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Abstract

We consider the problem of partitioning the vertices of a weighted graph into two sets of sizes that differ at most by a given
threshold B, so as to maximize the weight of the crossing edges. For B equal to 0 this problem is known as Max Bisection, whereas
for B equal to the number n of nodes it is the maximum cut problem. We present polynomial time randomized approximation
algorithms with non trivial performance guarantees for its solution. The approximation results are obtained by extending the
methodology used by Y. Ye for Max Bisection and by combining this technique with another one that uses the algorithm of
Goemans and Williamson for the maximum cut problem. When B is equal to zero the approximation ratio achieved coincides with
the one obtained by Y. Ye; otherwise it is always above this value and tends to the value obtained by Goemans and Williamson as
B approaches the number n of nodes.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Problems addressing optimum cuts are often considered in combinatorial optimization and in theoretical computer
science; recently unbalanced graph cuts have received attention [9]. Here we address the following problem: given
an undirected graph G = (V, E), with vertex set V of cardinality n and edge set E , where each edge (i, j) has a
nonnegative weight wi j , and given a constant B, 0 ≤ B < n, find a cut (S, V \ S) of G of maximum weight such
that the difference between the cardinalities of the two shores of the cut is not greater than B. We refer to it as the
Maximum Cut with Limited Unbalance (MaxCUT-LU for short) problem. When B is equal to zero it is known as
the Max Bisection problem and the algorithm in [12] gives the best approximation ratio equal to 0.699. When B is
equal to n − 1 it is the well-known maximum cut problem and the famous algorithm of [8] gives an approximation
ratio equal to 0.87856. It is known that the maximum cut problem is strongly NP-hard and cannot have a PTAS unless
P = NP [4].
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In [10] several several applications of Maximum Cut are reported in different fields such as network planning,
circuit design, scheduling, cryptanalysis, logic, psychology. For most of them the generalization to MaxCUT-LU
makes sense. For instance in circuit design, the problem of dividing the vertex set of the graph underlined by the
circuit into two parts of equal cardinalities is of interest, and relaxing the equal cardinality constraint to that of limited
unbalance can allow to get better results as far as approximating the optimum weight of the cut obtained, without
affecting the suitability of the partition from the point of view of the circuit designer. MaxCUT-LU might also make
sense for balancing signed graphs when special constraints arise, with applications e.g. in psychology [2]. The strict
relation between Maximum Cut and Maximum 2-Satisfiability problems is well known [8]. Here the extension to
MaxCUT-LU can allow to consider constraints on the number of variables set to “true”.

In this paper we present polynomial time randomized approximation algorithms with nontrivial performance
guarantees for MaxCUT-LU. Our results are obtained by extending to this problem the methodology used in [12]
for Max Bisection and by combining this technique with another one that uses the algorithm of [8]. When B is equal
to zero the approximation ratio achieved coincides with the one of [12], which is equal to 0.699; otherwise it is always
greater than this value, and tends to the 0.87856 value of the algorithm of [8] when B approaches the number n of
nodes. Our main results are summarized in Theorem 8, Proposition 9 and Theorem 11. In Table 1 at the end of this
work we report the approximation ratios r obtained for some values of η, where η = B/n is our unbalance parameter,
and θ is another parameter used in the algorithm and described in Section 3.1.

A problem related to MaxCUT-LU and addressed in [1] and [5] is the problem of finding a cut of maximum weight
such that the cardinality of one shore of the cut is equal to a given integer k. The approximation ratios that the authors
achieve with sophisticated techniques are naturally weaker than ours: for instance in [5], for the case of k = B = n/3,
they achieve a 0.58 ratio against our 0.797. Other problems addressing optimal cuts with side constraints have recently
received attention, as described in the introductory section of [9].

The formulation of MaxCUT-LU is introduced in the next section. The algorithms used to solve the problem are
presented in the subsequent sections, the first devoted to the case when η is small, the other when η is large. The last
section concludes the work, summarizes the results and presents some of them in Table 1.

