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Abstract

Results in the area of compact monoids and groups are useful in the analysis of quantum automata (1qfa’s). In this paper:

(1) We settle isolated cut point Rabin’s theorem in the context of compact monoids, and we prove a lower bound on the state
complexity of 1qfa’s accepting regular languages.

(2) We use a method pointed out by Blondel et al. [Decidable and undecidable problems about quantum automata, Technical
Report RR2003-24, LIP, ENS Lyon, 2003] based on compact groups theory to design an algorithm for testing whether a
k-tuple of 1qfa’s is a classifier of words in �∗; this problem turns out to be undecidable if the completeness of the classifier is
required.

(3) In the unary case, we give an exponential time algorithm for computing the descriptional complexity of periodic languages.
Moreover, we present a probabilistic method to construct 1qfa’s exponentially succinct in the period and polynomially succinct
in the inverse of the bounded error.
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1. Introduction

In the early 1980s, Feynman first suggests that the computational power of quantum mechanical processes might
be beyond that of traditional computation models [19]. Discussing the notion of “quantum computer”, Deutsch [18]
introduces the quantum Turing machine as a physically realizable model for a quantum computer. From the point of
view of structural complexity, the class BQP of problems solvable in polynomial time on quantum Turing machines is
introduced [5].

The power of quantum paradigm crucially relies on the features of quantum systems: superposition, interference and
observation. A well known result witnessing quantum power is Shor’s algorithm for integer factorization which runs
in polynomial time on a quantum computer [27]. Another relevant progress is made by Grover [21] who proposes a
quantum algorithm for searching an item in an unsorted database containing n items in time O(

√
n).
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Some efforts have been made for constructing quantum devices, and their realizations seems to be a difficult task.
For this reason, it can be useful to study the computational characteristics of simple devices such as 1-way quantum
automata (1qfa’s). Several models of 1qfa’s have been introduced in the literature, among them measure-once [6,12,24],
measure-many [2], reversible [20] 1qfa’s and 1qfa’s with control language [8].A measure-once 1qfa evolves undisturbed
on the whole input string, and only at the end an observation is performed, while in the other models an observation
is performed after each input symbol reading. The behavior of a 1qfa is given by the set of words whose acceptance
probability is larger than a fixed cut point.

1qfa’s exhibit both advantages and disadvantages with respect to their classical (deterministic or probabilistic)
counterpart. Basically, quantum superposition offers some computational advantages on probabilistic superposition.
On the other hand, quantum dynamics are reversible: because of limitation of memory, it is sometimes impossible to
simulate deterministic automata by quantum automata.

This paper shows some formal methods useful to analyze 1qfa’s, by restricting to the simplest model, i.e., the
measure-once. These methods should be able to study “continuous systems” (described by vectors and matrices with
complex entries) having “discrete behaviors” (the accepted languages). The paper is dedicated to Christian Choffrut,
who devoted great part of his research to analyze automata models by means of algebraic and computational methods
(see, for instance [14,15]; for decidability questions on semigroups of matrices, see [16]).

After a brief introduction on quantum automata, in Section 3 we set Rabin’s theorem (i.e., probabilistic languages
recognized with isolated cut point are regular) in the more abstract context of compact monoids. As a consequence
of this viewpoint, we prove a lower bound on the quantum state complexity of regular languages in terms of their
deterministic state complexity (Theorem 2).

In Section 4, we present some elements of the elegant theory of compact groups. The relevant role played by this
theory in the area of quantum automata, together with the decidability of the (first order) theory of real fields, have been
pointed out by Blondel et al. [11], who developed a nice methodology for approaching some decidability questions on
1qfa’s. They proved, for instance, that it is decidable whether a 1qfa A with rational amplitudes accepts with cut point 1

2
the empty set, or whether a rational � is an isolated cut point for A; notice that the corresponding problems for stochastic
automata are undecidable [7,26]. We apply these tools for investigating problems related to the classification of words
by means of quantum automata. A k-quantum classifier consists of 1qfa’s A1, . . . , Ak on input alphabet � satisfying:
(1) each automaton accepts at least one word in �∗; (2) every word in �∗ is accepted by at most one automaton. The
intended meaning is that all automata compete for recognizing a word, but at most one automaton is the winner. A
classifier is complete if, in addition, every word in �∗ is accepted by some automaton.

We study the problems of deciding whether a family A1, . . . , Ak of 1qfa’s is a quantum classifier (k-Q.CLASSIFIER),
or a complete quantum classifier (COMPLETE k-Q.CLASSIFIER). 1-Q.CLASSIFIER is equivalent to decide whether the
language recognized by a 1qfa is not empty, while COMPLETE 1-Q.CLASSIFIER is equivalent to decide whether the
language recognized by a 1qfa is �∗: these two problems with k = 1 were investigated in [11], where it is proved
that the former is decidable, while the latter is undecidable. In this paper we extend these results to the general
case.

