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SUMMARY

Regulation of myosin and filamentous actin interac-
tion by tropomyosin is a central feature of contractile
events inmuscle and nonmuscle cells. However, little
is known about molecular interactions within the
complex and the trajectory of tropomyosin move-
ment between its ‘‘open’’ and ‘‘closed’’ positions on
the actin filament. Here, we report the 8 Å resolution
structure of the rigor (nucleotide-free) actin-tropo-
myosin-myosin complex determined by cryo-elec-
tron microscopy. The pseudoatomic model of the
complex, obtained from fitting crystal structures
into the map, defines the large interface involving
two adjacent actin monomers and one tropomyosin
pseudorepeat per myosin contact. Severe forms of
hereditary myopathies are linked to mutations that
critically perturb this interface. Myosin binding
results in a 23 Å shift of tropomyosin along actin.
Complex domain motions occur in myosin, but not
in actin. Based onour results,wepropose a structural
model for the tropomyosin-dependent modulation of
myosin binding to actin.

INTRODUCTION

Muscle contraction and many other motile processes such as

cell motility, endocytosis, or cytokinesis are mediated by the

interaction of members of the myosin superfamily with actin fila-

ments. ATP binding and hydrolysis bymyosin trigger a sequence

of conformational changes that are associated with an approxi-

mately 10,000-fold change in actin affinity. In turn, actin binding

promotes the successive release of phosphate (Pi) and ADP. The

movement of myosin along actin filaments is thought to be

caused by large conformational changes associated with the

release of the hydrolysis products. Rapid rebinding of ATP leads

tomyosin dissociation from the filament and initiates a new cycle

(Figures 1A and 1B). This mechanochemical reaction cycle, first

described by Lymn and Taylor (1971), was later extended to

greater detail, including several weakly and strongly bound
states of the actomyosin complex (Sweeney and Houdusse,

2010). It has only been partially characterized at the structural

level. Crystal structures of myosin motor domains in the absence

or presence of nucleotides or nucleotide analogs provide

detailed insights into states, in which myosin is dissociated

from the actin filament (Figure 1A) (Coureux et al., 2004;

Houdusse et al., 2000). However, because the complex of fila-

mentous (F)-actin with myosin (Figure 1A) is refractory to crystal-

lization, structural information on the actin-myosin complex was

only obtained at medium resolution from X-ray fiber diffraction

(Huxley et al., 1980; Irving et al., 2000) and cryo-electron micro-

scopic (cryo-EM) studies (Holmes et al., 2003; Rayment et al.,

1993; Volkmann et al., 2003). The highest resolution obtained

so far for a three-dimensional (3D) cryo-EM reconstruction was

14 Å and allowed the rigid-body fitting of actin andmyosin crystal

structures (Holmes et al., 2003). Along with spectroscopic

studies and crystal structures of myosin II and Vamotor domains

in the absence of nucleotide (Conibear et al., 2003; Coureux

et al., 2003; Reubold et al., 2003), this reconstruction strongly

suggests that myosin closes its so-called 50 kDa cleft upon

binding to F-actin. This conformational change is coupled to

the opening of the nucleotide-binding pocket in a manner that

is not yet fully understood.

In the basic functional unit of striated muscle, the sarcomere,

actin, and myosin filaments are arranged in parallel and slide

past each other to cause shortening. The interaction of myosin

with actin is controlled by the actin-binding proteins tropomy-

osin and troponin (Ebashi et al., 1969). At low Ca2+ concentra-

tions, troponin locks tropomyosin in a position on F-actin where

it obstructs the myosin-binding site, thus preventing contraction

of the sarcomere (Lehman et al., 1995). When Ca2+ binds to

troponin, tropomyosin moves azimuthally on the actin filament,

in this way exposing the myosin-binding site. Myosin attaches

to the actin filament and performs a power stroke, which results

in shortening of the sarcomere. So far, the only structural infor-

mation on the interaction of actin, myosin, troponin, and tropo-

myosin is a cryo-EM reconstruction at 26–30 Å by Milligan and

Flicker (1987). A better mechanistic description of the interac-

tion of actin and myosin and its regulation by tropomyosin

requires a spatial resolution, at which secondary structure

elements of proteins can be identified directly, i.e., subnano-

meter resolution.
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Figure 1. Actomyosin ATPase Cycle and Cryo-EM of F-Actin and the Complex of F-Actin, Tropomyosin, and the MyoE Motor Domain

(A) Scheme of the actomyosin ATPase cycle is illustrated.

(B) Schematic overview of myoE subdomains is shown.

(C) Subarea of an unprocessed image of the vitrified sample recorded at a defocus of 1 mm is demonstrated. The presence of a mixture of two filament types is

evident (decorated filaments marked by white arrowheads; undecorated filaments marked by black arrowheads). Filaments appear to be either decorated or

undecorated over their complete length. Scale bar, 50 nm.

(D) Representative class averages of the decorated filaments (35,374 segments) are presented. No classes with partial decoration were identified. Scale bar,

20 nm.

(E) Representative class averages of the undecorated filaments (4,629 segments) are illustrated. No classes with partial decoration were identified. Scale bar,

20 nm.

