
INFORMATION AND CONTROL 52, 52--67 (1982)

Busy Beaver Sets:
Characterizations and Applications*

ROBERT P. DALEY

Computer Science Department, University of Pittsburgh,
Pittsburgh, Pennsylvania 15260

1. INTRODUCTION

Busy beaver sets have proved themselves useful as examples for certain
interesting properties in recursive function theory and computational
complexity which are not easily demonstrated and as a means of simplifying
constructions in the degrees of unsolvability. In many cases the power of the
busy beaver sets seems to reside with a few very nice properties possessed by
them. This article is based on some recent investigations into the nature of
these properties (see (Daley and Reynolds, 1980; Daley, 198 lb), and we will
show here that two of these properties each provide characterizations for
busy beaver sets. We will also present here an improvement obtained with
William Reynolds for the construction of a solution to Post's problem. The
work here on retraceability complements and elaborates upon some early
work of Dekker (1954) and Yates (1962). In particular, a necessary and
sufficient condition is given on the kind of retracing function which a
retraceable set must have in order for its complement to be recursively
enumerable.

Although many variations on the definition of busy beaver set have been
used, the basic definition (see Daley, 1978) of a busy beaver set B is given
by

b(n) = max{q~i()1/~(i) ~ n and Oi(),~ },

B = {b(n)},

where {4~} is an acceptable G6del numbering, {~} is a computational
complexity measure for {~i} (see Blum, 1967a), and /l is a program size
measure (see Blum, 1967b), and where we use f () to denote a function of 0
arguments. We fix an acceptable G6del numbering {~i} and assume without
loss of generality that the S - 1 - 1 function S for {4~}, which satisfies

*This work was supported by NSF Grant 76-00102A. The results of this article were
presented at the NSF Workshop on Recursion Theoretic Aspects of Computer Science and
also at the 10th Symposium on the Mathematical Foundations of Computer Science.

52
0019- 9958/82/010052-16 $02.00/0

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

BUSY BEAVER SETS 53

(ks~ij)(x)=~i(j,x), also satisfies S(i,j)>/max{i,j}. This stipulation will
permit us to decide whether a given program takes a certain form.

As shown in Daley (1978), all such busy beaver sets are complete with
respect to the Turing degrees. However, a different type of busy beaver set
was used in Daley (1979) to provide an alternative construction for a proof
of Sacks' Density Theorem. To motivate an enlarged notion of busy beaver
set, which we present below, we recast the definition of the busy beaver set
from Daley (1979) as follows:

be(n) = max{~s(e,p)()1 p ~ n and Os~e,p)() ~ },

Be= {be(n)[n>~ 1},

where e l (x) > x. Since ~s~e,p) () = G(P) , it is clear that be(n) represents the
maximum runtime (when defined) of program e on all inputs ~n. The set B e
satisfies the properties that A e =/~e is recursively enumerable and deg A e =
deg B e = deg W e. Thus it is sometimes useful to consider maximum runtimes
over a proper subset of all possible computations. The definition of be(n) can
be reformulated so as to appear closer to the original definition if we weaken
the notion of a program size measure to what we might call a program
"type" measure. A program size measure p must satisfy (see Blum, 1967b),
the following two conditions:

(a) • is total recursive;

(b) there exists a total recursive function K such that K (n) =
cardinality{i[p(i) = n}; i.e., the finitely many programs of size n can be effec-
tively determined from n.

To obtain our notion of program "type" measure we weaken the second
condition to permit an unbounded number of programs of a given size (with
some restrictions), and also disregard programs of type "0" in order to
ignore computations which are not of interest. For example, the definition of
be(n) can be reformulated as

be(n) = max{q~;()[0 < p(i) ~ n and ¢i() ~ },

where

g(i) = n, if i = S(e, n),

= 0, otherwise.

Also in Theorem 7 below we will consider an even more liberal notion of
program type defined by

p(i) = n, if (3 m) [i = S(S(e, n), m)],

= 0, otherwise.

54 ROBERT P. DALEY

Observe here that if i = S(S(e, n), m) then m ~< i and n ~< i by our assumption
about S, and p is total recursive. Also, we here have allowed infinitely many
programs of type n. Finally, in all the cases of p considered above for any
computational complexity measure {q~i} for {0i} satisfying q~i(x)>
max{p(i), x}, we have that the function g defined by

g(s) = min{n > 0[(3 i)[p(i) = n and cPi() = s] },

= 0, if no such i exists,

is total recursive.
We now formally define our enlargement of the notion of busy beaver sets.