In Section 5, we investigate the descriptional power of 1qfa’s with isolated cut point versus that of deterministic
automata in the case of unary languages (i.e., languages on alphabet � with |�| = 1). We show an exponential
time algorithm for computing the quantum descriptional complexity of periodic languages and we discuss a method
for constructing “succinct” 1qfa’s recognizing a given language. As an application, we exhibit a Monte Carlo 1qfa
recognizing the language Ln = {akn | k ∈ N} with bounded error ε and O((1/ε3) log n) states; for every fixed ε > 0
and n prime, the construction is asymptotically optimal.

2. Preliminaries: 1-way quantum finite automata

By Cn×m (resp., C(n)) we denote the set of n × m (resp., n × n) matrices with complex entries.
Given a set Q = {q1, . . . , qm}, every qi can be represented by its characteristic vector ei = (0, . . . , 1, . . . , 0). A

quantum state on Q is an element in C1×m given by a superposition � = ∑m
k=1 �kek , where the coefficients �k ∈ C

are amplitudes and the norm ‖ � ‖ of � is equal to 1. Every ek is called pure state. Given an alphabet � = {�1, . . . , �l},
with every symbol �i we associate a unitary matrix U(�k) ∈ C(m), i.e., ‖ �U(�k) ‖=‖ � ‖ for each � ∈ C1×m. An
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observable is described by an Hermitian matrix O, i.e., O = O†, where O† denotes the adjoint of O. The eigenvalues
c1, . . . , cs of O are reals; by denoting P1, . . . , Ps the projectors onto the corresponding eigenspaces, it holds that
O = c1P1 + · · · + csPs . We recall that PiPj = 0 (the m × m zero matrix) for 1� i �= j �s and

∑s
i=1 Pi = I .

Suppose that a quantum system is described by the quantum state �. Then, we can operate
(1) Evolution U(�j ). In this case, the new state � = �U(�j ) is reached; this dynamics is reversible, since � = �U†(�j ).
(2) Measurement of O. In this case, every result in {c1, . . . , cs} can be obtained; cj is obtained with probability ‖ �Pj ‖2

and the state after such a measurement is �Pj/‖ �Pj ‖. The state transformation induced by a measurement is
typically irreversible.

A (measure-once), 1qfa for short, with q pure states on the input alphabet � is a system A = (�, {U(�)}�∈�, �),
where � ∈ C1×q and ‖�‖ = 1, U(�) ∈ C(q) is a unitary matrix for each � ∈ �, � = (�1, . . . , �q) ∈ {0, 1}q is the
characteristic vector of the (final) states.

The stochastic event induced by A is the function pA : �∗ → [0, 1] defined, for any �1 · · · �k ∈ �∗, by

pA(�1 · · · �k) = ∑
�j =1

∣∣∣∣∣
(

�

(
k∏

i=1
U(�i )

))
j

∣∣∣∣∣
2

,

where |z| is the modulus of z ∈ C. Equivalently, the 1qfaA = (�, {U(�)}�∈�, �) can be specified byA = (�, {U(�)}�∈�,

P ), where P ∈ C(q) is the projector on the subspace spanned by the final states. In this case, the event pA can be
obtained as

pA(�1 · · · �k) =
∥∥∥∥�
(

k∏
i=1

U(�i )

)
P

∥∥∥∥
2

.

Notice that the projector P biunivocally determines the observable O = 1 · P + 0 · (I − P), so that pA(�1 · · · �k) is
the probability of accepting �1 · · · �k after the evolution and the observation.

Let U (q) be the set of q × q unitary matrices. Another equivalent way of specifying the 1qfa A is by writing

A = (�, �, P ), where � : �∗ → U (q) is the morphism defined as �(�1 · · · �k) = ∏k
i=1 U(�i ), for �1 · · · �k ∈ �∗. In

this case, for w ∈ �∗, the event induced by A writes as pA(w) = ‖��(w)P ‖2.
Given an event p : �∗ → [0, 1] and a real � ∈ [0, 1], the language Lp,� defined by p with cut point � is the set

Lp,� = {w ∈ �∗ | p(w) > �}.
The cut point is isolated if there exists a positive real � such that |p(w) − �|��, for any w ∈ �∗. Moreover, if p is
induced by the 1qfa A, then Lp,� is said to be recognized by A with cut point � (isolated by �), and we write LA,�.
Without loss of generality, we will assume � = 1

2 . The relevance of isolated cut point recognition on automata is due
to the fact that, in this case, we can arbitrarily reduce the classification error probability of a string x by repeating a
constant number of times (not depending on the length of x) its parsing and taking the majority of the answers. A well
known result in [12] states that the class of languages accepted by 1qfa’s with isolated cut point coincides with the
class of group languages [25], a proper subclass of regular languages.