2. The formulation

MaxCUT-LU can be formulated by assigning to each vertex i a binary variable xi ∈ {−1, 1}, with vertices on the
same shore of the cut receiving the same value, and by setting wi j = 0 if (i, j) 6∈ E , as:

w∗
:= max

{
1
4

∑
i, j

wi j (1 − xi x j ) :

∑
i, j

xi x j ≤ B2
; xi ∈ {−1, 1}, i = 1, . . . , n

}
. (1)

The semidefinite relaxation of this binary quadratic programme can be formulated as follows:

wSDP
:= max

{
1
4

∑
i, j

wi j (1 − X i j ) :

∑
i, j

X i j ≤ B2
; X i i = 1, i = 1, . . . , n; X ∈ Mn

}
(2)

where Mn is the set of real, symmetrical, positive semidefinite matrices of order n. It is easy to see that any solution
x of (1) yields a solution X of (2) with X i j = xi x j . Hence obviously w∗

≤ wSDP.
It is known that such a SDP program can be solved to any degree of accuracy in polynomial time, i.e. ∀ε > 0 , we

can find in time polynomial in the length of the instance and in log(1/ε) a solution of (2) having 1
4
∑

i, j wi j (1−X i j ) ≥

wSDP
− ε (see e.g. [3]). From an almost optimal solution of the SDP program one can then derive a solution of the

integer programme using appropriate rounding techniques.
Rounding techniques applied to the solution of SDP relaxations of combinatorial optimization problems in order to

get integral solutions of guaranteed degree of approximation have been pioneered by Goemans and Williamson [8] for
the Max CUT and Max SAT problems. Frieze and Jerrum [6] have developed such techniques further, addressing the
Max Bisection and the Max-k Cut problems. Ye [12] has improved the approximation ratio for Max Bisection using a
more sophisticated rounding technique. With respect to Max CUT, problem MaxCUT-LU presents, as Max Bisection,
the extra difficulty of having to deal with two objectives: the weight of the cut and the size of its shores.



80 G. Galbiati, F. Maffioli / Theoretical Computer Science 385 (2007) 78–87

3. The algorithm for small unbalance

We now present our first algorithm, suitable for solving problem MaxCUT-LU when η is small. In the algorithm,
I indicates the identity matrix, N is set equal to n2

4 −
B2

4 , i.e. to the minimum value of the product of the cardinalities
of the shores of a cut with limited unbalance; the parameters θ and k are fixed by the algorithm in an appropriate way,
as specified in Section 3.1 entirely devoted to this aspect. Functions α(θ) and β(θ, η) are defined in (3) and (4) and
their meaning is made clear in Lemma 2.

The algorithm uses the following technique, introduced in [12], which refines the one in [8]: from a solution X̃ of
the SDP relaxation first it constructs a new matrix X as a convex combination of X̃ and the identity matrix I ; then
to matrix X , which is positive definite, it applies the Cholesky decomposition to obtain vectors (v1, . . . , vn) on the
unit n-dimensional sphere Sn . The algorithm then uses the so called random hyperplane technique, i.e. it repeatedly
generates a uniformly distributed vector r on the unit sphere, computes vector u = (r · v1, . . . , r · vn) and then rounds
u to a vector x̂ with x̂i ∈ {−1, 1}, and x̂i = −1 iff ui ≥ 0, i = 1, . . . , n. Each vector x̂ hence identifies a cut (S, V \S)

of G, where S = {i : x̂i = 1} or S = {i : x̂i = −1}; in our algorithm we always choose wlog S to be the set of vertices
with the larger cardinality.

In the analysis of our algorithm, for the sake of clarity, we assume that X̃ is an optimum solution of the SDP
relaxation and that the vectors of the Cholesky decomposition exactly satisfy the equalities (vi · vj) =X i j . It can
be shown that the inaccuracies resulting from using an almost optimal solution X̃ and an almost exact Cholesky
decomposition can be absorbed into the approximation factor presented in Theorem 8 (see Chapter 26 of [11]). This
ensures that the algorithm runs in polynomial time.

We now describe function rebalance(S), invoked by the algorithm when |S| > (n + B)/2. Let S = {i1, . . . , is}

and denote by δc(i) the contribution of vertex i to the weight of the cut (S, V \ S), i.e. δc(i) =
∑

j /∈S wi j , and
w(S) =

∑
i∈S δc(i). Assume wlog that δc(i1) ≤ · · · ≤ δc(is); then function rebalance(S) reduces the number of

nodes in S to (n + B)/2 by moving from S to (S, V \ S) the first s − (n + B)/2 vertices, which less contribute to the
weight of the cut.

Throughout this paper, w(S) denotes the weight of the cut (S, V \ S).

