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1. INTRODUCTION 

Busy beaver sets have proved themselves useful as examples for certain 
interesting properties in recursive function theory and computational 
complexity which are not easily demonstrated and as a means of simplifying 
constructions in the degrees of unsolvability. In many cases the power of the 
busy beaver sets seems to reside with a few very nice properties possessed by 
them. This article is based on some recent investigations into the nature of 
these properties (see (Daley and Reynolds, 1980; Daley, 198 lb), and we will 
show here that two of these properties each provide characterizations for 
busy beaver sets. We will also present here an improvement obtained with 
William Reynolds for the construction of a solution to Post's problem. The 
work here on retraceability complements and elaborates upon some early 
work of Dekker (1954) and Yates (1962). In particular, a necessary and 
sufficient condition is given on the kind of retracing function which a 
retraceable set must have in order for its complement to be recursively 
enumerable. 

Although many variations on the definition of busy beaver set have been 
used, the basic definition (see Daley, 1978) of a busy beaver set B is given 
by 

b(n) = max{q~i()1/~(i) ~ n and Oi( ),~ }, 

B = {b(n)}, 

where {4~} is an acceptable G6del numbering, {~} is a computational 
complexity measure for {~i} (see Blum, 1967a), and /l is a program size 
measure (see Blum, 1967b), and where we use f (  ) to denote a function of 0 
arguments. We fix an acceptable G6del numbering {~i} and assume without 
loss of generality that the S -  1 -  1 function S for {4~}, which satisfies 
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(ks~ij)(x)=~i(j,x), also satisfies S(i,j)>/max{i,j}. This stipulation will 
permit us to decide whether a given program takes a certain form. 

As shown in Daley (1978), all such busy beaver sets are complete with 
respect to the Turing degrees. However, a different type of  busy beaver set 
was used in Daley (1979) to provide an alternative construction for a proof 
of  Sacks' Density Theorem. To motivate an enlarged notion of  busy beaver 
set, which we present below, we recast the definition of the busy beaver set 
from Daley (1979) as follows: 

be(n ) = max{~s(e,p)( )1 p ~ n and Os~e,p)( ) ~ }, 

Be= {be(n)[n>~ 1}, 

where e l (x)  > x. Since ~s~e,p) ( ) = G(P) ,  it is clear that be(n ) represents the 
maximum runtime (when defined) of program e on all inputs ~n.  The set B e 
satisfies the properties that A e =/~e is recursively enumerable and deg A e = 
deg B e = deg W e. Thus it is sometimes useful to consider maximum runtimes 
over a proper subset of  all possible computations. The definition of  be(n ) can 
be reformulated so as to appear closer to the original definition if we weaken 
the notion of a program size measure to what we might call a program 
"type" measure. A program size measure p must satisfy (see Blum, 1967b), 
the following two conditions: 

(a) • is total recursive; 

(b) there exists a total recursive function K such that K ( n ) =  
cardinality{i[p(i) = n}; i.e., the finitely many programs of  size n can be effec- 
tively determined from n. 

To obtain our notion of program "type" measure we weaken the second 
condition to permit an unbounded number of programs of a given size (with 
some restrictions), and also disregard programs of  type "0"  in order to 
ignore computations which are not of interest. For example, the definition of  
be(n ) can be reformulated as 

be(n ) = max{q~;( )[0 < p(i) ~ n and ¢i( ) ~ }, 

where 

g(i) = n, if i = S(e, n), 

= 0, otherwise. 

Also in Theorem 7 below we will consider an even more liberal notion of 
program type defined by 

p(i) = n, if (3 m) [i = S(S(e, n), m)], 

= 0, otherwise. 
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Observe here that if i = S(S(e,  n), m) then m ~< i and n ~< i by our assumption 
about S, and p is total recursive. Also, we here have allowed infinitely many 
programs of type n. Finally, in all the cases of  p considered above for any 
computational complexity measure {q~i} for {0i}  satisfying q~i(x)> 
max{p(i), x}, we have that the function g defined by 

g(s) = min{n > 0[ (3 i)[p(i) = n and cPi( ) = s] }, 

= 0, if no such i exists, 

is total recursive. 
We now formally define our enlargement of  the notion of  busy beaver sets. 