We call 0 = Q~, {q~i}) a measured system if p is a total recursive function
and {qJi} is a computational complexity measure for {Oi} satisfying
• i(x) > max{p(/), x} and for which the function ga defined by

gg(s) = min{n > O[(3 i)[p(i) = n and q~i() = s] },

-- O, if no such i exists, l

is total recursive. For each measured system ~ we define

bo(n) = max{q~i()]0 <p (i) ~< n and Oi() ~ },

B o = {bo(n)},

AM = / ~ o , the complement of B~.

Next, we define the total recursive function

bo(n, s) = max{q~i()10 < p(i) ~ n and q~i() ~< s},

= O, if no such i exists, l

That bo(n, s) is recursive follows from the relation bo(n, s) = max{t ~< slO <
go(t) <~ n}. We observe the following simple relationships.

bo(n, s) <~ bo(n, s + 1).

bo(n, s) <~ bo(n + 1, s).

ga(bo(n, s)) <~ n.

bo(go(s) , s) = s.

(1)

(2)

(3)

(4)

i We point out that in previous work the default values for bo(n, s) and go(s) have been
defined to be s. Robert DiPaola has suggested to us that 0 might be a more appropriate
default value. In any case, only the finitely many values before the first runtime of interest
would be affected.

BUSY BEAVER SETS 55

s >/bt~(n) => b~(n, s) = bt~(n).

ba(n) ~ ba(n + 1).

ga(ba(n)) <, n.

ha(go(s)) >~ s.

s > ba(n)=> ga(s) > n.

ba(n) = max{sl0 < ga(s) <, n}.

(5)

(6)

(7)

(8)

(9)

(10)

LEMMA 1. A a is recursively enumerable.

Proof Let 0(x) = min{y[y > x and 0 < ga(y) ~ g a (x) } . Then by (10),

x E Ba <=> x = max{ y] 0 < ga(y) ~ ga(x)}

¢> (g y > x)[ga(y) > ga(x)]

o(x) T.
Therefore, A M = dom #. We observe here for future use that 0 clearly satisfies

O(x) = m i n { y l y > x and 0 < ga(Y) %ga(x)

and (Vz)[x <z < y ~ g a (z) > g a (y)] }. |

2. RETRACEABILITY

Given a set X the principal function of X is defined by =x(n)= nth
member in increasing order of X. A set X is called retraceable if and only if
there exists a partial recursive function ~, such that qZ(~x(1))= ~zx(l) and
~t(~x(n)) = 7tx(n- 1) for all n > 1. The function ~, is called a retracing
function for X.

THEOREM 2. For every measured system I2 the busy beaver set Bo is
retraceable.

Proof Let 0 = Oa, {q~i}) and define

Via(x) = max{TIT < x and 0 < ga(Y) < ga(x)},

= x, if no such y exists.

Since g~ is total recursive, so is qJa. Let b n = nBa(n). Observe that it is
possible that ba may not be a one-to-one function so that bn ~ b~(n) is

56 R O B E R T P. D A L E Y

possible. Since bl = bo(1), it is clear that !uo(bl) = b 1. From the definition of
be(n, s), go and ~'r~ it follows easily that

if go(x) > 1 then gto(x) = b~(go (x) - 1, x). (11)

Therefore, since b, = be(go(bn)) we see that for n > 1, qJo(b ,)= b , _ l . |

For any retracing function ~, we define its rank function Po by

po(x) = m i n { m l ~ " (x) = ~,m '(x)},

where q / ° (x) = x and ~ ? + l = q/(~k(x))"
We point out some additional properties of the retracing function ~'o-

First, as was observed in the proof above gt o is total recursive. Second, from
its definition it is clear that ~,e(x)~< x. Consequently, po is total recursive.
Third, if x and y are such that q/o(x) < y < x, then g o (Y) > / g ~ (x) and we
have by (11), ~ t o (x) = b o (g r ~ (x) - l , x) = b e (g o (x) - l , y). Therefore, it
follows that y > ~,o(y) >/~to(x), and there must exist some m > 1 such that
~ (y) = ~'r~(x). It then follows that poo(y) >/poo(x) and so if ~uo(x) < x then
qto(x) = m a x { y l y < x and Po~(Y) < po~(x)}.