(F) Fit of pseudoatomic model into the electron density map of the ATM complex is shown. Central subunits are depicted as ribbon traces of the Ca coordinates.

MyoE, actin, and tropomyosin are salmon, light green, and blue, respectively. Arrowhead indicates the contact between myoE and actin �2. Scale bar, 5 nm.

See also Figure S1.
Here, we report the first subnanometer-resolution structure of

the actin-tropomyosin-myosin complex in the rigor (nucleotide-

free) state determined by cryo-EM. The pseudoatomic model

of the complex, obtained from fitting crystal structures into the

map, defines a large actin-myosin-tropomyosin interface. This

interface involves two adjacent actin monomers and one tropo-
328 Cell 150, 327–338, July 20, 2012 ª2012 Elsevier Inc.
myosin pseudorepeat per myosin motor domain contact. Hydro-

phobic interactions that were not predicted from MD simula-

tions, as well as potential salt bridges and electrostatic

interactions, define a strong contact between myosin and actin.

Due to this interaction, the proteins are interlocked in

a cogwheel-like manner. Furthermore, we provide structural



evidence for direct interactions between myosin and tropomy-

osin in the complex. The actin-myosin interface creates a neutral

groove with positively charged patches that can optimally

accommodate negatively charged areas on tropomyosin. The

critical importance of the tight interaction of all three proteins is

further supported by the fact that several mutations in cardiac

b-myosin or a-actin isoforms resulting in severe forms of familial

hypertrophic cardiomyopathy (CM) map to the actin-myosin-

tropomyosin interface. By comparing the rigor (nucleotide-free)

and prepower stroke (ADP/Pi-bound) state of actin, tropomy-

osin, and myosin, we discovered that binding of myosin results

in a shift of tropomyosin along the actin filament and conforma-

tional changes in myosin, but not in actin. Notably, the closure of

the 50 kDa cleft is mediated mostly by a 16� rotation of the upper

50 kDa (U50) subdomain of myosin. Finally, we propose a struc-

tural model for tropomyosin-dependent myosin binding to actin

and for actin-induced nucleotide release from myosin.

RESULTS AND DISCUSSION

Structure Determination and Overall Architecture
Because the F-actin-tropomyosin-myoE (ATM) complex is

most stable in the rigor state, with the nucleotide-free myosin

strongly bound to tropomyosin-decorated F-actin (Figure 1A),

we chose to work with the complex in this state. By screening

many combinations of F-actins and myosin motor domains,

we searched for filaments that would work best for EM (fully

decorated, straight, stiff, and not bundled). The combination

of rabbit skeletal muscle F-actin with the motor domain of

Dictyostelium discoideum myosin-IE (Kollmar et al., 2002)

(myoE), a fast single-headed molecular motor that is involved

in the phagocytic uptake of solid particles, bacteria, and yeast

cells (Dürrwang et al., 2006), proved to be the best specimen

for this study. The addition of skeletal muscle tropomyosin,

which wraps around the F-actin filament, improved the rigidity

of the filaments even further. We observed that actin filaments

were either fully decorated with myosin and tropomyosin or

did not bind the proteins at all (Figures 1C–1E). This suggests

that tropomyosin and myosin have a higher affinity to the

F-actin-myosin and F-actin-tropomyosin complex, respectively,

than to F-actin alone. These findings are in good agreement with

previous studies showing that themyosinmotor domain subfrag-

ment 1 (S1) binds to F-actin-tropomyosin filaments with a 7-fold

higher affinity than to undecorated F-actin (Geeves and Halsall,

1986) and that myosin increases the actin affinity of tropomyosin

(Eaton, 1976).

We collected cryo-EM images and analyzed them as

described in Experimental Procedures. After separation of the

data into two sets for either decorated or nondecorated fila-

ments (Figures 1D and 1E), we determined 3D cryo-EM struc-

tures of both F-actin alone and the ATM complex at a resolution

of 8.9 and 7.7 Å, respectively (Figure 1F; see Figures S1A and

S1E available online). For the ATM complex, we determined in

total three different structures from the same data set that

differed mainly in the regions most distant from the helical axis

(see also Experimental Procedures and Figures S1B–S1D).

The pseudoatomicmodel of F-actin obtained fromapreviously

published cryo-EM study by Fujii et al. (2010) and the atomic
model of myoE by Kollmar et al. (2002) were then fit into the elec-

tron densities (Figures 1E and S1). Because no crystal structure

of the full tropomyosin complex has been obtained, we used

a previously published tropomyosin model that was created

based on crystal structures of subfragments, low-resolution

EM data, and its optimal electrostatic fit to actin (Li et al.,

2011). In this way, we obtained a pseudoatomic model of the

complete ATM complex that defines the molecular interactions

between the partner proteins.