We call 0 = Q~, {q~i}) a measured system if p is a total recursive function 
and {qJi} is a computational complexity measure for {Oi} satisfying 
• i(x) > max{p(/), x} and for which the function ga  defined by 

gg(s)  = min{n > O[ (3 i)[p(i) = n and q~i( ) = s] }, 

-- O, if no such i exists, l 

is total recursive. For  each measured system ~ we define 

bo(n ) = max{q~i()]0 <p ( i )  ~< n and Oi() ~ }, 

B o = {bo(n)}, 

AM = / ~ o ,  the complement of  B~.  

Next, we define the total recursive function 

bo(n, s) = max{q~i( )10 < p(i) ~ n and q~i( ) ~< s}, 

= O, if no such i exists, l 

That bo(n, s) is recursive follows from the relation bo(n, s ) =  max{t ~< slO < 
go(t)  <~ n}. We observe the following simple relationships. 

bo(n, s) <~ bo(n, s + 1). 

bo(n, s) <~ bo(n + 1, s). 

ga(bo(n,  s)) <~ n. 

bo(go(s) ,  s) = s. 

(1) 

(2) 

(3) 

(4) 

i We point out that in previous work the default values for bo(n, s) and go(s) have been 
defined to be s. Robert DiPaola has suggested to us that 0 might be a more appropriate 
default value. In any case, only the finitely many values before the first runtime of interest 
would be affected. 
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s >/bt~(n) => b~(n, s) = bt~(n). 

ba(n) ~ ba(n + 1). 

ga(ba(n)) <, n. 

ha(go(s)) >~ s. 

s > ba(n)=> ga(s) > n. 

ba(n) = max{sl0 < ga(s) <, n}. 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

LEMMA 1. A a is recursively enumerable. 

Proof Let 0(x) = min{y[y  > x and 0 < ga(y) ~ g a ( x ) } .  Then by (10), 

x E Ba  <=> x = max{ y] 0 < ga(y) ~ ga(x)} 

¢> (g y > x)[ ga(y  ) > ga(x)]  

o(x) T. 
Therefore, A M = dom #. We observe here for future use that 0 clearly satisfies 

O(x) = m i n { y l y  > x and 0 < ga(Y) %ga(x )  

and (Vz)[x <z  < y ~ g a ( z ) > g a ( y ) ]  }. | 

2. RETRACEABILITY 

Given a set X the principal function of X is defined by =x(n)= nth 
member in increasing order of  X. A set X is called retraceable if and only if 
there exists a partial recursive function ~, such that qZ(~x(1))= ~zx(l ) and 
~t(~x(n)) = 7tx(n- 1) for all n > 1. The function ~, is called a retracing 
function for X. 

THEOREM 2. For every measured system I2 the busy beaver set Bo is 
retraceable. 

Proof Let 0 = Oa, {q~i}) and define 

Via(x) = max{TIT < x and 0 < ga(Y) < ga(x)}, 

= x, if no such y exists. 

Since g~ is total recursive, so is qJa. Let b n = nBa(n ). Observe that it is 
possible that ba may not be a one-to-one function so that bn ~ b~(n) is 
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possible. Since bl = bo(1), it is clear that !uo(bl) = b 1. From the definition of 
be(n, s), go and ~'r~ it follows easily that 

if go(x)  > 1 then gto(x ) = b~(go (x  ) - 1, x). (11) 

Therefore, since b, = be(go(bn)  ) we see that for n > 1, qJo(b , )=  b , _ l .  | 

For any retracing function ~, we define its rank function Po by 

po(x) = m i n { m l ~ " ( x ) =  ~,m '(x)}, 

where q / ° ( x ) = x  and ~ ? + l =  q/(~k(x))" 
We point out some additional properties of the retracing function ~'o- 

First, as was observed in the proof  above gt o is total recursive. Second, from 
its definition it is clear that ~,e(x)~< x. Consequently, po is total recursive. 
Third, if x and y are such that q/o(x) < y  < x, then g o ( Y ) > / g ~ ( x )  and we 
have by (11), ~ t o ( x ) = b o ( g r ~ ( x ) - l , x ) = b e ( g o ( x ) - l , y  ). Therefore, it 
follows that y > ~,o(y) >/~to(x ), and there must exist some m > 1 such that 
~ ( y )  = ~'r~(x). It then follows that poo(y) >/poo(x) and so if ~uo(x ) < x then 
qto(x ) = m a x { y l y  < x and Po~(Y) < po~(x)}. 