A retracing function qJ which satisfies these three properties presents in a
certain sense an enigma to any one wishing to gain information from ~,
about the recursively enumerable set W,. whose complement is retraced by gt.
In other words information about W i can be gained from any retracing
function at any place where those conditions are violated. For example, if
gt(x) T then x E W i, so that by computing q/(x) and Oi(x) concurrently until
one halts one can discover that x E W i whenever ~u(x) Y • Also, if ~,(x) > x
then clearly x E W i. Finally, suppose that x and y are such that ~'(x) < y < x
and Po(Y)<~Po(~'(x)) • It follows that there must exist m and z such that
z = qt~(y) and either z = ~t(z) > gt(x) or z > ~t(x) > q/(z). Therefore, either
both z E W i and y ~ W i or, both x ~ W i and gt(x) ~ W i. Thus by computing
Oi(Y) concurrently with Oi(z) for all z such that ~,(y) < z < y (which includes
~,(x)) either we will discover during input y that y C W i (if Oi(Y) halts first),
or later during input x we will already know that x E W i (if Oi(q/(x)) halts
first).

In view of these remarks we call a retracing function ~, enigmatic if and
only if

(1) q/is total recursive,

(2) qt(x) ~< x,

(3) ~(x) < x => q/(x) = max{TiT < x and Po(Y) < Po(X)} •

COROLLARY 3. For any measured system ~ , B o is retraced by an
enigmatic retracing function.

BUSY BEAVER SETS 57

PROPOSITION 4. Let qJ be an enigmatic retracing function for the set X.
Then

(a) ~,(x) < y < x ~ ~(x) ~< ~(y).
(b) I f X is infinite then

(i) x E X ~ > x = max{ytpo(y) =po(x)} ,

(ii) gt is finite-to-one.

(c) q/ retraces at most one infinite set.

(d) X is recursively enumerable.

Proof (a) Suppose gt(x) < y < x. Then by condition (3) of the definition
of an enigmatic retracing function Po(Y) >/Po(x) > Po(gt(x)) , so that again by
this condition ~,(y)/> ~,(x).

(b) Suppose X is infinite and let x , = ~rx(n).

(i) If x , < y < x ,+ 1 then since ~ , (X,+l)= x , we see that Po(Y) >
po(x ,)=n. Thus, if x , < y then Po(Y) >n and x , = m a x { y [p o (y) ~ n }=
max{ytpo(y) = n}.

(ii) F rom (i) above we see that if y > x , then ~,(y) >/x~. Therefore,
gt is finite-to-one.

(c) This follows directly from part (b)(i).

(d) If X is finite then X is recursive so that)T is recursively
enumerable. Suppose X is infinite and define O i (x) = m i n { y l y > x and
Po(Y)<~Po(X)} • By part (b)(i) we have Oi(x) J, ~ x 4 = max{y[po(y)
po(x)} ~- x ~ X. Therefore, 3 (= dom Oi and 2(is recursively enumerable. II

We point out a curious property of finite sets. Let X = tx~ x,}. Define
~l and ¢2 by

I/]I(X) = X,

Z X m _ l ~

= x - - 1,

~ '2(x) = x ,

= m a x { y l y < x a n d y E X } ,

if x = 1 or x = x ~ ,

i f x = x mfor l ~ < m < n ,

otherwise.

if x = 1 or x = x ~ ,

otherwise.

Then ~,~ and q/z both are enigmatic retracing functions for X, and gt I is finite-
to-one but does not satisfy condition (b)(i) of Proposit ion 4, and ~,1 satisfies
(b)(i) but is not finite-to-one. In fact it is easy to see that no enigmatic
retracing function for a finite set can satisfy both of these conditions.

THEOREM 5. Every retraceable set whose complement is recursively
enumerable has an enigmatic retracing function.

58 ROBERT P. DALEY

Proof. Let ~t be a retracing function for the complement of the recur-
sively enumerable set W~. We will assume that I~; is infinite since by the
above remarks such a enigmatic retracing function is easily constructed if I~ i
is finite. We will construct an enigmatic retracing function q) from q/and 4;
by using a screening process for each input similar to that described
previously. This process will involve concurrent computations and we will
assume that no two of the concurrent computations halt simultaneously. We
use f (x) ~ g(y) to denote that f (x) halts before g(y) when f (x) and g(y)
are computed concurrently. We will also assume that the computation of
q~(x) halts as soon as q)(x) is assigned a value. Define ~(1) = 1 and V)(x) for
x > 1 as follows:
q)(x): Compute qJ(x) concurrently with 0i(x).