Actin-Myosin Interface
Our pseudoatomic model clearly shows that myosin interacts

with two adjacent actin molecules via several loops forming

a large contact surface (1,820 Å2). Whereas loop 2, and helix

HW, loop 4 and the CM loop of myoE form large contacts to

SD1 and SD3 of the neighboring actin molecule (actin 0),

loop 3 attaches to SD1 of the next lower actin along the long

pitch helix. In addition, a helix-loop-helix motif of the lower

50 kDa (L50) subdomain of myosin protrudes into a cavity

formed by SD1 and SD3 of the upper and by the SD2 domain

of the lower actin (actin �2), thereby interacting with both of

them (Figures 2, 3A, and S2; Movie S1). By examining the

hydrophobic surface potentials, it becomes obvious that both

the helix-loop-helix motif and the cavity are predominantly

hydrophobic (Figure 3B). In addition, two clusters of hydro-

phobic residues on the CM loop interact with hydrophobic

regions on actin (29–31, 329–334). As shown before, these

hydrophobic stretches are important for maintaining the strong

binding state of myosin (Sasaki et al., 1999). Their critical

importance for a tight binding is further supported by the fact

that mutations in the genes encoding cardiac b-myosin or

a-actin isoforms that result in myopathies map to hydrophobic

regions of the ATM interface (Figure 3E; Table S1).

In contrast, the contacts between other regions of the actin-

myosin interface are mostly mediated by electrostatic interac-

tions and potentially involve the formation of salt bridges (Figures

2B, 2C, and 3C; Movie S2). Salt bridge formation appears to

contribute to the formation of a double sandwich composed of

the highly negatively charged N terminus of actin (D1, E2, D3,

E4), a conserved positively charged region in myoE loop 2 and

on helix HW (K556, K557, R558, R567), a negatively charged

loop from actin SD1 (residues 20–28 [D24, D25]), and conserved

positively charged residues on the myoE CM loop (R323, K331,

R332) (Figures 3C, 3D, and S3A). The importance of these

charged residues has been shown previously. MyoE residue

R332 corresponds to human b-cardiac myosin R403, which is

associated with a severe form of familial hypertrophic CM

when mutated to glutamine (Figure 3E; Table S1) (Geisterfer-

Lowrance et al., 1990). Mutation of D25 to asparagine in skeletal

a-actin causes one of the most severe forms of the congenital,

hereditary neuromuscular disorder nemaline rod myopathy (Fig-

ure 3E; Table S1) (Sparrow et al., 2003). The two conserved

lysines at the C-terminal end of myosin loop 2 (K652/K653 in

smoothmusclemyosin II and K556/K557 inmyoE) are necessary

for triggering actin activation. The net charge and charge density

of loop 2 greatly affect actin affinity and for nonprocessive

myosins, actin-activated ATPase activity (Furch et al., 1998;

Joel et al., 2001).
Cell 150, 327–338, July 20, 2012 ª2012 Elsevier Inc. 329



Figure 2. The Binding Interface with Potential Key Electrostatic Interactions among Myosin, Tropomyosin, and Actin 0 and �2

(A) Overview of the binding interface between myosin and actin from side and top view is shown. Regions on myosin involved in actin binding are highlighted and

labeled: loop 2 (547–561), helix HW (563–577), loop 3 (482–501), loop 4 (278–298), CM loop (322–342), and helix-loop-helix motif of the L50 subdomain (445–481).

(B) Pseudoatomic model of the complete binding interface is presented. Potential interaction partners with complementary charges in close proximity are de-

picted as colored spheres. In addition the TEDS site (which is not part of the interface) is depicted as a pink sphere. The interface between actin 0 and myosin

extends over 1,450 Å2, the interface between actin �2 and myosin over 370 Å2, the interface between actin 0 and tropomyosin over 210 Å2, and the interface

between myosin and tropomyosin over 300 Å2.

(C) Cartoon representation of the interface is illustrated. Residues are colored by charge at pH 7.4. Asterisk denotes residues that are part of the actin �2

interface. For tropomyosin only residues of repeat V are depicted.

Scale bars, 1 nm.

See also Figures S2 and S3 and Movies S1 and S2.
Loop 2 sits not only in the middle of the described double

sandwich but also at the center of the major actin-myosin inter-

face. Our results shed light on the contribution of the actin

N-terminal part to the actin-myosin interaction. It is well known

that negative charges at the N-terminal part of actin are of critical

importance for the ATP-dependent actin-myosin interaction

(Miller et al., 1996), especially for weakly bound actomyosin

states (Hansen et al., 2000). Remarkably, the N-terminal part is

one of the few regions of actin that is not highly conserved

(Figures 3C and 3D).

Our data also help to understand the role of the conserved

TEDS site (S334, in our structure mutated to E334 to mimic

phosphoserine; see also Experimental Procedures), which is

located in the CM loop. As becomes obvious from our model,
330 Cell 150, 327–338, July 20, 2012 ª2012 Elsevier Inc.
the side chain of E334 is not oriented toward actin but stabilizes

the CM loop through interaction with the neighboring residue

K332. This type of interaction was suggested earlier by

comparing the crystal structure of the unphosphorylated

myoE wild-type motor domain, where the CM loop is disor-

dered, to structures of other myosins with a glutamate or aspar-

tate residue at this position (Kollmar et al., 2002).

It was shown that residues D460, E461, and A462 on the

myosin helix-loop-helix motif are important for the myosin-actin

interaction (Furch et al., 2000; Giese and Spudich, 1997).