A retracing function qJ which satisfies these three properties presents in a 
certain sense an enigma to any one wishing to gain information from ~, 
about the recursively enumerable set W,. whose complement  is retraced by gt. 
In other words information about W i can be gained from any retracing 
function at any place where those conditions are violated. For  example, if 
gt(x) T then x E W i, so that by computing q/(x) and Oi(x) concurrently until 
one halts one can discover that x E W i whenever ~u(x) Y • Also, if ~,(x) > x 
then clearly x E W i. Finally, suppose that x and y are such that ~'(x) < y < x 
and Po(Y)<~Po(~'(x)) • It follows that there must exist m and z such that 
z = qt~(y) and either z = ~t(z) > gt(x) or z > ~t(x) > q/(z). Therefore, either 
both z E W i and y ~ W i or, both x ~ W i and gt(x) ~ W i. Thus by computing 
Oi(Y) concurrently with Oi(z) for all z such that ~,(y) < z < y (which includes 
~,(x)) either we will discover during input y that y C W i (if Oi(Y) halts first), 
or later during input x we will already know that x E W i (if Oi(q/(x)) halts 
first). 

In view of these remarks we call a retracing function ~, enigmatic if and 
only if 

(1) q/is total recursive, 

(2) qt(x) ~< x, 

(3) ~(x) < x => q/(x) = max{TiT < x and Po(Y) < Po(X)} • 

COROLLARY 3. For any measured system ~ ,  B o is retraced by an 
enigmatic retracing function. 
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PROPOSITION 4. Let qJ be an enigmatic retracing function for the set X. 
Then 

(a) ~,(x) < y  < x ~  ~(x) ~< ~(y). 
(b) I f  X is infinite then 

(i) x E X ~ >  x = max{ytpo(y ) =po(x)} ,  

(ii) gt is finite-to-one. 

(c) q/ retraces at most one infinite set. 

(d) X is recursively enumerable. 

Proof (a) Suppose gt(x) < y < x. Then by condition (3) of the definition 
of an enigmatic retracing function Po(Y) >/Po(x) > Po(gt(x)) , so that again by 
this condition ~,(y)/> ~,(x). 

(b) Suppose X is infinite and let x ,  = ~rx(n ). 

(i) If  x ,  < y < x ,+  1 then since ~ , (X,+l )=  x ,  we see that Po(Y) > 
po(x , )=n.  Thus, if x , < y  then Po(Y) >n  and x , = m a x { y [ p o ( y ) ~ n  }= 
max{ytpo(y ) = n}. 

(ii) F rom (i) above we see that if y > x ,  then ~,(y) >/x~. Therefore, 
gt is finite-to-one. 

(c) This follows directly from part (b)(i). 

(d) If X is finite then X is recursive so that )T is recursively 
enumerable. Suppose X is infinite and define O i ( x ) = m i n { y l y > x  and 
Po(Y)<~Po(X)} • By part  (b)(i) we have Oi(x) J, ~ x 4 =  max{y[po(y) 
po(x)} ~-  x ~ X. Therefore, 3 ( =  dom Oi and 2( is recursively enumerable. II 

We point out a curious property of  finite sets. Let X = tx~ ..... x,}. Define 
~l and ¢2 by 

I/]I(X ) = X, 

Z X m _ l ~  

= x - -  1, 

~ '2(x)  = x ,  

= m a x { y l y  < x a n d y E X } ,  

if x =  1 or x = x ~ ,  

i f x = x  mfor l ~ < m < n ,  

otherwise. 

if x =  1 or x = x ~ ,  

otherwise. 

Then ~,~ and q/z both are enigmatic retracing functions for X, and gt I is finite- 
to-one but does not satisfy condition (b)(i) of  Proposit ion 4, and ~,1 satisfies 
(b)(i) but is not finite-to-one. In fact it is easy to see that no enigmatic 
retracing function for a finite set can satisfy both of these conditions. 

THEOREM 5. Every retraceable set whose complement is recursively 
enumerable has an enigmatic retracing function. 