(A) If 0i(x)--* gt(x) then set q)(x) = x -- 1.

(B) If ~u(x) ~ 0i(x) then

(1) If qJ(x) > x then set ~)(x) = x - 1.

(2) If qJ(x) = x then find y -= max{z < x[q)(z) = z}.

(a) If y does not exist then set q)(x) = u/(x).

(b) If y exists then compute 0i(x) concurrently with Oi(Y).
(i) If 0i(x) ~ Oi(Y) then set q)(x) = x - 1.

(ii) If Oi(Y) ~ Or(x) then set ~)(x) = ~(x).

(3) If ~,(x) < x then

(a) If q)(z) = z for some gt(x) < z < x then set q)(x) = x - 1.

(b) If ~) (z) < z for all ~t(x)< z < x then compute 0i(x) and
Oi(qJ(x)) concurrently with 0i(z) for all ~,(x) < z < x.

(i) If 0i(x) ~ Oi(z) or 0i(qJ(x)) ~ Oi(z) for some such z then set
~ (x) = x - I .

(ii) If 0i(z) --+ 0i(qJ(x)) and 0;(z) ~ 0;(x) for all such z then set
~ (x) = ~ , (x) .

It is not difficult to prove by induction that V) is total recursive. This is
done by showing that at each concurrent branch point in the procedure for
at least one of the branches terminates: either Oi(x) ~ or ~t(x) l ; if ~,(x) = x
and ~,(y) = y then either Oi(x) J, or 0i(Y) ~ ; if ~,(x) < x then either both
Oi(x) l and Oi(~t(x)) ~, or Oi(z) J, for all ~,(x) < z < x (in case x ~ Wi).
Observe that if ~)(x) 4= ~,(x) then ~(x) = x - 1 and x ~ W i. From this obser-
vation and step (B)(1) it is clear that V)(x)<<,x. Suppose now that
q~(x) < y < x. Since ~(x) ~ x - 1 we have V)(x) = ~(x). By step (B3)(a) we
see that q~(z) < z for all ~(x) < z < x (otherwise q~(x) = x - 1 =~ ~,(x)).
Similarly, from step (B3b)(i) we see that 0i(z)--+Oi(~(x)) for all
qJ(x) < z < x. Now, if q/(y) < ~(x) < y then since Oi(Y) --+ Oi(~(x)), we see

BUSY BEAVER SETS 59

that ~ (y) - - y - 1) q) (x) . So in any case O (x) 4 ~) (y) < y . Repeating this
argument it follows for some m > 1 that I~m(y) --= I~(x) and so p~(y) >/p~(x).
Thus, ~)(x)= m a x { y l y < x and p~(y)< p~(x)}, and we conclude that q) is
enigmatic. II

In view of Theorem 5 and part (d) of Proposition 4 we see that retraceable
sets with recursively enumerable complements are characterized in terms of
enigmatic retracing functions.

THEOREM 6. A retraeeable set has a recursively enumerable complement
if and only if it is retraeed by some enigmatie retraeing funetion.

We now show that retraceability is a characterizing property for B n.

THEOREM 7. For any reeursively enumerable set A with retraceable
complement there is a measured system ~ sueh that A = A n .

Proof Without loss of generality we can assume that ,~ is infinite. Let ~,
be an enigmatic retracing function for A, so that by Proposition 4, x C ,~ <~>
x = max{y[po(y) ~< po(x)}. Let

gi~(n, 1) = min{xlp,(x) = n},

0~(n, m + 1) = min{xlx > 0~(n, m) and po(x) = n}.

Let a(n, m) = S(S(e, n), m) so that g~C,,m)() = 0~(n, m). Since S(i, j) >
max{/,j} we have o(n, m) > max{n, m}. We define/a by

/l(i) = n, if (~ m < i) (3 n < i) [i = ~(n, m)],

= 0, otherwise.

Clearly, /~ is total recursive. Let {q~i} be any computational complexity
measure for {~i}. We modify {oPt} as follows:

~ i = 0i, if p(i)>O,

-- cP i, if /a(i) = 0.

Observe that ~ .~ . ,m>()=~.Cn,m)()~<y if and only if there are at least m
integers z<~y such that p,~(z)=n. Therefore, {~i} is a computational
complexity measure for {4i}, and since gn =Po is clearly total recursive,

= @, {~i}) is a measured system. Then

bn(n) ~ max{@i()10 < p(i) <~ n and 01() ~ }

----- max{~ j ,m) ()[j ~ n and m > 0 and q~o~.m) () J. }

--- max{ylpo(y) <~ n}.