Although these conserved residues are at the actin-myosin inter-

face in our model, there are no obvious complementary charges

on the actin surface. It is therefore more likely that the negative

charges in this region are important for stabilizing myosin



Figure 3. Binding Interfaces between

F-Actin, MyoE, and Tropomyosin and Map-

ping of Residues Responsible for Myopa-

thies when Mutated in Human Proteins

Tropomyosin has been rotated 120� clockwise

and shifted to the left, whereas myosin has been

rotated 120� counterclockwise and shifted to the

right. Interfaces were calculated and are delimited

by lines drawn onto the surfaces.

(A) Overview of the complex is presented. Impor-

tant loops of actin and myosin are highlighted to

help with orientation.

(B) Calculated surface hydrophobicity potential is

demonstrated. Hydrophobic patches are colored

orange.

(C) Calculated surface electrostatic potential at pH

7.2 is illustrated. Positive-charge density is colored

blue, and negative-charge density is red. Both

tropomyosin and actin appear largely negatively

charged, whereas the interface site of myosin is

dominated by positive charges.

(D) Surface map colored by residue conservation

score is presented. Conserved residues are shown

in pink. Actin and tropomyosin are highly

conserved, whereas the interface site of myosin

only contains a few conserved residues.

(E) Pseudoatomic model of the complete binding

interface with residues that are associated with

myopathies, when mutated in human cardiac

actin, tropomyosin, and myosin depicted as

colored spheres is shown. For tropomyosin only

residues of repeat V are depicted.

Scale bars, 2 nm.

See also Table S1 and Movies S1 and S2.
loop 2 (R567) by electrostatic interactions. This would also

explain the observed effect of charge-modifying mutations on

actin affinity (Furch et al., 2000).

Earlier studies suggested an additional stabilization of the

actomyosin complex by interaction of loop 3 with the SD2 of

actin �2 (Milligan, 1996; Rayment et al., 1993; Schröder

et al., 1993). Our cryo-EM structure confirms that this contact

exists (Figure 1F). Based on our model, we can show how salt

bridges may contribute to this contact (Figures 2B and 2C).

Biochemical experiments indicate that loop 3-mediated

contacts are not a feature shared between all myosin isoforms

(Van Dijk et al., 1999). Their presence in the complex formed

by myoE and F-actin may contribute together with other factors,

such as the lack of an SH3-like N-terminal domain, to the well-

ordered and straight appearance of the decorated filaments

used in our study. Despite local differences, basic features of

the complex described here are shared with other types of

myosins. The motor domain is the most conserved region

of myosin. Only minor structural differences are observed in

the polypeptide backbone positions of myoE and myosin II (Koll-

mar et al., 2002). Differences are restricted to the nature of side
Cell 150, 327–
chains in less well-conserved regions,

and the length and composition of

surface loops. In comparison to similar

myosins, these loop regions appear to
be actually more constrained than the sequences of the rest of

the myosin molecule (Goodson et al., 1999).

From Prepower Stroke to Rigor State
The previously observed intrastrand crosslinking of actin fila-

ments indicated that structural transitions in actin are necessary

for actomyosin force generation (Kim et al., 2002). To identify

putative conformational changes in F-actin that result from

myosin binding to the actin filament, we compared F-actin

models derived from undecorated with myoE-decorated actin

filaments (Figures 4A–4C and S4A–S4H). We superposed the

atomic models of an undecorated (Figure S1A) and decorated

F-actin subunit (Figures 1F and S1D) and determined the root-

mean-square deviations (rmsds) between the carbon-a positions

(Figures 4A and 4B). The low rmsds indicate that conformational

changes are minimal and distributed over the whole structure.

The strongest differences were localized in the region of the

DNase I-binding loop and near the N terminus. This was also

corroborated by eigenanalysis using a set of different F-actin

models (Figures 4C and S4A–S4H). Besides their direct influence

on force generation, conformational changes in this region may
338, July 20, 2012 ª2012 Elsevier Inc. 331



Figure 4. Conformational Changes

between Prepower Stroke and Rigor State

Analysis of the variability of F-actin (A–C) and

myoE (D–F) between prepower stroke (undeco-

rated) and rigor (decorated) state is illustrated. (A

and B) Atomic models of an undecorated (Fig-

ure S1A) and decorated F-actin subunit (Figures

1D and S1D), respectively, were reduced to

a carbon positions only, superposed, and the

rmsd was determined. Models are color coded by

Ca rmsd values ranging from 0 Å (blue) to 10 Å

(red). Major differences are found in the carboxy-

terminal region of the DNase I-binding loop (resi-

dues 39–52) and the amino terminal region (resi-

dues 1–5). (C) We performed an eigenanalysis

using the published models of F-actin (Fujii et al.,

2010; Oda et al., 2009) (PDB 2ZWH and 3MFP),

our undecorated actin model (Figure S1A), and our

three models of actin decorated with myosin and

tropomyosin (Figures S1B–S1D). Depicted is the

visualization of the first eigenvector as a trajectory

of SD-scaled displacements from the average

structure. No clear pattern of displacements is

discernable. Actin is colored with a rainbow

gradient from blue (amino terminus) to red

(carboxyl terminus). (D and E) Atomic models of

myosin in the prepower stroke (PDB 1LKX, chain

C) and rigor state (Figure 1D) were reduced to

a carbon positions only, superposed, and the

rmsd was determined. Models are color coded by

Ca rmsd values in the range of 0–20 Å. In the

converter domain, displacements ranged up to

40 Å. The second-highest displacement locates to

the U50 subdomain. (F) We performed an eige-

nanalysis using the four available models of myoE in the nucleotide-bound state (Kollmar et al., 2002), actin-unbound state (PDB 1LKX, chains A–D), and our three

