〉;D∈Form B∗{�; �})⊥, because then �;∃YB{C; Y}∈ ‖∅‖, hence �∈
‖∃YB{C; Y}‖. By the induction hypothesis, B∗{�; �}⊆‖B{C; D}‖ for any D∈Form
and any �∈ 〈D〉. Therefore, for any $∈B∗{�; �}, �cf $; B{C; D}, hence �cf $;∃YB
{C; Y} by the ∃-rule. Since this holds for any D∈Form and any �∈ 〈D〉, it is the case
that ∃XB{C; Y}∈ (

⋃
� ∈ 〈D〉;D ∈ Form B∗{�; �})⊥, as required.

In other words, the canonical phase space and the assignment 〈A〉 just de1ned from
a second-order phase model. As before, we obtain strong completeness and hence cut
elimination. Note that the condition for 〈A〉 on the stability under substitution is veri1ed
at the same time when the main lemma above is proved. Then with the same argument
in the previous Section we have the following theorems.

Theorem 5.2 (Strong Completeness, second-order version). If a closed formula is
valid; then it is provable in LLL without the cut rule.
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Theorem 5.3 (Cut-Elimination, second-order version). If a formula is provable in
LLL; then it is also provable in LLL without the cut rule.

The methods and results again extend to the intuitionistic version.
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Appendix A. LLL rules

Let us recall LLL inference rules from [5]. The § rules have been modi1ed since
we are not assuming that § is self-dual. The exchange rules are omitted because we
are dealing with multisets.
Identity=Negation

� A; A⊥ (identity)
� �; A � A⊥; $

� �; $
(cut)

Structure

� �
� �; [A]

(M-weakening)
� �;A

� �;A; B
(A-weakening)

� �; [A]; [A]
� �; [A]

(M-contraction)
� �;A; B; B
� �;A; B

(A-contraction)

Logic

� 1
(one)

� �
� �;⊥ (false)

� �; A � B; $
� �; A⊗B; $

(times)
� �; A; B
� �; AoB

(par)

� �;� (true) (no rule for zero)

� �; A � �; B
� �; A&B

(with)

� �; A
� �; A ⊕ B

(left plus)

� �; B
� �; A ⊕ B

(right plus)

� B1; : : : ; B‘; A
� [B1]; : : : ; [B‘]; !A

(of course)

(where ‘ ¿ 1)

� �; [A]
� �; ?A

(why not)

� B1| : : : |Bk ; A1; : : : ; Am−1; Am

� [B1]; : : : ; [Bk ]; T§A1; : : : ; T§Am−1;∇Am
(neutral):
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(where k; m ¿ 0, where ∇ is either § or T§, and where each | is either a semicolon or
a comma, namely, B1| : : : |Bk means that B1; : : : ; Bn are formulas separated by commas
or semicolons.) Note that the conclusion contains at most one principal §.

� �; A
� �;∀XA

(for all: X is not free in �)
� �; A{B=X }
� �;∃XA

(there is)

Intuitionistic propositional formulas are built from propositional atoms and the con-
stant 1 by the connectives ⊗;−◦; &, and the modalities !; §. Intuitionistic sequents are
expressions of the form A1;A2; : : : ;Ak � B, where B and the formulas in the blocks
Ai are intuitionistic. Because of the position of blocks to the left of the �, the in-
tended interpretation of the punctuation marks is dual to the one stated above, i.e.,
A; B is intended to represent A&B, A; B is intended to represent A⊗B, and [A] is
intended to represent !A. An intuitionistic sequent A1;A2; : : : ;Ak �B may be inter-
preted in the language of LLL as the sequent � A⊥

1 ;A⊥
2 ; : : : ;A⊥

k ; B, where A⊥
i denotes

the block in which every formula in the block Ai is negated (where (C −◦D)⊥ is
C ⊗D⊥,) and the punctuation marks are left the same. The inference rules of ILLL
are those that remain correct after this translation [5]. Note that the inner value for
intuitionistic propositional formulas may be de1ned in any 1bred phase structure in
the straightforward way by interpreting each intuitionistic connective by its seman-
tic counterpart. However, the de1nition of the inner value for intuitionistic sequents
re;ects the “left-handed” interpretation of the punctuation marks, i.e., [A]∗ =! A∗ and
(A1; : : : ; A‘)∗ = A∗

1 & : : : &A∗
‘ . A valuation satis1es an intuitionistic sequent A1; : : : ;Ak � B

iH for each n, (A∗
1 ⊗ · · · ⊗A∗

k )n ⊆B∗
n .
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