Algorithm 1.
1 - Solve the SDP problem (2) and let X̃ be the solution matrix;
2 - fix a value θ with 0 ≤ θ < 1 and a positive integer k;
3 - let X = θ X̃ + (1 − θ)I ;
4 - apply Cholesky decomposition to X to obtain vectors (v1, . . . , vn);
5 - SR = φ;
6 - repeat for k times the following {

6.1 - generate a uniformly distributed vector r on the unit sphere;
6.2 - compute u = (r · v1, . . . , r · vn);
6.3 - round u to vector x̂ ∈ {−1, 1}

n identifying a cut (S, V \ S);
6.4 - if |S| ≤ (n + B)/2 /* the cut is feasible for MaxCUT-LU */

let S̃ = S else let S̃ = rebalance(S);
6.5 - if w(S̃) > w(SR) /* a better cut for MaxCUT-LU is found */

let SR = S̃;
}

7 - return SR .

In order to analyse the quality of the solution SR returned by the algorithm, we define

α(θ) := min
−1≤y<1

1 −
2
π

arcsin(θy)

1 − y
(3)

and

β(θ, η) :=

(
1 −

1
n

)
1

1 − η2 b(θ) + c(θ) (4)



G. Galbiati, F. Maffioli / Theoretical Computer Science 385 (2007) 78–87 81

with

b(θ) = 1 −
2
π

arcsin(θ) and c(θ) = min
−1≤y<1

2
π

arcsin(θ) − arcsin(θy)

1 − y
. (5)

Notice that the definition of α(θ) is as in [12] whereas that of β(θ, η) is different.

Lemma 2. If functions α(θ) and β(θ, η) are defined as in (3) and (4), then for the random variable w(S), related
to the cut (S, V \ S) generated by Algorithm 1 at line 6.3, we have that E[w(S)] ≥ α(θ)w∗ and E[|S|(n − |S|)] ≥

β(θ, η)N .

Proof. In [8,6] it is proved that the probability that vertices i and j are separated in the cut identified by S is equal to
1
2 (1 −

2
π

arcsin(X i j )). It follows easily that E [̂xi x̂ j ] =
2
π

arcsin(X i j ) and hence that

E[w(S)] =
1
4

∑
i, j

wi j

(
1 −

2
π

arcsin(X i j )

)
. (6)

Since arcsin(X i i ) = π/2, for each i = 1, . . . , n, and X i j = θ X̃ i j when i 6= j , we conclude from (3) that the value in
(6) is:

≥
1
4

∑
i, j

wi jα(θ)(1 − X̃ i j ) = α(θ)wSDP
≥ α(θ)w∗.

We can also derive that

E[|S|(n − |S|)] =
1
4

∑
i, j

(
1 −

2
π

arcsin(X i j )

)

=
1
4

∑
i 6= j

(
1 −

2
π

arcsin(θ) +
2
π

arcsin(θ) −
2
π

arcsin(θ X̃ i j )

)
≥

1
4

∑
i 6= j

(b(θ) + c(θ)(1 − X̃ i j )). (7)

Now, noticing that
∑

i 6= j X̃ i j ≤ B2
− n , from (7) we derive that

E[|S|(n − |S|)] ≥
1
4
[(n2

− n)b(θ) + (n2
− n)c(θ) + c(θ)(n − B2)]

=
1
4
[(n2

− n)b(θ) + (n2
− B2)c(θ)]

=

[(
1 −

1
n

)
1

1 − η2 b(θ) + c(θ)

]
n2

− B2

4
= β(θ, η)N . �

Lemma 3. For every cut (S, V \ S) generated by Algorithm 1 at line 6.3 we have that w(S)
w∗ ≤ 2 and |S|(n−|S|)

N ≤
1

1−η2 .

Proof. Let S = {i1, . . . , is}. If s ≤ (n + B)/2 then by definition w(S) ≤ w∗. Otherwise apply function rebalance,
described before Algorithm 1, to set S and let S′ be the largest shore of the cut obtained . The weight w(S) has
decreased by at most w(S)

s (s −
n+B

2 ). By definition w(S′) ≤ w∗ but w(S′) ≥ w(S) −
w(S)

s (s −
n+B

2 ) and this
implies w(S)

w∗ ≤ 2s/(n + B) ≤ 2. The second inequality of the lemma follows immediately from the fact that
|S|(n−|S|)

N ≤
n2

4
4

n2−B2 . �

Let us now fix a value γ > 0 and study the random variable

Z =
w(S)

w∗
+ γ

|S|(n − |S|)