Thus, A = B n and so A = A n. We observe further that ~'n = ~. |

60 ROBERT P. DALEY

The construction given in the proof of Theorem 7 illustrates the true
nature of the equivalence between busy beaver sets and retraceable sets with
recursively enumerable complements (or via Theorem 6 sets retraced by
enigmatic retracing functions). The equivalence rests in the correspondence
between runtimes of programs of size n and integers of retracing rank n. One
of the referees of this article has pointed out that a shorter proof of the above
equivalence can be obtained by combining the results of Yates (1962) that a
set A is retraceable if and only if there exists a total recursive function f s u c h
that

A = {x[(~ y < x) [f (y) ~< f (x)] },

with the property that A~ = {xl (3 y < x)l 0 < ge(y) < g~(x)} and with the
fact that for every total recursive funct ionfthere exists a measured system
such that f = ga .

3. REPLETE SETS

In Daley (1981a) it was observed that one property of the busy beaver set
B ° which was crucial to the constructions there was that s ~ B ° ¢> As ° = A ° [s,
where Xls = X A {1 s} for any set X. For a recursively enumerable set A
the set of integers s such that A s = A]s is called by Dekker (1954) the non-
deficiency stages in the enumeration of A (and later by Soare (1976)the true
stages in the enumeration of A). Since we are assuming that q~i(x) > x, it is
clear that the set of non-deficiency stages in the enumeration of A must form
a subset of A. We see that B ° is precisely the set of non-deficiency stages for
A °. We therefore call a recursively enumerable set W i replete if there is some
computational complexity measure {q~i} for {Oi} such that Wi,s=

rVi l s . ~ s ~ f f ' i .

THEOREM 8. For every measured system $2 the set A ~ is replete.

Proof. Let 0e(x) = min{yly > x and O < g~(y) ~<gQ(x)}. Given
computational complexity measure {~Pi} for {gl/} we define {~fii} by

any

q3 i = Oi, if i ~ e,

= ¢I e, i f i = e .

Then it is easy to see that {q3t} is a computational complexity measure for
{Oi} and that A ~ = d o m O e . If s E W i then ~be(s)>s so We[sq=We, s.
Suppose sq~ W e and x < s and x E W e. Then ~ e (X) = m i n { y [y > x and
0 < g~(y) ~ gr~(x)}. If ga(x) <~ g~(s) then we clearly have ~ (x) ~< s (since

BUSY BEAVER SETS 61

go(ff~e(x)) <,go(x) and s = max{yiga(y) ~go(s)}) . If go(x) > go(s) then
(Je(X) ~ s and so ~e(x) ~< s. Therefore x E We, s and A o is replete. II

THEOREM 9. Every replete recursively enumerabte set has a retraceable
complement.

Proof. Let W e be a replete recursively enumerable set so that for some
computational complexity measure {q~i} for {¢~i}, We, s = Weis ¢> s C fie e.
Define

~,(x) = max{y] y < x and q~i(Y) > x},

-- x, if no such y exists.

Let l ~ = { W l , W z }. Since W e is replete, if x C W e and x < $ n then
qge(X) <~ ~ , , so that ~,(v~) = wl and qs(~,+~) = wn. Therefore ~u retraces fie.
We point out that q/is also enigmatic. I

Summarizing the main characterization results of this article we have the
following.

THEOREM 10. Let A be a recursively enumerable set. Then the following
statements are equivalent:

(a) A is replete;

(b) A is retraceable;

(c) A is retraced by an enigmatic retracing function;

(d) A = A o for some measured system X2.

4. POST'S PROBLEM

In this section we show how the busy beaver construction can be applied
to construct recursively enumerable sets which are non-recursive and non-
complete. We will construct a particular measured system I2 = @, {~i}),
where ~t will be a program size measure and {qsi} is a modification of the
space measure for Turing machines which we briefly describe. Although the
description is in terms of multi-tape Turing machines, this measure can be
defined for any acceptable G6del numbering by using the intertranslatability
between the programs of acceptable G6del numberings. The multi-tape
oracle Turing machine will have a read-only input tape, a write-only output
tape, a read-only oracle tape on which is written the characteristic function
of the oracle set, and some number of work tapes. Then, ~X(x) will be the
maximum number of tape squares on any of these tapes used by Turing
machine i with oracle set X on input x.