models of nucleotide-free, actin-bound myoE (Figures S1B–S1D). Depicted is the visualization of the first eigenvector. Although the L50 subdomain, especially

the helix-loop-helix motif, is almost invariable, clear changes are seen in all other subdomains indicating closure of the 50 kDa cleft and rotation of the converter

domain. Myosin is colored with a rainbow gradient from blue (amino terminus) to red (carboxyl terminus). Scale bar, 1 nm.

See also Figures S4 and S5 and Movie S3.
be responsible for the observed cooperativity of tropomyosin

and myosin binding (Figure 1). Interestingly, when we comparing

our F-actin model with previously published F-actin models (Fujii

et al., 2010; Oda et al., 2009), we observed the highest variability

in the DNase I-binding loop and the region next to theN terminus,

whereas the remaining regions of actin are almost invariable

(Figures S4J–S4O). Therefore, we cannot rule out that the

observed differences between undecorated and decorated

F-actin are caused by a higher flexibility of these F-actin regions,

as described for F-actin (Galkin et al., 2010; Splettstoesser et al.,

2011). However, based on the lack of an SH3-like domain in

myoE, which had been implicated in the cooperative binding of

myosin heads to F-actin based on its role inmediating the forma-

tion of contacts between adjacentmyosin heads (Schröder et al.,

1993), we can now exclude that head-to-head contacts are

important for the cooperativity of F-actin decoration by myosin

motor domains.

By comparing our model for myoE in the rigor state (Figures

1A and 1F) with the structure of myoE in the ATP state (PDB

1LKX, chain C) (Figure 1A) (Kollmar et al., 2002), where myosin

does not bind to actin, we identified conformational changes in

myoE that result from its binding to the actin filament (Figures

4D and 4E). The cleft that separates the L50 and U50 subdo-
332 Cell 150, 327–338, July 20, 2012 ª2012 Elsevier Inc.
mains in the unbound myosin in the prepower stroke state

closes upon binding to actin by a 16� rotation of the U50 subdo-

main. As expected, the N terminal and the converter domain

undergo large transitions, resulting in a swing of the lever arm

by �70� (Figures 4D and 4E; Movies S3 and S4). The same

regions of variability were also found by eigenanalysis of the

four available models of myoE in the nucleotide-bound state

(Kollmar et al., 2002), actin-unbound state (PDB 1LKX, chains

A–D), and our three models of nucleotide-free, actin-bound

myoE (Figures S1B–S1D, 4F, and S5A–S5F). Interestingly, the

L50 subdomain shows only little movement. This indicates

that this subdomain is the site for the initial weak binding of

myosin to actin, whereas the U50 subdomain interacts with

actin only upon closure of the 50 kDa cleft, resulting in the

formation of the full actomyosin-binding site and strong binding

of myosin. As perceived from our ATM model, the contact

between the L50 subdomain and actin is mainly based on

hydrophobic interactions, whereas the large interface between

the U50 subdomain and actin is predominantly supported by

electrostatic contacts. In fact, the weak binding state is, in

contrast to the strong binding state, not affected by ionic

strength but can be disrupted by organic solvent (Geeves and

Halsall, 1986). This indicates that mainly hydrophobic and



hydrophilic interactions contribute to the weak and strong

binding state, respectively.

Myosin motor domains can be crystallized in their nucleo-

tide-free state, as shown for chicken myosin V (Coureux

et al., 2003) and Dictyostelium myosin II (Reubold et al.,

2003). Despite the absence of F-actin, the 50 kDa cleft is

closed in these structures. We compared our pseudoatomic

model of myoE with the structure of the myosin V motor

domain in the nucleotide-free state (Coureux et al., 2003) and

found that they are quite similar. This indicates that this crystal

structure indeed represents the strong binding conformation of

myosin (Figures S3B–S3E). In both models, the central b sheet

takes on the more twisted conformation compared to the

respective postrigor and prepower stroke structures (Figures

S3D and S3E). Whereas the U50 and L50 subdomains overlay

fairly well, there are some differences in the HG, SH1, and SH2

helices and the converter domain (Figures S3B and S3C).

Compared to other regions of the myosin motor, the converter

domain and closely associated structural elements, such as the

SH1 and SH2 helices, display increased mobility or greater

variability in orientation in structurally well-accessible states

of the ATPase cycle.