58 ROBERT P. DALEY 

Proof. Let ~t be a retracing function for the complement of  the recur- 
sively enumerable set W~. We will assume that I~; is infinite since by the 
above remarks such a enigmatic retracing function is easily constructed if I~ i 
is finite. We will construct an enigmatic retracing function q) from q/and 4; 
by using a screening process for each input similar to that described 
previously. This process will involve concurrent computations and we will 
assume that no two of the concurrent computations halt simultaneously. We 
use f ( x ) ~  g(y) to denote that f (x)  halts before g(y) when f (x)  and g(y) 
are computed concurrently. We will also assume that the computation of  
q~(x) halts as soon as q)(x) is assigned a value. Define ~(1) = 1 and V)(x) for 
x > 1 as follows: 
q)(x): Compute qJ(x) concurrently with 0i(x). 

(A) If  0i(x)--* gt(x) then set q)(x) = x -- 1. 

(B) If  ~u(x) ~ 0i(x) then 

(1) If  qJ(x) > x then set ~)(x) = x -  1. 

(2) If  qJ(x) = x then find y -= max{z < x[ q)(z) = z}. 

(a) If  y does not exist then set q)(x) = u/(x). 

(b) If  y exists then compute 0i(x) concurrently with Oi(Y). 
(i) If  0i(x) ~ Oi(Y) then set q)(x) = x - 1. 

(ii) If  Oi(Y) ~ Or(x) then set ~)(x) = ~(x). 

(3) If  ~,(x) < x then 

(a) If  q)(z) = z for some gt(x) < z < x then set q)(x) = x - 1. 

(b) If ~ ) ( z ) < z  for all ~t(x)< z < x  then compute 0i(x) and 
Oi(qJ(x)) concurrently with 0i(z) for all ~,(x) < z < x. 

(i) If  0i(x) ~ Oi(z) or 0i(qJ(x)) ~ Oi(z) for some such z then set 
~ ( x )  = x - I .  

(ii) If  0i(z) --+ 0i(qJ(x)) and 0;(z) ~ 0;(x) for all such z then set 
~ ( x )  = ~ , ( x ) .  

It is not difficult to prove by induction that V) is total recursive. This is 
done by showing that at each concurrent branch point in the procedure for 
at least one of  the branches terminates: either Oi(x) ~ or ~t(x) l ; if ~,(x) = x 
and ~,(y) = y  then either Oi(x) J, or 0i(Y) ~ ; if ~,(x) < x then either both 
Oi(x) l and Oi(~t(x)) ~, or Oi(z) J, for all ~,(x) < z < x (in case x ~ Wi). 
Observe that if ~)(x) 4= ~,(x) then ~(x) = x - 1 and x ~ W i. From this obser- 
vation and step (B)(1) it is clear that V)(x)<<,x. Suppose now that 
q~(x) < y < x. Since ~(x) ~ x - 1 we have V)(x) = ~(x). By step (B3)(a) we 
see that q~(z) < z for all ~(x) < z < x (otherwise q~(x) = x - 1 =~ ~,(x)). 
Similarly, from step (B3b)(i) we see that 0i(z)--+Oi(~(x)) for all 
qJ(x) < z < x. Now, if q/(y) < ~(x) < y then since Oi(Y) --+ Oi(~(x)), we see 
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that ~ ( y ) - - y - 1 ) q ) ( x ) .  So in any case O ( x ) 4  ~ ) ( y ) < y .  Repeating this 
argument it follows for some m > 1 that I~m(y) --= I~(x) and so p~(y) >/p~(x). 
Thus, ~)(x)= m a x { y l y  < x and p~(y)< p~(x)}, and we conclude that q) is 
enigmatic. II 

In view of Theorem 5 and part (d) of Proposition 4 we see that retraceable 
sets with recursively enumerable complements are characterized in terms of 
enigmatic retracing functions. 

THEOREM 6. A retraeeable set has a recursively enumerable complement 
if and only if  it is retraeed by some enigmatie retraeing funetion. 

We now show that retraceability is a characterizing property for B n. 

THEOREM 7. For any reeursively enumerable set A with retraceable 
complement there is a measured system ~ sueh that A = A n . 

Proof Without loss of generality we can assume that ,~ is infinite. Let ~, 
be an enigmatic retracing function for A, so that by Proposition 4, x C ,~ <~> 
x = max{y[po(y ) ~< po(x)}. Let 

gi~(n, 1) = min{xlp,(x ) = n}, 

0~(n, m + 1) = min{xlx > 0~(n, m) and po(x) = n}. 