643/52/1-5

62 R O B E R T P. D A L E Y

We first observe that if X and Y are infinite sets, then
deg X ~ deg Y <~. (3 i) [v x = ~i~'], where v x is the next element function for the
set Y defined by

Vx= min{y ly > x and y CX}.

We define a program size measure/~ for {¢i} by

~z(i) = nc> f (n - 1) < i<~f(n),

where the total recursive function f is defined by

/ (1) = 1,

f (n + 1) = max{S(e, i ,j) I e, i , j <~ f (n)} ,

and where S is the S - 2 - 1 function given for {¢i} such that f)s~eaj)(x)=
¢e(i,j, X). Since/~ is clearly a program size measure, it is clear that .Q is a
measured system and deg A n = deg B a = O' .

By the definition of # if n/> max{g(i),/~(j),/~(e)} then II(S(e, i,j)) <. n + 1.
Let e be a program such that (~e(i,j) = Oi(Oj()) and Os(e,i,j) () > OS(e,i,j)()"
Let n) /~ (e) and l e t j be such that Oj() = bn(n) and / l (j) = n. I fp (i) ~< n and
Oi(b~(n)) ~ then /.t(S(e, i,j)) ~< n + 1 so that ¢i(b~(n)) = f)i(Oj()) =
¢s~e,ia)() < CPs(e,ia)() <~ bn(n + 1). Thus we have

(g i) e) (V n >/p(i))[Oi(b~(n))

Oi(bn(n)) < b~(n + 1)]. (12)

Recall f rom L e m m a 1 that A t~ = dom 4, where

¢~(x) = min{y ly > x and 0 < gn(Y) <~ gn(x)

and (V z)[x < z < y ~ g~(z) > gn(Y)]}.

Let E denote the set of even integers. We define a recursively enumerable set
A e, which will provide a solution to Post 's Problem, as follows:
A e = dora gl e , where

be(x) = rain{ Y l Y > x and 0 < g o (Y) ~ go(x) and gn(Y) is even

and (¥ z)[x < z < y=> gn(z) > g~(y)]}.

If Ae, s denotes the elements enumerated by stage s then we see that Al~,s is
recursive and that

AE,,={XIOAx)~s},

We define

BUSY B E A V E R SETS 63

B E =&~

BE,s = AE,,Is.

LEMMA 11.

(b)
(c)
(d)

Proof

(a) A e is recursively enumerable.

B e c_Be.

A E is replete.

(V n)[n even ~ BE C~ (be(n - 1), be(n)) = 0].

(a) This is immediate, since A e = dom Ce, and OE is clearly a
partial recursive function.

(b) This follows from the definition of OE and (9).

(c) F rom the enumeration procedure for A e it is clear that s C Be, s for
all s so that if Be, s = BE Is then s E B E. Let x ~< s be such that x E Be, , and
x ~ A E. Let y = ~IE(x) so that we have that y > s and g e (y) is even and
ga(Y) <, ge (x) and also (V z) [x < z < y =~ ge(z) > ge(Y)]. Then
g e (Y) < . g e (s) and (Vz)[s < z < g a (y) = ~ g e (z) > g e (y)] also, so that
O e (s) = y and s C A e. Therefore, if Be#--/=Bels then s q ~ B e, i.e.,
s C B e ~ B e , s = B e l s .

(d) Suppose that n is even. Let be(n - 1) < x < be(n) and let t be the
least integer such that be(n - 1, t) < x < be(n, t). Then it is easy to see that
O e (x) = t s o x C A e. |

LEMMA 12. There exists a computational complexity measure {q~i} such
that

(a) ~X(x) ~> max{i, •X(x)}.

(b) s ~> q~X(x) ~ q~xt'(x) = q~X(x).

(c) ¢ U (x) < s ~ ~ U (x) = ~ (x) .

(d) There exists a program transformation 2 such that

0~.,;~() = 0,('*';()),
~,,j~()= q',(%())-

(e) There exists a program transformation v such that

O~i)(x) = min{sls > x and q~E.,(x) ~<s},

• ~.~(x) = O~.~(x).

64 R O B E R T P. D A L E Y

Proof Although we use a particular model for the recursive functions to
describe the complexity measure, this measure can be applied to any G6del
numbering because of the effective intertranslatability between programs of
acceptable G6del numberings.