A language L ⊆ �∗ is said to be recognized by A in Monte Carlo mode (with bounded error ε) if and only if there

exists ε ∈ (0, 1
2 ) such that, for any x ∈ �∗, x ∈ L implies pA(x) = 1, and x /∈ L implies pA(x)�ε.

3. 1-way quantum automata and monoids

A fundamental result in the area of stochastic automata is Rabin’s theorem [26]: every language recognized by a
probabilistic automaton with isolated cut point is regular. In this section we settle this result in a more abstract context,
suitable for applications to quantum automata. Moreover, by a constructive variant of Rabin’s method, we give an
(optimal) estimation of the quantum state complexity of regular languages.

A natural metric on the linear space C(n) is induced by the Euclidean norm. For any A ∈ C(n):

‖A‖ = max‖x‖=1
‖xA‖.
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Consider now a morphism � : �∗ → C(n) and let �(�∗) denote its image. The (metric) closure of �(�∗) is the set

�(�∗) consisting of �(�∗) plus its limit points. �(�∗) is bounded whenever supA∈�(�∗) ‖A‖ < ∞; in this case, �(�∗)
is compact. Yet, since matrix product is a continuous function, then �(�∗) is a compact monoid.

Example 1. The norm of every unitary matrix is 1. As a consequence, if �(�) consists of unitary matrices, then �(�∗)
is a compact monoid.

Example 2. Suppose A is an n × n stochastic matrix. Then, it can be easily proved that ‖A‖�√
n. Therefore, if �(�)

consists of stochastic matrices, then �(�∗) is a compact monoid.

Rabin’s theorem can be stated as follows:

Theorem 1. Let �(�∗) be a compact monoid. Given L ⊆ �∗, if

inf
x∈L, y /∈L

‖�(x) − �(y)‖ > 0

then L is regular.

Proof. Since �(�∗) is bounded, then we have ‖�(w)‖�H , for a suitable constant H and every w ∈ �∗. Suppose that
L is not regular. Hence, there is an infinite sequence {wj } of words in �∗ such that, for i �= j , there is a word zij

satisfying wjzij ∈ L if and only if wizij /∈ L. Then:

0 < inf
i �=j

‖�(wj zij ) − �(wizij )‖ = inf
i �=j

‖(�(wj ) − �(wi))�(zij )‖
� inf

i �=j
‖�(wj ) − �(wi)‖H.

This is impossible. In fact, �(�∗) being compact, it is possible to extract a subsequence {�(wmj
)} of {�(wj )} that

converges, implying

inf
i �=j

‖�(wmj
) − �(wmi

)‖ = 0. �

This result can be extensively applied to 1qfa’s. In fact, it can be proved that the probabilistic events realized by several

models of 1qfa’s are rational power series generated by generalized real automata (�, �, �) where �(�∗) is bounded [8].
It follows that the classes of languages recognized by models of 1qfa’s such as measure-once, measure-many, reversible
1qfa’s, 1qfa’s with control language [6,8,12,20,24] are subclasses (possibly proper) of regular languages. For some of
these subclasses, providing a characterization is still an open problem [3,20].

The proof of Theorem 1 is not constructive. Nevertheless, in the probabilistic context, it suggests a technique for
stating a lower bound on the number of states of a stochastic automaton accepting a given regular language with
isolated cut point [26]. Here, we apply such a technique for estimating the quantum descriptional complexity of a
regular language L, i.e., the number of states of the smallest 1qfa recognizing it with isolated cut point (if any). More
precisely, denoting by |A| the number of states of the 1qfa A, we state:

Definition 1.
• DQ(L, �) = min{|A| : L is recognized by the 1qfa A with cut point isolated by �}.
• DQ(L) = min�>0 DQ(L, �).

Since L is regular, it is natural to compare DQ(L, �) with the classical descriptional complexity DC(L) of L, i.e. the
number of states of the minimum deterministic automaton for L. By using Rabin’s technique, in [1] it is proved that
DQ(L, �) = �(log DC(L)/log log DC(L)), for any given � > 0. Here, we improve this result:

Theorem 2.

DQ(L, �)� log DC(L)

2 log(1 + 2/�)
.
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Proof. Consider a minimum d-state 1qfa A = (�, �, (�1, . . . , �d)) recognizing L with cut point isolated by �, so that
d = DQ(L, �). Let M = {��(w) | w ∈ �∗} and 	 = infw∈L,v /∈L ‖��(w) − ��(v)‖. We can partition M according to
the equivalence relation ≡	 ⊆ M × M defined as follows: for 1� i < k


 ≡	 � ⇔ there exist �1, . . . , �k ∈ M with �1 = 
, �k = �, ‖�i − �i+1‖�	.