Rigor Does Not Mean Rigid
The F-actin models as well as the tropomyosin models obtained

from the three ATM reconstructions (Figures S1B–S1D) differ

only marginally (Figures S4I and S4P–S4U). The myoE models,

however, show major differences in the U50 subdomain and

especially in the converter domain when the three ATM recon-

structions (Figures S1B–S1D) are compared (Figures S5G–S5L;

Movie S4). This suggests that myosin displays conformational

flexibility even when it is tightly bound to F-actin, as previously

reported by Klein et al. (2008). Interestingly, high variability was

also observed in the region of the converter domain when the

four conformers of the myoE prepower-stroke crystal structure

(Kollmar et al., 2002) were compared (Figures S5M–S5R). This

indicates that flexibility of the converter domain is an intrinsic

property of myoE. Remarkably, the movement of the converter

domain does not result in a movement of the lever arm in the

direction of the power stroke, but in a lateral movement perpen-

dicular to the axis of the actin filament. If we assume a high

rigidity of the myosin tail, this flexibility could be important for

a proper interaction of myosin with F-actin because it allows

the myosin head to be azimuthally rotated with respect to the

actin filament.

Tropomyosin in the M State
Skeletal muscle tropomyosin is an �40-nm-long a-helical

coiled-coil protein that winds around the actin filament. Overlaps

between the N and C termini of adjacent tropomyosins occur at

every seventh actin, leading to the formation of a continuous

rope-like structure. Tropomyosin is divided into seven pseudo-

repeating units, each of which binds to a successive actin mono-

mer along F-actin. Because these units are very similar and not

distinguishable at a resolution of �8 Å, we applied the helical

symmetry of actomyosin to achieve maximal resolution but at

the same time accepting that the overlap region of the N and C

termini will not be visible in the maps.
Our electron densities show clearly two separated rod-like

features that correspond to the two a helices of the tropomyosin

coiled-coil winding around the actomyosin complex (Figures 1F

and S1B–S1D). It becomes obvious from both our structure and

model that tropomyosin fits nicely into the groove between actin

and myosin (Movie S2). This shape complementarity, referred to

as Gestalt binding, was described by Holmes and Lehman as

a necessary prerequisite for the specific actin-tropomyosin inter-

action (Holmes and Lehman, 2008). In addition the complex is

stabilized by electrostatic interactions between myosin and

tropomyosin. Myosin loop 4 acts as a central linker that can

interact with both actin and tropomyosin via salt bridges (Figures

2 and S2). Myopathy-causing mutations of tropomyosin at the

ATM interface either remove one of the charged residues

involved in salt bridge formation or cause charge reversal,

thereby perturbing the proper interaction of the proteins in the

ATM complex (Figure 3E; Table S1C).

In muscle thin filaments, three different positions of tropomy-

osin are presumed to exist. At low Ca2+ concentrations, troponin

holds tropomyosin in the B (blocked) position. When Ca2+ levels

increase, troponin allows tropomyosin to azimuthally move by

�25� to adopt the C (closed) state that allows initial myosin

binding to actin. Myosin binding induces a further �10� shift to

the M (open) position (McKillop and Geeves, 1993; Vibert et al.,

1997). It has long been deliberated whether tropomyosin slides

or rolls over actin when changing between the different states.

A rolling mechanism would imply that tropomyosin is a rather

flexible molecule, whereas a more rigid-body-like behavior

would be required for a slidingmovement. Although the observa-

tion of systematic solvent exposure changes across specific

stretches of the tropomyosin surface supports a rolling model

(Holthauzen et al., 2004), the low twisting stiffness of tropomy-

osin and its cooperative behavior favor a sliding movement (Li

et al., 2010).

Using low-resolution EM structures and computational chem-

istry, Li et al. identified a position of tropomyosin on F-actin with

optimal electrostatic complementarity (Li et al., 2011). They

postulated this to be its preferred position in the absence of

troponin or other constraints (Li et al., 2011) (Figure 5). Because

this position covers the myosin-binding sites on actin SD3 and

part of actin SD2 (Figure 6A; Movie S5), it must correspond to

the B rather than to the C state of tropomyosin. In order to

move from this position to the M state, the position of tropomy-

osin in our cryo-EM structure, tropomyosin needs to be slightly

rotated and shifted by �23 Å (Figures 5 and 6B; Movie S5).

This corresponds to an azimuthal rotation of �31.5� and results

in an overall upward shift of tropomyosin along the filament (Fig-

ure 5; Movie S6). In comparison to the model of Li et al. (2011),

the torsion angle of tropomyosin does not significantly change,

but its radius is slightly decreased (Figure 5).

The large size of the azimuthal rotation also suggests that we

observe a shift from the B to theM state rather than from the C to

the M state. Our results strongly suggest that tropomyosin

undergoes mainly sliding instead of rolling movements on

F-actin. Because troponin is missing in both the model of Li

et al. (2011) and our pseudoatomic model, the position and

movement of tropomyosin may not reflect the situation in sarco-

meres, where troponin regulates the position of tropomyosin, but
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Figure 5. Tropomyosin in the B and M State
(A) Comparison of the actin-tropomyosin model when tropomyosin in its B

state (Li et al., 2011) (left) with the ATM model when tropomyosin is in the M

state (right) is shown. The axis of tropomyosin and the actin filament are de-

picted as black bars. The angle between the tropomyosin filament and the

actin filament remains unchanged upon myosin binding at �20�. Scale bar,

2.5 nm.

(B) The density of actin-tropomyosin by Li et al. (2011) was calculated at 8 Å

resolution and compared with the ATM cryo-EM structure. Depicted are slices

through the filament at the three positions indicated by vertical markers in (A).