Let a(n, m) = S(S(e, n), m) so that g~C,,m)() = 0~(n, m). Since S(i, j)  > 
max{/,j} we have o(n, m) > max{n, m}. We define/a by 

/l(i) = n, if (~ m < i) (3 n < i) [i = ~(n, m)], 

= 0, otherwise. 

Clearly, /~ is total recursive. Let {q~i} be any computational complexity 
measure for {~i}. We modify {oPt} as follows: 

~ i =  0i, if p(i)>O, 

-- cP i, if /a(i) = 0. 

Observe that ~ .~ . ,m>()=~.Cn,m)()~<y if and only if there are at least m 
integers z<~y such that p,~(z)=n. Therefore, {~i} is a computational 
complexity measure for {4i}, and since gn =Po is clearly total recursive, 

= @, {~i}) is a measured system. Then 

bn(n) ~ max{@i( )10 < p(i) <~ n and 01( ) ~ } 

----- max{~ j ,m) (  )[j ~ n and m > 0 and q~o~.m) ( ) J. } 

--- max{ylpo(y ) <~ n}. 

Thus, A = B  n and so A = A  n. We observe further that ~'n = ~. | 
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The construction given in the proof of Theorem 7 illustrates the true 
nature of the equivalence between busy beaver sets and retraceable sets with 
recursively enumerable complements (or via Theorem 6 sets retraced by 
enigmatic retracing functions). The equivalence rests in the correspondence 
between runtimes of programs of size n and integers of retracing rank n. One 
of the referees of this article has pointed out that a shorter proof of the above 
equivalence can be obtained by combining the results of Yates (1962) that a 
set A is retraceable if and only if there exists a total recursive function f s u c h  
that 

A = {x[ (~ y < x ) [ f (y )  ~< f (x ) ]  }, 

with the property that A~ = {xl (3 y < x)l 0 < ge(y )  < g~(x)} and with the 
fact that for every total recursive funct ionfthere  exists a measured system 
such that f =  ga .  

3. REPLETE SETS 

In Daley (1981a) it was observed that one property of the busy beaver set 
B ° which was crucial to the constructions there was that s ~ B ° ¢> As ° = A ° [ s, 
where Xls  = X A  {1 ..... s} for any set X. For a recursively enumerable set A 
the set of integers s such that A s = A  ]s is called by Dekker (1954) the non- 
deficiency stages in the enumeration of A (and later by Soare (1976)the true 
stages in the enumeration of A). Since we are assuming that q~i(x) > x, it is 
clear that the set of non-deficiency stages in the enumeration of A must form 
a subset of A. We see that B ° is precisely the set of non-deficiency stages for 
A °. We therefore call a recursively enumerable set W i replete if there is some 
computational complexity measure {q~i} for {Oi} such that Wi,s= 

rVi l s . ~  s ~ f f ' i  . 

THEOREM 8. For every measured system $2 the set A ~ is replete. 

Proof. Let 0e(x) = min{yly  > x and O < g~(y)  ~<gQ(x)}. Given 
computational complexity measure {~Pi} for {gl/} we define {~fii} by 

any 

q3 i = Oi, if i ~ e, 

= ¢I e, i f i = e .  

Then it is easy to see that {q3t} is a computational complexity measure for 
{Oi} and that A ~ = d o m O e .  If s E W  i then ~be(s)>s so We[sq=We, s. 
Suppose sq~ W e and x < s  and x E  W e. Then ~ e ( X ) = m i n { y [ y >  x and 
0 < g~(y)  ~ gr~(x)}. If ga(x) <~ g~(s) then we clearly have ~ ( x )  ~< s (since 
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go(ff~e(x)) <,go(x) and s = max{yiga(y  ) ~go(s)}) .  If go(x) > go(s) then 
(Je(X) ~ s and so ~e(x) ~< s. Therefore x E We, s and A o is replete. II 

THEOREM 9. Every replete recursively enumerabte set has a retraceable 
complement. 

Proof. Let W e be a replete recursively enumerable set so that for some 
computational complexity measure {q~i} for {¢~i}, We, s = Weis ¢> s C fie e. 
Define 

~,(x) = max{y] y < x and q~i(Y) > x}, 

-- x, if no such y exists. 

Let l ~ = { W l , W z  .... }. Since W e is replete, if x C W  e and x < $  n then 
qge(X ) <~ ~ , ,  so that ~,(v~) = wl and qs(~,+~) = wn. Therefore ~u retraces fie. 
We point out that q/is also enigmatic. I 

Summarizing the main characterization results of this article we have the 
following. 