The equivalence classes of ≡	 are called 	-components. According to Rabin’s construction [26], their number gives an
upper bound for DC(L).

Now, let Xi be a representative of the ith 	-component, and consider the sphere of radius 	/2 centered in Xi . It is
clear that such a sphere is disjoint from the analogous sphere centered in Xj , for i �= j . Moreover, all these spheres are
contained in the sphere of radius 1 + 	/2 centered in (0, . . . , 0). Since the volume of a d-dimensional sphere of radius
r is cr2d , for a suitable constant c (depending on d), there exist at most

c(1 + 	/2)2d

c(	/2)2d
=
(

1 + 2

	

)2d

spheres, and this number is an upper bound for DC(L). To prove the thesis, it is sufficient to show that ��	, or
equivalently that ��‖��(w) − ��(v)‖ for all w ∈ L, v /∈ L. To this regard, set ��(w) = (z1, . . . , zd) and ��(v) =
(z′

1, . . . z
′
d), with w ∈ L and v /∈ L. Then

2� �
∑

�i=1
|zi |2 − ∑

�i=1
|z′

i |2

= ∑
�i=1

(|zi | − |z′
i |) · (|zi | + |z′

i |)

�
( ∑

�i=1
(|zi | − |z′

i |)2

)1/2 ( ∑
�i=1

(|zi | + |z′
i |)2

)1/2

(by Schwarz inequality)

�
( ∑

�i=1
|zi − z′

i |2
)1/2

⎡
⎣( ∑

�i=1
|zi |2

)1/2

+
( ∑

�i=1
|z′

i |2
)1/2

⎤
⎦ (by triang. ineq.)

� ‖��(w) − ��(v)‖(‖��(w)‖ + ‖��(v)‖) = 2‖��(w) − ��(v)‖. �

The lower bound �(log n) shown in this theorem is optimal since, in [2], the language Ln = {akn | k ∈ N} is proved
to be recognizable with isolated cut point by a 1qfa with O(log n) states. Notice that deterministic, nondeterministic or
probabilistic automata accepting Ln require n states (for n prime, in the probabilistic case).

4. 1-way quantum automata and compact groups

We have seen that �(�∗) is a compact monoid if there exists a positive constant H satisfying ‖ �(w) ‖ �H , for
every w ∈ �∗. If �(�) is a unitary matrix, for every � ∈ �, we can say more:

Theorem 3. Let � : �∗ → U (n) be a morphism. Then �(�∗) is a compact group.

Proof. Since matrix product and the inverse are continuous functions in U (n), it suffices to prove that A ∈ �(�∗)
implies A−1 ∈ �(�∗). To this regard, consider the power sequence {Ak}k �0. Since {Ak}k �0 ⊆ �(�∗), and since

�(�∗) is compact, there exists a subsequence of {Ak}k �0 that converges. So, for any ε > 0, there are mε, nε such that
‖ Amε − Anε ‖ �ε. Suppose that mε > nε, and set hε = mε − nε − 1. Then, we get

‖ Ahε − A−1 ‖=‖ (Amε − Anε)A−nε−1 ‖ � ‖ Amε − Anε ‖ �ε.

This shows that limε→0 Ahε = A−1, and hence A−1 ∈ �(�∗). �
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As an important consequence of Theorem 3, we have that the compact group �(�∗) coincides with the zero set
of a finite set {p1, . . . , ps} of real polynomials [11,17]. More precisely, let X = {xij , yij | 1� i, j �n} denote a
set of real variables and let R[X] be the set of polynomials with variables in X and coefficients in R. Given a
polynomial p(xij , yij ) and a matrix M ∈ C(n), we say that M is a zero of p, and write p(M) = 0, whenever

p(Re(Mij ), Im(Mij )) = 0, where Re and Im denote the real and the imaginary part of a complex number, respectively.

Thus, �(�∗) = {M ∈ C(n) | pi(M) = 0, for every 1� i�s}.
A central concept is that of invariant:

Definition 2. Let � : �∗ → U (n) be a morphism generating the compact group �(�∗). An invariant of the group is a
polynomial p ∈ R[X] satisfying p(�(w)X) = p(X), for any w ∈ �∗.

We denote by R�[X] the set of invariants of �(�∗). Invariants can be used to define matrix membership in �(�∗), as
given in the following [11].

Theorem 4. Let M ∈ C(n). Then M ∈ �(�∗) if and only if p(M) = p(I), for every p ∈ R�[X].

As a consequence, it is not hard to show (see [11]) that �(�∗) coincides with the zero set of the polynomials contained
in

I� = {p ∈ R[X] | p(�(�)X) = p(X) for every � ∈ �, and p(I) = 0}.
This fact yields two relevant consequences:
(1) If, for every � ∈ �, �(�) is a unitary matrix with rational or algebraic entries, it is computationally easy to verify

whether p ∈ R[X] belongs to I�.

