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Logarithmic strains are increasingly used in constitutive modelling because of their advantageous prop-
erties. In this paper we study the physical interpretation of the components of the logarithmic strain ten-
sor in any arbitrary system of representation, which is crucial in formulating meaningful constitutive
models. We use the path-independence property of total logarithmic strains to propose different ficti-
tious paths which can be interpreted as a sum of infinitesimal engineering strain tensors. We show that
the angular (engineering) distortion measure is arguably not a good measure of shear and instead we pro-
pose area distortions which are an exact interpretation of the shear terms both for engineering and for
logarithmic strains. This new interpretation clearly explains the maximum obtained in some constitutive
models for the simple shear load case.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Traditional constitutive modelling is frequently developed for
small (engineering) strains (Bathe, 1996; Kojić and Bathe, 2005).
The extension of these models to large strains is not obvious. There
are many fundamental issues when extending such models to large
strains, as for example objectivity and energy preservation during
elastic deformation processes (Eshraghi et al., 2013a,b; Holzapfel,
2000; Ogden, 1984), which do not usually deserve special attention
for small strains. One important decision to be made at large
strains is which stress and strain measures to employ.

In the small strain kinematically linear context the engineering
infinitesimal stress and strain measures are the ones employed
because distinction is not relevant among the different measures.
Engineers are used to engineering strains, so they have a rather
deep understanding of the physical meaning of their components.
In the large strain context, unfortunately there are many choices
for stress and strain measures and, of course, that choice strongly
affects the constitutive equations of the model, which is usually
formulated with a given strain measure in mind. Of course one
strain measure may always be mapped to any other strain mea-
sure, but for example, a constitutive equation linear in one strain
measure will not be so in any other measure. Hence, some funda-
mental conclusions obtained using one measure may not be valid
using others.
The Green–Lagrange and Almansi–Euler deformation measures
are often used because of two reasons: they are directly obtained
from the deformation gradient and they naturally appear in the
nonlinear terms of the finite element formulations. However, these
deformation measures are not intuitive, even for uniaxial loading,
so using them in constitutive equations may bring difficulties
interpreting results or material constants of the models.

The large strain measures arguably most intuitive are the loga-
rithmic (Hencky or ‘‘true’’) strain measures. As we will briefly
review below, they preserve the physical meaning of the trace
operator (and hence the volumetric and deviatoric strains), they
are additive in uniaxial situations and they are symmetric respect
to the percentage of stretching: doubling the length of an specimen
gives the same amount of logarithmic strain than halving the
length of the specimen, except for the change of sign. For logarith-
mic strains, the push-forward and pull-back operations are
performed using rotations, so they also preserve the metric.
Furthermore, in isotropic metals a linear hyperelastic relationship
between logarithmic strains and Kirchhoff stresses has been found
to be an accurate representation if the elastic strains are not too
large but only moderately large (Anand, 1979, 1986). This fact
added to the special structure of the exponential tensor operators
on logarithmic strains facilitate enormously the formulation of
elastoplastic constitutive models that are physically well
grounded, accurate and efficient for finite element implementa-
tion, both for the isotropic (Eshraghi et al., 2010; Eterović and
Bathe, 1990; Montáns and Bathe, 2005; Perić et al., 1992; Simó,
1992; Weber and Anand, 1990) and anisotropic cases (Caminero
et al., 2011; Miehe et al., 2002; Papadopoulus and Lu, 1998). It
has been shown that logarithmic strains appear naturally as a
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Fig. 1. Deformation of two arbitrary orthogonal directions.
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consequence of the combination of hypoelasticity and hyperelas-
ticity into a single equation in the context of elastoplasticity (Xiao
et al., 2007).

Logarithmic strain measures are also increasingly being used in
highly nonlinear hyperelasticity to model the behavior of elasto-
mers and living tissues. For example, recent models based on
spline interpolation of experimental data are formulated using log-
arithmic strains, both for isotropic materials (Sussman and Bathe,
2009) and for anisotropic materials (Latorre and Montáns, 2013;
Latorre and Montáns, 2014). However these models necessitate
some experimental data, which must be correctly interpreted.
The correct interpretation of the components of the logarithmic
strain tensor in any system of representation is a key for obtaining
a correct and accurate description for such models. Furthermore, as
we show below, if a good understanding of the strain tensor is
achieved, some useful expressions involving functions of such ten-
sor may be obtained (Hoger, 1986; Jog, 2008).

The purpose of this paper is to make some progress in the inter-
pretation of the components of the logarithmic strain tensor in any
system of representation, paying special attention to the off-diag-
onal terms, and to link some conclusions with observed phenom-
ena in the literature when these measures are being used. In
particular, we are specially interested in elucidating a correct
meaning and a correct measure for the shear deformation. This is
of crucial importance in constitutive modelling.