THEOREM 10. Let A be a recursively enumerable set. Then the following 
statements are equivalent: 

(a) A is replete; 

(b) A is retraceable; 

(c) A is retraced by an enigmatic retracing function; 

(d) A = A o for some measured system X2. 

4. POST'S PROBLEM 

In this section we show how the busy beaver construction can be applied 
to construct recursively enumerable sets which are non-recursive and non- 
complete. We will construct a particular measured system I2 = @, {~i}), 
where ~t will be a program size measure and {qsi} is a modification of the 
space measure for Turing machines which we briefly describe. Although the 
description is in terms of multi-tape Turing machines, this measure can be 
defined for any acceptable G6del numbering by using the intertranslatability 
between the programs of acceptable G6del numberings. The multi-tape 
oracle Turing machine will have a read-only input tape, a write-only output 
tape, a read-only oracle tape on which is written the characteristic function 
of the oracle set, and some number of work tapes. Then, ~X(x) will be the 
maximum number of tape squares on any of these tapes used by Turing 
machine i with oracle set X on input x. 

643/52/1-5 
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We first observe that if X and Y are infinite sets, then 
deg X ~  deg Y <~. (3 i) [v x = ~i~'], where v x is the next element function for  the 
set Y defined by 

Vx= min{y ly  > x and y CX}.  

We define a program size measure/~ for {¢i} by 

~z(i) = nc> f ( n -  1) < i<~f(n),  

where the total recursive function f is defined by 

/ ( 1 )  = 1, 

f ( n  + 1) = max{S(e,  i ,j) I e, i , j  <~ f (n )} ,  

and where S is the S -  2 -  1 function given for {¢i} such that f)s~eaj)(x)= 
¢e(i,j, X). Since/~ is clearly a program size measure,  it is clear that .Q is a 
measured system and deg A n = deg B a  = O' .  

By the definition of # if n/> max{g(i),/~(j),/~(e)} then II(S(e, i,j)) <. n + 1. 
Let e be a program such that (~e(i,j) = Oi(Oj( )) and Os(e,i,j) ( ) > OS(e,i,j)( )" 
Let n ) /~ (e )  and l e t j  be such that Oj( ) = bn(n ) and / l ( j )  = n. I fp ( i )  ~< n and 
Oi(b~(n)) ~ then /.t(S(e, i,j)) ~< n + 1 so that ¢i(b~(n)) = f)i(Oj()) = 
¢s~e,ia)( ) < CPs(e,ia)( ) <~ bn(n + 1). Thus we have 

(g i ) e ) ( V  n >/p(i))[Oi(b~(n)) 

Oi(bn(n)) < b~(n + 1)]. (12) 

Recall f rom L e m m a  1 that A t~ = dom 4, where 

¢~(x) = min{y ly  > x and 0 < gn(Y)  <~ gn(x) 

and (V z)[x < z < y ~  g~(z) > gn(Y)]}. 

Let E denote the set of  even integers. We define a recursively enumerable set 
A e,  which will provide a solution to Post 's  Problem, as follows: 
A e = dora gl e ,  where 

be(x) = rain{ Y l Y > x and 0 < g o ( Y ) ~  go(x) and gn(Y)  is even 

and (¥ z)[x < z < y=> gn(z) > g~(y)]}.  

If Ae, s denotes the elements enumerated by stage s then we see that Al~,s is 
recursive and that 

AE,,={XIOAx)~s}, 
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B E =&~ 

BE,s = AE,,Is. 

LEMMA 11. 

(b) 
(c) 
(d) 

Proof  

(a) A e is recursively enumerable. 

B e  c_Be.  

A E is replete. 

(V n)[n even ~ BE C~ (be(n - 1), be(n))  = 0].  

(a) This is immediate,  since A e = dom Ce, and OE is clearly a 
partial recursive function. 

(b) This follows from the definition of OE and (9). 