N
. (8)
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The two preceding lemmas imply that Z ≤ 2 +
γ

1−η2 and that E[Z ] ≥ α(θ) + γβ(θ, η). Hence for small values of η

(say η <
√

2/3 ≤ 0.8165) variable Z is bounded above, so that for any ε > 0 and for constant k sufficiently large,
Algorithm 1 generates a set S for which:

Z ≥ [α(θ) + γβ(θ, η)](1 − ε). (9)

We state the following:

Theorem 4. For any γ > 0, if random variable Z satisfies (9), then for the corresponding set S̃ computed by
Algorithm 1 at line 6.4, we have:

w(S̃) ≥ min(g1, g2)w
∗ (10)

with:

g1 = 2

(√
γ [α(θ) + γβ(θ, η)]

(1 + η)(1 − ε)

1 − η
−

γ

1 − η

)
(11)

g2 = [α(θ) + γβ(θ, η)](1 − ε) −
γ

1 − η2 . (12)

Proof. When the algorithm finds a set S satisfying (9) we let δ = |S|/n and λ = w(S)/w∗. From (8) and (9) it follows
that:

λ ≥ [α(θ) + γβ(θ, η)](1 − ε) − 4γ δ(1 − δ)
1

1 − η2 . (13)

There are two possibilities for S̃: either S̃ = rebalance(S) or S̃ = S. In the first case it is easy to see that
w(S̃) ≥

n+B
2

w(S)
|S|

=
1+η
2δ

λw∗, whereas in the second case we obviously have w(S̃) = λw∗. Hence w(S̃)

≥ min(
1+η
2δ

λ, λ)w∗ and, using inequality (13) for λ, we get:

w(S̃) ≥ min( f1, f2)w
∗ (14)

with

f1 = [α(θ) + γβ(θ, η)]
(1 + η)(1 − ε)

2δ
− 2γ

1 − δ

1 − η
(15)

f2 = [α(θ) + γβ(θ, η)](1 − ε) − 4γ δ(1 − δ)
1

1 − η2 . (16)

In order to simplify (15) and (16) and to remove the dependence on δ we study functions f1 and f2 for δ ≥ 0. Simple

calculations show that function f1 has a minimum at δ1 =

√
[α(θ)+γβ(θ,η)](1−η2)(1−ε)

4γ
, where it assumes the value

2(

√
γ [α(θ) + γβ(θ, η)]

(1+η)(1−ε)
1−η

−
γ

1−η
) which is, by definition, the value of function g1. Instead function f2 has a

minimum at δ2 = 1/2, where it takes on the value [α(θ) + γβ(θ, η)](1 − ε) −
γ

1−η2 which again is, by definition, the
value of function g2. �

Our next aim is to find the value of γ that maximizes min(g1, g2).
Again with straightforward calculations it can be seen that function g1 is concave, is equal to zero for γ = 0 and

for γR =
α(θ)(1−η2)(1−ε)

1−β(θ,η)(1−η2)(1−ε)
and has a maximum at

γM =
α(θ)

2β(θ, η)

(
1√

1 − β(θ, η)(1 − η2)(1 − ε)
− 1

)
.

Of course γM ≤ γR .
The graph of function g2, on the other hand, is a line that for γ = 0 has value α(θ)(1 − ε) and then decreases until

it intersects the γ axis, quite surprisingly, again in γR .

We have the following result:
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Theorem 5. For each η , 0 ≤ η < 1, we have that g2 ≤ g1 iff γL ≤ γ ≤ γR , where we let γL =

α(θ)(1−η2)(1−ε)

(1+2η)2−β(θ,η)(1−η2)(1−ε)
and γR =

α(θ)(1−η2)(1−ε)

1−β(θ,η)(1−η2)(1−ε)
. Moreover γL = γR iff η = 0.