(2) �(�∗) is also the zero set of the ideal J � generated by I�. By Hilbert’s basis theorem [4], J � is finitely generated.

i.e., there exists a finite subset {p1, . . . , ps} ⊂ R[X] generating the ideal J �. As a consequence, M ∈ �(�∗) if
and only if p1(M) = p2(M) = · · · = ps(M) = 0. So, there exists a finite set of polynomials witnessing matrix

membership in �(�∗).
These elements, together with the decidability of the (first order) theory of real fields, have been emphasized in the

area of quantum automata by Blondel et al. [11].
The first order theory TOF of ordered fields (see, e.g. [13]) is expressed by the first order language LOF having 0, 1

as constants, +, · as binary operations, and � as binary relation. TOF has all the field axioms, the linear order axioms,
and the additional axioms

x�y ⇒ x + z�y + z,

x�y ∧ 0�z ⇒ x · z�y · z.

Atomic formulas in LOF are equalities or inequalities between polynomials with integer coefficients. The language LOF
is particularly expressive: the real sets definable by LOF-formulas are called semi-algebraic sets. Tarski [28] showed
the existence of an effective quantifier elimination procedure for the theory of real numbers in LOF. Unfortunately, the
worst-case complexity is double-exponential [29]. However, for formulas with a fixed number of quantifier blocks, the
time complexity is single-exponential.

In [11], a nice methodology is proposed for attacking some decidability problems on 1qfa’s, obtaining surprising
results. For instance, they proved that it is decidable whether a 1qfa A with rational amplitudes accepts with cut point
1
2 the empty set, or whether a rational � is an isolated cut point for A. Notice that the corresponding problems for
stochastic automata are undecidable [7,26].

We are now going to apply the method in the frame of classification problems using quantum finite automata.
A k-quantum classifier, for k�2, is a system C = 〈A1, . . . , Ak〉, where A1, . . . , Ak are 1qfa’s on alphabet � such

that LAi,1/2 �= ∅ and LAi,1/2 ∩ LAj ,1/2 = ∅, for 1� i, j �k and i �= j . The intended meaning is that all automata
compete for recognizing a word, but at most one automaton is the winner.

As the reader may easily observe, for a quantum classifier, either a word w ∈ �∗ is not classified, or it is classified
in that class j such that w ∈ LAj ,1/2, with 1�j �k.
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A classifier C is complete whenever all words are classified, i.e.,
⋃k

j=1 LAj ,1/2 = �∗; in this case, the family
{LAj ,1/2}j=1,...,k

is a partition of �∗.
Two natural problems related to quantum classifiers are the following:

k-Q.CLASSIFIER

• INSTANCE: 1qfa’s A1, . . . , Ak on alphabet �.
• QUESTION: Is 〈A1, . . . , Ak〉 a k-quantum classifier?
COMPLETE k-Q.CLASSIFIER

• INSTANCE: 1qfa’s A1, . . . , Ak on alphabet �.
• QUESTION: Is 〈A1, . . . , Ak〉 a complete k-quantum classifier, i.e., is LA1,1/2, . . . , LAk,1/2 a partition of �∗?

First of all, we prove

Theorem 5. For any k�2, k-Q.CLASSIFIER is decidable.

Proof. By [11], we have that testing whether a 1qfa recognizes a nonempty set with cut point 1/2 is decidable. Hence,
it is sufficient to prove that, given two 1qfa’s A1 = (�1, �1, P1) and A2 = (�2, �2, P2), it is decidable to test whether
LA1,1/2 ∩ LA2,1/2 = ∅. To this purpose, we observe that the set {(A1, A2) | LA1,1/2 ∩ LA2,1/2 �= ∅} is exactly the set

{(A1, A2)|∃w ∈ �∗(‖ �1�1(w)P1 ‖2> 1
2 ∧ ‖ �2�2(w)P2 ‖2> 1

2 )}.
This set is defined by an existential quantification on a recursive test (i.e., ‖ �1�1(w)P1 ‖2> 1

2∧ ‖ �2�2(w)P2 ‖2> 1
2 ),

and hence is semi-decidable. Then, to show the decidability of {(A1, A2) | LA1,1/2 ∩ LA2,1/2 = ∅}, it is enough to prove
its semi-decidability.

Without loss of generality, we can assume that A1 and A2 have the same induced morphism. To this regard, let us

quickly introduce some notations. For matrices A ∈ C(n) and B ∈ C(m) and for vectors � ∈ C1×n and � ∈ C1×m, their
direct sum is, respectively

A ⊕ B =
(

A 0
0 B

)
, � ⊕ � = (�1, . . . , �n, �1, . . . , �m).