We consider oracle Turing machines depicted in Fig. 1 which have a
read-only input tape, a write-only output tape, a read-only oracle tape on
which is written the characteristic function of the oracle set, and some
number of work tapes. We first stipulate that/t(i) can be computed within i
work tape squares. Let TOX(x) denote the number of oracle tape squares
used by program i with oracle set X on input x, and TWX(x) the maximum
number of work tape squares on any of its work tapes used by program i
with oracle set X on input x. Then we define

q~,.X(x) = max{i, x, ~x(x), TOX(x), TWX(x)}.

Lemma 12(a) clearly follows from this definition. Lemma 12(b) and
Lemma 12(c) both follow from the fact that since q~X(x) >/TOX(x) no infor-
mation about the oracle set X involving members greater than q~X(x) can
affect the computation. Lemma 12(d) holds since the program 2(i,j) can

0
r
a

C
1
e

t
a

p
e

l l l l l l l l f

III III

II1 111

input tape

IIIIIIIIIIIIII

I program
i

1
I T I I t l l

IIIIIII

II II • • "

II II " •

.¢

III III II1f111 11 II t l - -

worktapes

FIGURE 1

BUSY BEAVER SETS 65

(using exactly ~ j () work tape squares) write q~g() on one work tape and
then mimic the operation of program i using this work tape as its input tape.

Finally, we indicate the proof of Lemma 12(e). Supposing that Be,~ can be
computed within s work tape squares, then q~.~(x)~< s can also be tested
within s work tape squares by writing Be, ~ on one work tape and then
mimicing program i on input x with this work tape as its oracle tape. Then
program r(i) on input x tries successively larger integers s > x until it finds
one such that q~,~(x) <~ s, which by the above will take at most (and, since
q~X(x)/> 0~(x), at least) s work tape squares.

To see that BE, s can be computed within s work tape squares, we first
observe that since p(i) can be computed within i tape squares for each t ~< s,
go(t) can be computed within s tape squares, because go(t) is the size (~<t) of
a program which uses t work tape squares in its computation. Then to
compute Be, ~, for successively larger values of t such that t ~< s we add (by
setting bits on our special work tape for BE,~) to Be, ~ all integers x such that
bo(go(t) - i , t)< x < t provided that go(t) is even. We can maintain the
current value of bo(n, t) by using a work tape and updating the values as
new terminating computations are discovered. I

We point out that 2(i,j) takes the form S(e, i,j) for some appropriate
program e so that there exists an n~ such that

p(j) >/n~ ~ p(2(i,j)) ~< 1 + max{p(/), p(j)}. (13)

LEMMA 13. (V i) (¥~ n)[n odd ~ O~]~(bo(n - 1)) 4= bo(n)].

Proof Suppose ~i is given. Let n o ~> max{na,p(r(i))}. Suppose now that
n>~n o and n is odd and O~(bo(n - 1))~ . Let t E B o be such that
t >/q~]~(bo(n- 1)) and go(t) is even. Then by our choice of n o we have from
Lemma 12(b) that q ~ l t (b o (n - 1)) = ~E(bo(n- -1)) , and from Lemma
11(c) that Bel t=BE, t and ~ , , (b o (n - 1)) = ~I,~.]~l'(bo(n- 1))~<t, from
which we conclude O¢(i)(ba(n-1))~. Let s=O~(i) (bo (n -1)) . Since
p(r(i)) ~< n and O¢(i)(b~(n - 1)) ~ from (12) we see that s < bo(n). Let j be
such that p(j) = n and q~j() = bo(n - 1), so 0¢(i)(bo(n - 1)) = Oa(r(i),j)().
From parts (d) and (e) of Lemma 12 we have q~¢¢(i),j)()=
• ~(i)(b~(n - 1)) = O~(i)(b~(n - 1)), and consequently q~(i) , j) () = s.
Therefore since p(r(i))~<no and p (j) = n - - l > ~ n a and s > b o (n - - 1) , we
have by (13) that p (2 (r (i) , j))= n. Thus go(s)= n and since n is odd and
s > bo(n -- 1) there can be no y > s such that go(Y) <~ n and go(Y) is even.
Therefore, s C B e and by Lemma 1 l(c), BE, ~ = BEIS and cb~lS(bo(n- 1))=
cb~.~(bo(n-1)) ~<s. Then from Lemma 12(c) we have q J ~ (b o (n - 1)) =
q ~ l ~ (b ~ (n - 1)) so that by Lemma 12(a), f) ~ (b o (n - 1))~<
~ (b o (n - i)) ~< s < bo(n). Finally, we conclude that O ~ (b ~ (n - 1)) 4=
b~(n). I

66 R O B E R T P. D A L E Y

THEOREM 14. The recursively enumerabIe set A E provides a solution to
Post's Problem, i.e., O < deg A E < O'.