Proof. For simplicity of notation we let ξ = [α(θ) + γβ(θ, η)]. Then by definition we have that g2 ≤ g1 iff:

ξ(1 − η2)(1 − ε) − γ ≤ 2(1 − η2)

(√
γ ξ

(1 + η)(1 − ε)

1 − η
−

γ

1 − η

)
and hence iff

ξ(1 − η2)(1 − ε) − γ + 2γ (1 + η) ≤ 2
√

ξγ (1 − η2)(1 − ε)(1 + η)2. (17)

Now if we let x2
= ξγ (1 − η2)(1 − ε) then inequality (17) becomes

x2
− 2xγ (1 + η) + γ 2(1 + 2η) ≤ 0 (18)

which has solutions for γ ≤ x ≤ γ (1 + 2η). It can easily be seen that γ ≤

√
ξγ (1 − η2)(1 − ε) iff γ ≤

α(θ)(1−η2)(1−ε)

1−β(θ,η)(1−η2)(1−ε)
and that

√
ξγ (1 − η2)(1 − ε) ≤ γ (1 + 2η) iff α(θ)(1−η2)(1−ε)

(1+2η)2−β(θ,η)(1−η2)(1−ε)
≤ γ. �

Now from Theorems 5 and 4 we have

Corollary 6. The value of γ that maximizes min(g1, g2) is γM if γM ≤ γL otherwise it is γL . Moreover maxγ>0
min(g1, g2) is equal to the value assumed by function g1 in γM , if γM ≤ γL , otherwise to the value assumed in γL , if
γM > γL .

As a consequence of this corollary we can obtain a more explicit evaluation of (10), as expressed by the following
lemma:

Lemma 7. If random variable Z satisfies (9) for γ ∈ {γM , γL}, then for the corresponding set S̃ computed by
Algorithm 1 at line 6.4, we have

w(S̃) ≥ ρ1w
∗ if η2

≤
1 − β(θ, η)(1 − ε)

4 − β(θ, η)(1 − ε)
and γ = γM (19)

w(S̃) ≥ ρ2w
∗ if η2

≥
1 − β(θ, η)(1 − ε)

4 − β(θ, η)(1 − ε)
and γ = γL (20)

with

ρ1 =
α(θ)

β(θ, η)(1 − η)
(1 −

√
1 − β(θ, η)(1 − η2)(1 − ε)) (21)

ρ2 =
4ηα(θ)(1 + η)(1 − ε)

(1 + 2η)2 − β(θ, η)(1 − η2)(1 − ε)
. (22)

Proof. We show first that η2
≤

1−β(θ,η)(1−ε)
4−β(θ,η)(1−ε)

iff γM ≤ γL , i.e. by definition, iff:

α(θ)

2β(θ, η)

(
1√

1 − β(θ, η)(1 − η2)(1 − ε)
− 1

)
≤

α(θ)(1 − η2)(1 − ε)

(1 + 2η)2 − β(θ, η)(1 − η2)(1 − ε)
. (23)

In fact if we let a = (1 + 2η)2 and b = β(θ, η)(1 − η2)(1 − ε) then (23) becomes equivalent to 1
√

1−b
≤

a+b
a−b which

is true iff 2
√

a ≥ a + b. But this inequality is equivalent to 1 − 4η2
≥ β(θ, η)(1 − η2)(1 − ε) which is true iff

η2
≤

1−β(θ,η)(1−ε)
4−β(θ,η)(1−ε)

.
Now from Theorem 4 and Corollary 6 it remains only to prove that ρ1 = g1(γM ) and that ρ2 = g1(γL). By

definition we have that

g1(γM ) = 2

(√
[γMα(θ) + γ 2

Mβ(θ, η)]
(1 + η)(1 − ε)

1 − η
−

γM

1 − η

)
. (24)
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For simplicity of notation we let ξM =

√
1 − β(θ, η)(1 − η2)(1 − ε) in the definition of γM . Then (24) becomes :

= 2


√√√√[α2(θ)(1 − ξM )

2β(θ, η)ξM
+

α2(θ)

4β(θ, η)

(
1 − ξM

ξM

)2
]

(1 + η)(1 − ε)

1 − η
−

γM

1 − η


= 2

√ α2(θ)

4β(θ, η)

(
1

ξM
− 1

)(
1

ξM
+ 1

)
(1 + η)(1 − ε)

1 − η
−

γM

1 − η


=

α(θ)(1 + η)(1 − ε)

ξM
−

α(θ)(1 − ξM )

ξMβ(θ, η)(1 − η)

= α(θ)
β(θ, η)(1 − η2)(1 − ε) − 1 + ξM

β(θ, η)(1 − η)ξM
= α(θ)

ξM − ξ2
M

β(θ, η)(1 − η)ξM
= ρ1.