(c) F rom the enumeration procedure for A e it is clear that s C Be, s for 
all s so that if Be, s = BE Is then s E B E. Let x ~< s be such that x E Be, , and 
x ~ A  E. Let y =  ~IE(x ) so that we have that y > s and g e ( y )  is even and 
ga(Y)  <, ge (x )  and also (V z ) [x  < z < y =~ ge(z )  > ge(Y)].  Then 
g e ( Y ) < . g e ( s )  and (Vz)[s  < z  < g a ( y ) = ~ g e ( z )  > g e ( y ) ]  also, so that 
O e ( s ) = y  and s C A  e. Therefore, if Be#--/=Bels then s q ~ B  e,  i.e., 
s C B e ~ B e ,  s = B e l s .  

(d) Suppose that n is even. Let be(n - 1) < x < be(n ) and let t be the 
least integer such that be(n - 1, t) < x < be(n, t). Then it is easy to see that 
O e ( x ) = t s o x C A  e. | 

LEMMA 12. There exists a computational complexity measure {q~i} such 
that 

(a) ~X(x) ~> max{i, •X(x)}. 

(b) s ~> q~X(x) ~ q~xt'(x) = q~X(x). 

(c) ¢ U ( x )  < s ~ ~ U ( x )  = ~ ( x ) .  

(d) There exists a program transformation 2 such that 

0~.,;~( ) = 0,('*';()), 
~,,j~( )=  q',(%( ))- 

(e) There exists a program transformation v such that 

O~i)(x) = min{sls > x and q~E.,(x) ~<s}, 

• ~.~(x) = O~.~(x). 
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Proof Although we use a particular model for the recursive functions to 
describe the complexity measure, this measure can be applied to any G6del 
numbering because of the effective intertranslatability between programs of 
acceptable G6del numberings. 

We consider oracle Turing machines depicted in Fig. 1 which have a 
read-only input tape, a write-only output tape, a read-only oracle tape on 
which is written the characteristic function of the oracle set, and some 
number of work tapes. We first stipulate that/t(i)  can be computed within i 
work tape squares. Let TOX(x) denote the number of oracle tape squares 
used by program i with oracle set X on input x, and TWX(x) the maximum 
number of work tape squares on any of its work tapes used by program i 
with oracle set X on input x. Then we define 

q~,.X(x) = max{i, x, ~x(x), TOX(x), TWX(x)}. 

Lemma 12(a) clearly follows from this definition. Lemma 12(b) and 
Lemma 12(c) both follow from the fact that since q~X(x) >/TOX(x) no infor- 
mation about the oracle set X involving members greater than q~X(x) can 
affect the computation. Lemma 12(d) holds since the program 2(i,j) can 
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(using exactly ~ j ( )  work tape squares) write q~g() on one work tape and 
then mimic the operation of program i using this work tape as its input tape. 

Finally, we indicate the proof of Lemma 12(e). Supposing that Be,~ can be 
computed within s work tape squares, then q~.~(x)~< s can also be tested 
within s work tape squares by writing Be, ~ on one work tape and then 
mimicing program i on input x with this work tape as its oracle tape. Then 
program r(i) on input x tries successively larger integers s > x until it finds 
one such that q~,~(x) <~ s, which by the above will take at most (and, since 
q~X(x)/> 0~(x), at least) s work tape squares. 

To see that BE, s can be computed within s work tape squares, we first 
observe that since p(i) can be computed within i tape squares for each t ~< s, 
go(t) can be computed within s tape squares, because go(t) is the size (~<t) of 
a program which uses t work tape squares in its computation. Then to 
compute Be, ~, for successively larger values of t such that t ~< s we add (by 
setting bits on our special work tape for BE,~) to Be, ~ all integers x such that 
bo(go(t ) - i ,  t )< x < t provided that go(t) is even. We can maintain the 
current value of bo(n, t) by using a work tape and updating the values as 
new terminating computations are discovered. I 

We point out that 2(i,j) takes the form S(e, i,j) for some appropriate 
program e so that there exists an n~ such that 

p( j )  >/n~ ~ p(2(i,j)) ~< 1 + max{p(/), p(j)}. (13) 

LEMMA 13. (V i) (¥~ n)[n odd ~ O~]~(bo(n - 1)) 4= bo(n)]. 