Upon myosin binding the position of tropomyosin is rotated azimuthally by

�31� as indicated by the arrows. In addition to the rotation, the radial position

of tropomyosin is reduced from 43 to 40 Å. Scale bar, 5 nm.

(C) Overlay of the two states depicted in (A) with actin and myosin faded is

presented. Displacement of tropomyosin can be described as a shift along the

334 Cell 150, 327–338, July 20, 2012 ª2012 Elsevier Inc.
could more closely resemble the interaction between the

proteins in nonmuscle cells.

Model for Myosin Binding and the Myosin Power Stroke
Our pseudoatomic model provides important insights into the

actin-myosin-tropomyosin interaction. Although the structural

record is by no means complete for the sequence of events

associated with myosin binding, the actin-catalyzed release of

hydrolysis products, and the power stroke, we can use the infor-

mation provided by our atomic models of myoE in the prepower

stroke and rigor states to define critical steps in the process and

suggest the following mechanism.

Because our models show that the L50 subdomain and loop 3

are the most invariant regions between myosin in the prepower

stroke and the rigor state (Figures 4D–4F), we propose that

myosin initially binds mainly via this region to F-actin. In contrast

to the other binding sites on actin, the ones for the L50 subdo-

main and loop 3 only exist on F-actin because it is formed by

the interface of two actins. Initial binding in this region might

therefore also serve for myosin to discriminate between G- and

F-actin.

In order for myosin to bind to tropomyosin-decorated actin in

the absence of troponin, myosin needs to rotate azimuthally by

20� away from its final binding position (Figure 6C). This mode

of binding is consistent with previously described interactions

of loop 2 with actin (Furch et al., 1998; Murphy and Spudich,

1999) and the aforementioned described flexibility of the

converter domain. A subsequent rotation and closure of

myosin’s 50 kDa cleft, which is induced by strong interactions

between actin and myosin, will push tropomyosin further aside

by about 23 Å (Figure 6C;Movie S7A). At the same time tropomy-

osin diffusion from the actomyosin complex is prevented by

Gestalt binding and electrostatic interactions. In this model an

oscillation of tropomyosin betweenM and B states, as described

by McKillop and Geeves (1993), is not necessary. However, if

myosin cannot rotate in this manner, its binding to actin will be

sterically hindered as long as tropomyosin remains in the B state

and oscillation of tropomyosin is required (Movie S7B).

Whereas individual actin monomers and monomer contacts

within the filament do not significantly change their conformation

during the interaction with myosin, myosin undergoes large

changes (Figure 7). A rotation of U50 toward actin, and the L50

subdomain closes the 50 kDa cleft (Figures 4D, 4E, 7A, 7C,

and S6A; Movie S3). The resulting structural changes are then

transmitted to actin-distal myosin domains (Figures 7D, 7E,

S6B, and S6C). This leads to a compression of the transducer

domain, which is further amplified by the L50 subdomain

(Figures 7F and S6D). As a result, the N-terminal domain of

myosin is compressed like a spring, which relaxes by a rotation

only after Pi and ADP are released, resulting in a large swing of

the lever arm (Figures 7G, 7H, S6E, and S6F). This is the mech-

anistic basis for the amplification of the movement induced by
surface of the actin filament with additional lateral movement. MyoE, actin,

and tropomyosin are salmon, light green, and blue, respectively. Scale bar,

2.5 nm.

See also Movies S5 and S6.



Figure 6. Model of Myosin Binding and Displacement of Tropomyosin on Actin Filaments in the Absence of Troponin

(A) Tropomyosin in its B state obscures a large part of the myosin-binding site on actin.

(B and C) A shift of tropomyosin from its B to M state exposes the myosin-binding sites and allows myosin to attach to actin. This results also in an additional

interface between tropomyosin and myosin. Either tropomyosin oscillates between its B and M state in the absence of troponin, or (C) the myosin motor domain

rotates azimuthally to the axis of actin by about 20�, so that the L50 subdomain of myosin can interact with myosin-binding sites on actin, which are not occluded

by tropomyosin. Closure of the 50 kDa cleft and an azimuthal rotation of myosin fully move tropomyosin to its position in the M state. Scale bar, 1 nm.

See also Movie S7.
the release of energy obtained from ATP hydrolysis by interac-

tion with myosin at the L50 and U50 subdomain. The power

stroke can only be fully completed after Mg2+-ADP has been

released from the nucleotide-binding pocket. A detailed descrip-

tion of this process is given in Figure 7.

Obviously, more evidence is needed before our model for

myosin binding and the myosin power stroke can be regarded

as established. Thus, additional structures of intermediate

states, such as the weakly and strongly bound ADP states, are

needed.
Implications for Myopathies
Mutations of the genes encoding human tropomyosin, actin, and

myosin isoforms are in part associated with familial hypertrophic

CM or nemaline rod myopathy (Bonne et al., 1998). Our subnan-

ometer-resolution structure of the ATM complex allows a clear

assignment of residues contributing to the ATM interface

(Table S1). Mutations associated with severe myopathies are

distributed all over the interface, where key residues are

conserved across isoform and species boundaries (Figure 3E).