We also have that

g1(γL) = 2

(√
γL(α(θ) + γLβ(θ, η))

(1 + η)(1 − ε)

1 − η
−

γL

1 − η

)
(25)

and if we let ξL = (1 + 2η)2
− β(θ, η)(1 − η2)(1 − ε), then (25) becomes:

= 2

√α(θ)2(1 − η2)(1 − ε)

ξL

(
1 +

β(θ, η)(1 − η2)(1 − ε)

ξL

)
(1 + η)(1 − ε)

1 − η
−

γL

1 − η


= 2

√α2(θ)(1 + η)2(1 − ε)2

ξL

(
1 +

β(θ, η)(1 − η2)(1 − ε)

ξL

)
−

α(θ)(1 + η)(1 − ε)

ξL


= 2

(
α(θ)(1 + η)(1 − ε)

ξL

√
ξL + β(θ, η)(1 − η2)(1 − ε) −

α(θ)(1 + η)(1 − ε)

ξL

)
=

4α(θ)(1 + η)(1 − ε)η

(1 + 2η)2 − β(θ, η)(1 − η2)(1 − ε)
= ρ2. �

Notice that functions ρ1 and ρ2, for each ε > 0, depend on η and also on the value fixed in the algorithm for θ .
For η = 0 and ε = 0, ρ1 coincide with the bound given in [12]; function ρ2 has instead no counterpart in [12].

3.1. The appropriate choice of θand k

In this subsection we discuss the choices that Algorithm 1 makes at line 2. Let us first consider the choice of θ .
Since ρ1 (ρ2 ), for fixed ε > 0, is a function of η and θ, then, for any given η, it is possible to compute, and to use in
the algorithm, the value of θ that maximizes ρ1 (ρ2). The ratios reported in the first three groups of lines of Table 1
have been computed with this strategy, for n sufficiently large (n ≥ 104) and ε = 0. Figs. 1 and 2 show the behavior
of the two functions; function ρ1 has been plotted for θ ∈ [0.8..1] and η ∈ [0..0.2], function ρ2 for θ ∈ [0.8..1]

and η ∈ [0.2..0.8]. In both cases we set ε = 0. It is evident that the value of θ that maximizes ρ1 (ρ2) is a value in
[0.88, 1).

For what concerns the choice of k we make the following considerations.
If we let x = [α(θ)+ γβ(θ, η)](1 − ε) and p = Pr{Z < x} then we have, for bounded values of η and hence of Z ,

that E[Z ] ≤ px + (1 − p) max(Z). This inequality, together with the fact that from Lemmas 2 and 3 it follows that
Z ≤ 2 +

γ

1−η2 and E[Z ] ≥ α(θ) + γβ(θ, η), implies that:

p ≤

2 +
γ

1−η2 − (α(θ) + γβ(θ, η))

2 +
γ

1−η2 − (α(θ) + γβ(θ, η))(1 − ε)
. (26)
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Fig. 1. Function ρ1, with θ ∈ [0.8..1], η ∈ [0..0.2].

Fig. 2. Function ρ2, with θ ∈ [0.8..1], η ∈ [0.2..0.8].

It can be verified that (
2+

γ

1−η2 −(α(θ)+γβ(θ,η))

2+
γ

1−η2 −(α(θ)+γβ(θ,η))(1−ε)
)k

≤ ε if we choose k =
1
ε

log 1
ε

for small value of η and γ = γM

or k =
1
ε

log 1
ε2 for large value of η and γ = γL .

In Algorithm 1 we therefore fix the values of θ and k according to these considerations. The overall performance
of the algorithm then may finally be specified by the following theorem:

Theorem 8. Let ε be a small positive constant. Then Algorithm 1 returns a solution SR having E[w(SR)] ≥ ρw∗

with:

ρ = ρ1(1 − ε) if η2
≤

1 − β(θ, η)(1 − ε)

4 − β(θ, η)(1 − ε)
(27)

ρ = ρ2(1 − ε) if η2
≥

1 − β(θ, η)(1 − ε)

4 − β(θ, η)(1 − ε)
(28)

where ρ1 and ρ2 are defined in (21) and (22).
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Proof. Let γ1 = γM , γ2 = γL . For each i ∈ {1, 2}, let xi = [α(θ) + γiβ(θ, η)](1 − ε), Zi be the random variable
defined in (8) with γ = γi , and Z Mi be the random variable assuming the maximum value for Zi in the loop of
Algorithm 1, with (S̃i , V \ S̃i )) being the corresponding cut. It is straightforward that E[w(SR)] ≥ E[w(S̃i )] and that
E[w(S̃i )] ≥ ρiw