Now, consider the 1qfa’s A1 = (�1, �1, P1) and A2 = (�2, �2, P2). We can set � = �1 ⊕ �2, and define the automata
B1 = (�1 ⊕ (0, . . . , 0), �, P1 ⊕ 0) and B2 = ((0, . . . , 0) ⊕ �2, �, 0 ⊕ P2). It is easy to verify that LA1,1/2 = LB1,1/2
and LA2,1/2 = LB2,1/2.

Let now {pk | k ∈ N} be a computable total ordering on polynomials with rational (or algebraic) coefficients. Given

a morphism � with �(�) unitary matrix with rational entries, for every, � ∈ �, we know that �(�∗) is exactly the zero
set of

I� =
{

pk

∣∣∣∣∣ ∧�∈�
pk(�(�)X) = pk(X), and p(I) = 0

}
.

It is easy to see that I� is recursive. Now, take the ideal generated by I�:

J � =
{
ps

∣∣∣∣∃m∃j1, . . . , jm, k1, . . . , km

(
ps =

m∑
i=1

pji
pki

, with pj1 , . . . , pjm ∈ I�
)}

.

This ideal is defined via an existential quantification on a recursive predicate, and this gives that J � is recursively
enumerable. Thus, there exists a total recursive enumerating function t� : N → N such that J � = {pt�(n) | n ∈ N}.

Consider the following procedure:
INPUT: A1 = (�1, �, P1), A2 = (�2, �, P2)

F := 0; k := 0; � := ∅;
while F = 0 do
begin

� := � ∪ {pt�(k)};
if ∀X

(∧
p∈� p(X) = 0 ⇒‖ �1XP1 ‖2 � 1

2∨ ‖ �2XP2 ‖2 � 1
2

)
then
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F := 1;
k := k + 1;

end
output(F )

We note that the test ∀X
(∧

p∈� p(X) = 0 ⇒‖ �1XP1 ‖2 � 1
2∨ ‖ �2XP2 ‖2 � 1

2

)
in the if-statement is a formula

in the language LOF, and hence decidable (e.g., by Tarski’s quantifier elimination method). Let us now examine the
behavior of the procedure:
• Suppose LA1,1/2 ∩ LA2,1/2 �= ∅. In this case, there exists a matrix M ∈ �(�∗) satisfying ‖ �1XP1 ‖2> 1

2∧ ‖
�2XP2 ‖2> 1

2 . Moreover, M satisfies
∧

p∈I� p(M) = 0 as well. Hence, the test in the if-statement is never passed
and the procedure loops.

• Suppose LA1,1/2 ∩ LA2,1/2 = ∅. By Hilbert’s basis theorem [4], J � is finitely generated, say, by the polynomials

 = {pt�(k1), . . . , pt�(ks )}. Let K = max {k1, . . . , ks}. After K iterations of the while-loop, � will clearly contain


. Hence, the test in the if-statement will be passed, and the procedure will halt returning 1.
In conclusion, we have designed a procedure that halts on the elements of the set {(A1, A2) | LA1,1/2 ∩LA2,1/2 = ∅},

and loops otherwise. This shows the semi-decidability to testing whether LA1,1/2 ∩ LA2,1/2 = ∅, and concludes
the proof. �

On the contrary, we show that

Theorem 6. For any k�2, COMPLETE k-Q.CLASSIFIER is undecidable.

Proof. We first need to show the undecidability of the following simple problem. Let E = {w ∈ �∗ | |w| mod 2 = 0}
be the set of even length strings. We call EVEN the problem of deciding, given a 1qfa A on the alphabet �, whether
LA,1/2 = E. By [11], we know that testing whether LA,1/2 = �∗ is undecidable. We reduce this latter problem to
EVEN, thus yielding the undecidability of EVEN as well.

Given the q-state 1qfa A = (�, {U(�)}�∈�, P ), let us construct the 2q-state 1qfa Â = (�̂, {Û (�)}�∈�, P̂ ), where �̂

is the 1 × 2q vector (�, 0, . . . , 0), for any � ∈ �, Û (�) is the 2q × 2q unitary matrix
(

0
I

U(�)
0

)
, and P̂ is the 2q × 2q

matrix
(

P
0

0
0

)
. It is easy to verify that p

Â
(ε) = pA(ε) and, for any �1 · · · �n ∈ �+:

p
Â
(�1 · · · �n) =

{
0 if n is odd,

pA(�1�3 · · · �n−1) if n is even.