Disease-causing mutations disrupt both electrostatic and
Cell 150, 327–338, July 20, 2012 ª2012 Elsevier Inc. 335



Figure 7. Model of Actin-Induced Force Generation in Myosin

(A) Overview of structural changes in myosin needed for transition from prepower stroke (light gray) to rigor state (dim gray) is illustrated. Helices and loops

associated with important conformational changes are highlighted in color (helix HK, dark and light blue; helix HG, red and orange; helix HH, olive and green; helix

HW, purple and pink; relay helix, dark and light brown; loop 1, dark and light lilac; loop 2, dark and light cyan; switch I/II and P loop, orange and yellow; transducer

b sheets, green and light green; SH1+SH2 helix, blue and light blue; lever arm,magenta and dark magenta; rigor and prepower stroke positions, respectively) and

labeled.

(B–H) Flow chart and (C–H) schematic views describing the model of the power stroke are demonstrated. See Figure 1B for an overview of myoE subdomains. (C)

Binding of the CM loop and loop 4 to actin induces a rotation of the U50 subdomain toward actin, which results in the closure of the 50 kDa cleft. Due to this

rotation helices HO and HK are pushed in a seesaw-like mechanism toward the N-terminal domain. (D) The concerted action of helices HO and HK forces helices

HG and HH to bulge and shift, which successively displaces helices HF and HD of the N-terminal domain. (E) These displacements of helices are directly

transmitted to switch I, loop 1, the P loop, and the fourth b strand of the central transducer sheet. (F) Induced by a strong binding of loop 2 to actin, the HW helix of

the L50 subdomain is pulled toward actin, transmitting the force to the fifth b strand. (G) Pi and ADP binding by switch I is destabilized, and the back door for Pi is

opened. (H) Release of Pi and ADP results in a rotation of the N-terminal subdomain, which pulls on the SH1 and SH2 helices. This leads to a rotation of the

converter domain accompanied by a stretching of the kinked relay helix and a large swing of the lever arm. Scale bar, 1 nm.

See also Figure S6.
hydrophobic contacts, thereby directly perturbing the interac-

tions between actin, tropomyosin and myosin. Our structure of

the ATM complex could serve as a strong foundation to address

the role of individual mutations in the genesis of myopathies.

Moreover, the elucidation of key interactions in the ATM inter-

phase will facilitate the development of drugs that target the

mutated ATM complex. A drug-based approach is very attrac-

tive due to the highly localized effects of the disease-causing
336 Cell 150, 327–338, July 20, 2012 ª2012 Elsevier Inc.
mutations, which can be linked to the isoform-specific composi-

tion displayed by ATM complexes throughout vertebrate cells

and tissues.
EXPERIMENTAL PROCEDURES

Detailed experimental procedures can be found in the Extended Experimental

Procedures.



Filament Preparation

F-actin was prepared from rabbit skeletal muscle. Recombinant tropomyosin

and myoE were purified from E. coli and Dictyostelium discoideum cells,

respectively. Thin filaments were prepared by mixing F-actin (0.1 mg ml�1)

with tropomyosin at a molar ratio of 1:7 in 5 mM HEPES-OH (pH 7.2),

100 mM KCl, 2 mM MgCl2, 50 mM glutamine, and 50 mM arginine. The full

complex was prepared by additionally adding myoE at slight molar excess

to the thin filaments. The resulting filament suspension was used for cryo-

EM within 15 min to minimize bundling.

Electron Microscopy

For cryo-EM the sample was diluted 10-fold, applied to C-Flat R2/1 holey

carbon grids (Protochips), and vitrified. Filaments were imaged with a JEM-

3200FSC electron microscope (JEOL) at an acceleration voltage of 200kV

operated at liquid nitrogen temperature. An in-column omega energy filter

was used to improve image contrast by zero-loss filtering with a slit-width

of 12 eV. Micrographs were recorded at 169,6443 magnification with an

8k3 8k TemCam-F816 CMOS camera (TVIPS) under minimal dose conditions

(15–20 e�/Å2) resulting in an effective pixel size of 0.92 Å on the specimen

scale.

Image Processing

The SPARX software (Hohn et al., 2007) was used for all image-processing

steps, with the exception of the initial defocus determination, which was

done using CTFFIND3 (Mindell and Grigorieff, 2003). Decorated filaments

were identified using K-means clustering and processed according to the

SPARX implementation of the iterative helical real-space refinement scheme

(Egelman, 2000). Structural heterogeneity found in myosin was separated

using a codimensional PCA modified to work with structures having helical

symmetry (Behrmann et al., 2012).

Fitting

Atomic models of F-actin (Fujii et al., 2010) (PDB 3MFP), myoE (Kollmar et al.,

2002) (PDB 1LKX), and tropomyosin (Li et al., 2011) were fit into the EM

volumes first by rigid-body using Chimera (Pettersen et al., 2004) and then

by flexible fitting with DireX (Schröder et al., 2007). Eigenvector analysis of

the models was done using the Bio3d package in R (Grant et al., 2006).

ACCESSION NUMBERS

The coordinates and structure factors for the actin-myosin-tropomyosin EM

reconstructions and the atomic models have been deposited in the EM Data

Bank and the RCSB Protein Data Bank under accession codes EMD-1987-

1990, and 4a7n, 4a7l, 4a7h, and 4a7f, respectively.
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