∗Pr{w(S̃i ) ≥ ρiw
∗
}, i ∈ {1, 2}. Now from Lemma 7 it follows that Pr{w(S̃1) ≥ ρ1w

∗
} ≥ Pr{Z1 ≥

x1} when η2
≤

1−β(θ,η)(1−ε)
4−β(θ,η)(1−ε)

and also that Pr{w(S̃2) ≥ ρ2w
∗
} ≥ Pr{Z2 ≥ x2} when η2

≥
1−β(θ,η)(1−ε)
4−β(θ,η)(1−ε)

. From the
considerations made on the appropriate choice of k, we derive that Pr{Z Mi ≥ xi ) ≥ 1 − ε, for each i ∈ {1, 2} and
then the conclusion follows. �

Hence the following proposition can be stated and easily proved.

Proposition 9. For each of the values of η reported in the first three groups of lines of Table 1, the value of ρ

guaranteed by Theorem 8 is larger than the value of r reported in the table, for n sufficiently large.

Proof. The values reported in the table have been computed, by truncation at the third decimal, for each η, using the
value of θ that maximizes ρ1 (ρ2) for n sufficiently large (n ≥ 104) and ε = 0. Since ρi (1 − ε) tends, for ε → 0 , to
a value greater or equal to the one reported in the table, the result follows. �

4. The algorithm for large unbalance

In this section we use the following very simple algorithm, that uses function rebalance(S), introduced in Section
3. Here with wM we indicate the weight of a maximum cut.

Algorithm 10.
- use the algorithm in [8] to obtain a cut (S, V \ S) having w(S) ≥ 0.87856 wM ;
- denote by S the set of vertices with larger cardinality;
- if |S| ≤ (n + B)/2 /* the cut is feasible for MaxCUT-LU */

let S̃ = S else let S̃ = rebalance(S);
- return S̃.

We have the following:

Theorem 11. Algorithm 10 returns a set S̃ having:

w(S̃) ≥ 0.87856
1 + η

2
w∗. (29)

Proof. If S̃ = S the result follows easily since wM
≥ w∗ and η ≤ 1. Otherwise, as in the proof of Lemma 3, the

removal from S of the |S| − (n + B)/2 vertices that contribute less to the weight w(S) of the cut reduces the weight
by at most w(S)

|S|
(|s| −

n+B
2 ). Hence w(S̃) ≥ w(S) −

w(S)
|S|

(|S| −
n+B

2 ) = w(S) n+B
2|S|

. Since w(S) ≥ 0.87856 wM the
result follows. �

5. Conclusions

We have presented two polynomial time randomized approximation algorithms giving nontrivial performance
guarantees for the MaxCUT-LU problem. The approximation ratios have been obtained by extending to this problem
the methodology used in [12] for Max Bisection and by combining this technique with another one that uses the
algorithm of [8]. Depending on the value of η, (27) or (28) or (29) give our best approximation result. In Table 1 we
report the ratios r obtained for some values of the parameter η, subdivided in 4 groups. The values in the first group
are given by (27), those in the last group are given by (29), the others by (28). Moreover the values reported in the first
three groups have been computed, for n sufficiently large (n ≥ 104) and ε = 0, with truncation at the third decimal,
using the values of θ , also reported in the table, that maximize the ratios.

For smaller n, e.g. n = 103, some of the approximation ratios in the table decrease only by 10−3. Note that the
breaking point between Algorithms 1 and 10 occurs for η <

√
2/3, as we have assumed.

In [7] an extensive computational experience with the algorithms we have analyzed is performed on several types of
graphs. It turns out that the approximation ratios obtained on these graphs are always much better than the theoretical
guarantees reported in Table 1.
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Table 1
Best r for different values of η (and optimal choices of θ )

η 0.0000 0.0500 0.1000 0.1050 0.1065
θ 0.888 0.890 0.894 0.895 0.895
r 0.699 0.731 0.759 0.761 0.762
η 0.1065 0.2000 0.3333 0.4000 0.4500
θ 0.893 0.941 0.966 0.972 0.975
r 0.762 0.788 0.797 0.798 0.798
η 0.4930 0.5000 0.6000 0.7000 0.8000
θ 0.977 0.977 0.980 0.982 0.984
r 0.797 0.797 0.795 0.793 0.790
η 0.8000 0.8500 0.9000 0.9500 0.9999
r 0.790 0.8126 0.834 0.856 0.878
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