Proof Suppose n is odd. Then by Lemma 13 we have ~f~(be(n- 1))4:
be(n) , but v B (b e (n - 1)) = b e (n) so that (Jf~vaVBo and therefore
degA E = d e g B E 4 :degB e = O ' . If n is even then by Lemma l l(d) , B Ey~
(b e (n - 1) , bo(n))=O so that vB~(be(n--1))=be(n). By (12) we have
f)i(be(n - 1)) < be(n) so that Oi 4: vB~ and degA e = degB E 4: O. II

In the above constructions if we reversed the roles of even and odd we
would have obtained a set A o such that O < deg A o < O', where

A o = dom ~o,

Bo z Xo~

and where

Oo(X) = min{y I y > x and go(Y) <~ go(x) and go(Y) is odd

and (V z)[x < z < y ~ ge(z) > ge(Y)]}.

We see also that B o satisfies

(¥ n)[n odd => Be (~ (be(n - 1), be(n)) = ~]. (14)

(V i)(V ~ n)[n even ~ q)~o(be(n - 1)) 4: be(n)]. (15)

Then combining Lemma 1 l(d) with (15) we have v~E4: 0~ o for any program
i, and combining Lemma 13 with (14) we have VBo 4: (J~E for any program i.
Therefore, we conclude that degA E ~ degA o and degA o ~ deg Ae; that is,
deg A E and deg A o are incomparable degrees of unsolvability.

Furthermore, these techniques can be generalized to provide some
modularization of the construction of various degrees of unsolvability as
follows. For each recursive set R we define the partial recursive function

(Jg(x) = min{ yly > x and go(Y) ~ g~(x) and go(Y) ~ R

and (g z)[x < z < y=> ge(z) > ge(Y)]},

and the recursively enumerable set

A R = dom OR.

THEOREM 15. {degAR} is isomorphic to the boolean algebra of the
recursive sets under inclusion modulo the finite sets.

Replacing the condition "go(Y) ~ R" by "cPi(go(y)) ~ x," where

BUSY BEAVER SETS 67

W = dom Oi in the definition of 0R above, yields a recursively enumerable set

which we denote by A w.

THEOREM 16. {degAw} is isomorphic the lattice o f the recursively
enumerable sets modulo the f in i te sets.

The details of the proof of the analog of Lemma 12 for A R and A w above
can be found in Daley and Reynolds (1980).

RECEIVED: August 20, 1981; REVISED: May 10, 1982

REFERENCES

BLUM, M. (1967), A machine independent theory of the complexity of recursive functions, J.
Assoc. Comput. Mach. 14, 322-336. (a)

BLUM, M. (1967), On the size of machines, Inform. and Control 11, 257-265. (b)
DALEY, R. (1978), On the simplicity of busy beaver sets, Z. Math. Logik Grundlag. Math. 24,

207-224.
DALEY, R. (1981), Busy beaver sets and the degrees of unsolvability, J. Symbolic Logic 46,

46(~474. (a)
DALEY, R. (1981), Retraceability, repleteness, and busy beaver sets, Proceedings,

Mathematical Foundations of Computer Science Symposium, Lecture Notes in Computer
Science No. 118, Springer-Verlag, 252-261. (b)

DALEY, R., AND REYNOLDS, W. (1980), "Towards Modular Constructions in Degrees of
Unsolvability," Technical Report 80-5, Department of Computer Science, University of
Pittsburgh.

DALEY, R. (1979), On the simplification of constructions in degrees of unsolvability,
Proceedings, Mathematical Foundations of Computer Science Symposium, Lecture Notes
in Computer Science No. 74, Springer-Verlag, 259-265.

DEKKER, J. (1954), A theorem on hypersimple sets, Proc. Amer. Math. Soc. 5, 791-796.
SOARE, R. (1976), The infinite injury priority method, J. Symbolic Logic 41, 513-530.
YATES, C. (1962), Recursively enumerable sets and retracing functions, Z. Math. Logik

Grundlag. Math. 8, 331-345.