Hence, given �1 · · · �n ∈ �+, for any w ∈ �1��2� · · · �n� we get p
Â
(w) = pA(�1 · · · �n). Since E = {ε} ∪⋃

�1···�n∈�+ �1��2� · · · �n�, we conclude that LA,1/2 = �∗ if and only if L
Â,1/2 = E. Therefore, if the problem EVEN

were decidable then we would be able to decide whether LA,1/2 = �∗, which is a contradiction.
We are now ready to show the undecidability of COMPLETE k-Q.CLASSIFIER by reducing EVEN to it. Fixed k, i,

with 0� i�k − 2, let us define the language Lk,i = {w ∈ �∗ | |w| mod 2(k − 1) = 2i + 1}. This is a group language,
and hence it is recognized by a quantum (actually deterministic) automaton A

(k)
i . Moreover, it is easy to see that

{L
A

(k)
i ,1/2

}
i=0,...,k−2

partitions the set of odd length strings of �∗.

For reducing EVEN to COMPLETE k-Q.CLASSIFIER, with every 1qfa A on alphabet � we associate the k-tuple
(A, A

(k)
0 , A

(k)
1 , . . . , A

(k)
k−2). In fact, LA,1/2 = E if and only if LA,1/2 ∪L

A
(k)
0 ,1/2

∪ · · ·∪L
A

(k)
k−2,1/2

= �∗. This reasoning

shows that testing whether (A, A
(k)
0 , A

(k)
1 , . . . , A

(k)
k−2) is a complete k-quantum classifier can be used to decide whether

LA,1/2 = E, which is undecidable. �

5. Quantum descriptional complexity: the unary case

In this section, we study the quantum descriptional complexity DQ(L) (see Definition 1, Section 3) in case L is a unary
regular language. In this context, we prove that the quantum descriptional complexity is computable in exponential
time.
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A language L is unary if L ⊆ {a}∗. Every language L accepted with isolated cut point by a 1qfa can be recognized by
a deterministic automaton whose next state function is a permutation for every symbol [6,12]. It follows that the class
of unary languages recognized with isolated cut point by 1qfa’s is the class of periodic languages, where a language

L ⊆ {a}∗ is called n-periodic if and only if ak ∈ L ⇔ ak+n ∈ L, for all k�0.
The minimum period of L coincides with its classical descriptional complexity DC(L). So, we can use a result in

[23] to give an upper bound for its quantum descriptional complexity in term of its classical descriptional complexity:

Theorem 7. DQ(L)�2
√

6DC(L) + 26.

Hence, for a unary regular language L, we have the following situation: if L is not periodic, then it cannot be
recognized with isolated cut point by 1qfa’s (i.e., DQ(L) = ∞), while if L is periodic, quantum computing helps

(DQ(L) = O(
√

DC(L)). Observe that the bound of Theorem 7 is almost tight infinitely often; in fact, in [9] a lower

bound DQ(L) = �(
√

DC(L)/log DC(L)) is proved for infinitely many periodic languages.
We are now going to show that the quantum descriptional complexity DQ(L) is a computable function; unfortunately,

the time complexity of the algorithm is exponential.

Theorem 8. For unary periodic languages L, the quantum descriptional complexity DQ(L) is computable in time
T (D2

C(L)), where T is the time for proving existential formulas in LOF.

Proof. Consider a n-periodic language L represented by a vector vL ∈ {0, 1}n, where vL(k) = 1 ⇔ ak mod n ∈ L, and
a 1qfa (�, U, P ) recognizing L with isolated cut point. Because of periodicity, we can restrict ourselves to consider

unitary evolution matrices U with eigenvalues of the form ei(2�/n)k , with integer k.
Fixed an integer F , to specify a 1qfa with F states, consider the following set of complex variables (as usual, a

complex variable should be interpreted as a pair of real variables, see Section 4):

(i) x = {xi | 1� i�F } denoting the amplitudes of the initial superposition;
(ii) X = {Xi,j | 1� i, j �F } denoting the unitary matrix;

(iii) Y = {Yi,j | 1� i, j �F } denoting the projector (measure operator).

1qfa’s with F states and eigenvalues of U of the form ei(2�/n)k are exactly the zero set of the following set of
polynomials:

PF = {‖ x ‖2= 1, XX† = I, Xn = I, Y = Y †, Y 2 = Y }.

Thus, we observe that the n-periodic language L, specified by vL ∈ {0, 1}n, it is recognized with isolated cut point by
an F -state 1qfa if and only if the following sentence �F,L holds in LOF:

�F,L ≡ ∃x, X, Y, �

( ∧
p∈PF

p ∧ ∧
k∈{1,...,n}

(−1)vL(k) ‖ xXkY ‖2< (−1)vL(k)�

)
.