Proof Suppose ~i is given. Let n o ~> max{na,p(r(i))}. Suppose now that 
n>~n o and n is odd and O~(bo(n - 1))~ .  Let t E B  o be such that 
t >/q~]~(bo(n- 1)) and go(t) is even. Then by our choice of n o we have from 
Lemma 12(b) that q ~ l t ( b o ( n - 1 ) ) =  ~E(bo(n- -1) ) ,  and from Lemma 
11(c) that Bel t=BE,  t and ~ , , ( b o ( n -  1 ) ) =  ~I,~.]~l'(bo(n- 1))~<t, from 
which we conclude O¢(i)(ba(n-1))~.  Let s=O~(i ) (bo (n -1 ) ) .  Since 
p(r(i)) ~< n and O¢(i)(b~(n - 1)) ~ from (12) we see that s < bo(n ). Let j be 
such that p( j )  = n and q~j( ) = bo(n - 1), so 0¢(i)(bo(n - 1)) = Oa(r(i),j)(). 
From parts (d) and (e) of Lemma 12 we have q~¢¢(i),j)()= 
• ~(i)(b~(n - 1)) = O~(i)(b~(n - 1)), and consequently q~( i ) , j ) (  ) = s. 
Therefore since p(r(i))~<no and p ( j ) = n - - l > ~ n a  and s > b o ( n - - 1 ) ,  we 
have by (13) that p (2 ( r ( i ) , j ) )=  n. Thus go(s)= n and since n is odd and 
s > bo(n -- 1) there can be no y > s such that go(Y) <~ n and go(Y) is even. 
Therefore, s C B e and by Lemma 1 l(c), BE, ~ = BEIS and cb~lS(bo(n- 1) )=  
cb~.~(bo(n-1)) ~<s. Then from Lemma 12(c) we have q J ~ ( b o ( n - 1 ) ) =  
q ~ l ~ ( b ~ ( n -  1)) so that by Lemma 12(a), f ) ~ ( b o ( n -  1))~< 
~ ( b o ( n -  i)) ~< s < bo(n). Finally, we conclude that O ~ ( b ~ ( n -  1)) 4= 
b~(n). I 
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THEOREM 14. The recursively enumerabIe set A E provides a solution to 
Post's Problem, i.e., O < deg A E < O'. 

Proof Suppose n is odd. Then by Lemma 13 we have ~f~(be(n-  1))4: 
be(n ) , but v B ( b e ( n - 1 ) ) = b e ( n )  so that (Jf~vaVBo and therefore 
degA E = d e g B  E 4 :degB e = O ' .  If  n is even then by Lemma l l(d) ,  B Ey~ 
( b e ( n - 1 ) ,  bo(n))=O so that vB~(be(n--1))=be(n ). By (12) we have 
f)i(be(n - 1)) < be(n ) so that Oi 4: vB~ and degA e = degB E 4: O. II 

In the above constructions if we reversed the roles of even and odd we 
would have obtained a set A o such that O < deg A o < O', where 

A o = dom ~o, 

Bo z Xo~ 

and where 

Oo(X) = min{y I y > x and go(Y) <~ go(x) and go(Y) is odd 

and (V z)[x < z < y ~  ge(z) > ge(Y)]}. 

We see also that B o satisfies 

(¥ n)[n odd => Be (~ (be(n - 1), be(n)) = ~].  (14) 

(V i)(V ~ n)[n even ~ q)~o(be(n - 1)) 4: be(n)]. (15) 

Then combining Lemma 1 l(d) with (15) we have v~E4: 0~ o for any program 
i, and combining Lemma 13 with (14) we have VBo 4: (J~E for any program i. 
Therefore, we conclude that degA E ~ degA o and degA o ~ deg Ae; that is, 
deg A E and deg A o are incomparable degrees of unsolvability. 

Furthermore, these techniques can be generalized to provide some 
modularization of the construction of various degrees of unsolvability as 
follows. For each recursive set R we define the partial recursive function 

(Jg(x) = min{ yly > x and go(Y) ~ g~(x) and go(Y) ~ R 

and (g z)[x < z < y=> ge(z) > ge(Y)]}, 

and the recursively enumerable set 

A R = dom OR. 

THEOREM 15. {degAR} is isomorphic to the boolean algebra of the 
recursive sets under inclusion modulo the finite sets. 

Replacing the condition "go(Y) ~ R" by "cPi(go(y)) ~ x," where 
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W = dom Oi in the definition of 0R above, yields a recursively enumerable set 

which we denote by A w. 

THEOREM 16. {degAw} is isomorphic the lattice o f  the recursively 
enumerable sets modulo the f in i te  sets. 

The details of the proof of the analog of Lemma 12 for A R and A w above 
can be found in Daley and Reynolds (1980). 
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