With minor modifications, �F,L can be easily transformed into an equivalent sentence �̂F,L of length O(nF 2). Then,
the function DQ(L) can be computed by the following algorithm:

INPUT: vL ∈ {0, 1}n
F := 1;
while (�̂F,L is false) do F := F + 1;
output(F )

If T (g) is the time required to prove existential sentences of length g in LOF, we conclude that the computational
complexity of the previous algorithm is T (nD2

Q(L)). By Theorem 7, we know that DQ(L) = O(
√

n), obtaining the

bound T (O(D2
C(L))). Since exponential algorithms for deciding existential formulas in LOF are known [29], DQ can

be computed in exponential time. �
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5.1. About the family {Ln}n>0

We now present a method that, in some cases, allows to exhibit 1qfa’s exponentially more succinct then their classical
counterpart. In particular, we show the existence of a Monte Carlo 1qfa recognizing the language Ln = {akn | k ∈ N}
with bounded error ε and O((1/ε3) log n) states.

Consider a class B = {�
 : {a}∗ → [0, 1] | 
 ∈ I } of n-periodic events induced by M-state 1qfa’s (�
, U
(�), P
)

(
 ∈ I ) and call B̂ its convex closure. Every � ∈ B̂ is a convex linear combination � = ∑

∈I b
�
, with b
 �0 and∑


 b
 = 1. We can interpret b = {b
 | 
 ∈ I } as a probability distribution on I ; fixed k ∈ N, �
(a
k) is a random

variable on (I, b), whose expectation is
∑


∈I b
�
(a
k) = �(ak). We can approximate the expectation �(ak) by an

empirical average, by means of the following algorithm:
INPUT: an integer S (number of samples)

for t := 1 to S do

[t] := 
 independently chosen in I with probability b
;

output the 1qfa A defined as

A =
(
⊕
[t]

√
1/S�
[t], ⊕
[t]U
[t](�), ⊕
[t]P
[t]

)
.

This 1qfa has SM states and realizes the empirical average

�S(ak) = 1

S

S∑
t=1

�
[t](ak),

for every k ∈ N. To study how �S approximates �, we need to recall Höffding’s Inequality [22]: Let Xi’s be i.i.d.
random variables with values in [0, 1] and expectation �. Then, for all S

Prob

{∣∣∣∣ 1

S

S∑
i=1

Xi − �

∣∣∣∣ ��

}
�2e−2�2

S. (1)

Going back to our problem, since �S and � are n-periodic events, we have:

Prob

{
sup
k∈N

|�S(ak) − �(ak)|��

}
= Prob

{
max

0�k<n
|�S(ak) − �(ak)|��

}
� n · max

0�k<n
Prob{|�S(ak) − �(ak)|��} (by union bound)

� n · 2e−2�2
S (by Höffding’s Inequality (1)).

By requiring n · 2e−2�2
S < 1, we obtain [10]:

Theorem 9. Given a family B of n-periodic events induced by M-state 1qfa’s, for any event � in the convex closure of
B there is a 1qfa with O((M/�2) log n) states inducing an event �, such that supw∈{a}∗ |�(w) − �(w)|��.

We specialize this result for the following family of n-periodic events:

�S =
{

�
1,...,
s
(ak) =

s∏
j=1

cos2
(

�
j k

n

)∣∣∣∣∣ 
j integer, 0�
j < n

}
.

Any event in �S is induced by the 2s-state 1qfa A
1,...,
s obtained by Kronecker’s product of the 2-state 1qfa’s inducing
events of type cos2(�
k/n) [8]. Let now consider the following convex linear combination of the events in �S :

�(ak) = 1

ns

∑
0�
1,...,
s<n

�
1,...,
s
(ak) =

(
1

n

n−1∑

=0

cos2
(

�
k

n

))s

.
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Then, we get

�(ak) =
⎧⎨
⎩

1 for k mod n = 0,

1

2s
otherwise.

The event

�(ak)

⎧⎨
⎩

= 1 for k mod n = 0,

� 2

2s
otherwise.

satisfies supw∈{a}∗ |�(w) − �(w)|�1/2s . Hence, by letting ε = 1/2s−1 and by Theorem 9, � can be induced by a 1qfa

with O((1/ε3) log n) states.
Let us now apply such results to language recognition. Consider the unary language

Ln = {akn | k ∈ N}.
In [2], the authors exhibit a Monte Carlo 1qfa accepting Ln, for prime n, with O(log n) states. Actually, a careful
inspection of their construction algorithm reveals that their state upper bound exponentially depends on 1/ε. Here, we
improve this result as follows:

Theorem 10. For any n > 1, there exists a 1qfa accepting Ln in Monte Carlo mode with bounded error ε and
O((1/ε3) log n) states.

Proof. We can build a 1qfa with O((1/ε3) log n) states inducing the n-periodic event

�(ak)

{= 1 for k mod n = 0,

�ε otherwise.

This clearly gives a Monte Carlo acceptance of Ln. �
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