The layout of the paper is as follows. First we briefly review
some well-known facts about general strains with the objective
of properly motivate the definition and the construction of the log-
arithmic strain tensor in such a way that the components of the
tensor may be better understood. Then we analyze some typical
shear deformation examples in order to explain the geometrical
meaning of the logarithmic strain measures and to understand
the limitations of these shear tests when used in constitutive
modelling.

2. General strain measures

The strain measure of a uniformly stretched longitudinal rod
with initial (time t0) and current (time t) total lengths L0 and L,
respectively, may be expressed in multiple ways. It is well-known
that all those usual strain measures are given by the general Seth-
Hill formula (Seth, 1964)

En ¼
1
n

kn � 1ð Þ ð1Þ

where k ¼ @x X; tð Þ=@X ¼ L=L0 is the current stretch ratio, n is a
number that characterizes each uniaxial strain measure and x X; tð Þ
represents the motion of material points X 2 0; L0½ � at time t. The
identity k ¼ L=L0 holds due to the homogeneous deformation
assumed along the rod. As it is widely known, the general formula
given in Eq. (1) can be used to locally define the strains in principal
directions of a three-dimensional deformation state. In that way,
Eq. (1) is generalized to

En ¼
X3

i¼1

1
n kn

i � 1
� �

Ni � Ni if n – 0

E0 ¼
X3

i¼1

ln kiNi � Ni if n ¼ 0

8>>>>><>>>>>:
ð2Þ

where ki are the principal stretches and Ni are the principal direc-
tions of the stretch tensor U obtained from the right polar decom-
position, or equivalently

En ¼ 1
n Un � Ið Þ if n – 0

E0 ¼ ln U if n ¼ 0

(
ð3Þ
with I being the second-order identity tensor.
From Eqs. (2), one can easily calculate all the strain tensors En,

including the case n ¼ 0, using the principal stretches ki and
the eigenvectors Ni (previously computed). This way, since
Enð Þi ¼ Ni � EnNi ¼ kn

i � 1
� �

=n, any possible physical meaning for
unidimensional strains can obviously be interpreted in the same
manner along the principal stretching directions in the three-
dimensional case. However, from Eqs. (2) expressed in that way,
nothing can be said about the components of En when these ten-
sors are represented in a general basis.

In order to understand the description of the cases n – 0 in a
general system of representation (not only in principal directions),
the general expression given in Eq. (3)1 for En can be used. We will
use the deformation gradient U ¼ @�x X; tð Þ=@X, where �x X; tð Þ repre-
sents the motion of material points X with the rotation R removed,
which yields a compatible homogeneous rotationless deformation.
Hence, for example, the Biot strain tensor, obtained for n ¼ 1, is
E1 ¼ U� I ¼ @�u X; tð Þ=@X, where it can be seen that E1 represents
the material gradient of the displacement field �u X; tð Þ ¼
�x X; tð Þ � X. For any pair of orthogonal unit vectors P and Q in the
reference configuration, see Fig. 1, we have

E1ð ÞPQ ¼ P � E1Q ¼ P � @
�u X; tð Þ
@X

Q ¼ P � DQ ð4Þ

which reveals the meaning of the components of E1 in a reference
frame in which P and Q are basis vectors, that is, E1ð ÞPQ is the pro-
jection onto the P direction of the relative displacement
DQ ¼ �u Xþ Q ; tð Þ � �u X; tð Þ when the deformation is assumed to be
homogeneous in the solid. Note that if P is not a principal direction
of deformation, the diagonal components of E1 can not be under-
stood as in the associated unidimensional case, that is, in general

E1ð ÞPP – kP � 1 ð5Þ

where kP ¼ pj j, being p ¼ UP the transformed vector into the cur-
rent configuration corresponding to the basis vector P. Aside, in this
case in which the rotation R is removed, E1 is equivalent to the engi-
neering strain tensor e ¼ sym @�u=@Xð Þ ¼ @�u=@X ¼ E1. However, the
well-known physical descriptions of the diagonal and off-diagonal
components of e (ePP � kP � 1 and ePQ � cPQ=2, being cPQ the angular
distortion associated to directions P and Q ) can only be assigned to
E1 if uj j � 1, that is within the small strain framework.

The values n ¼ 2 and n ¼ �2 provide the well-known Green–
Lagrange and Euler–Almansi strain tensors, respectively. If the first
of them is expressed by means of Eq. (3), it results in
E2 ¼ 1=2ðU2 � IÞ. As before, one can get a physical interpretation
of the PQ-component of E2 when this last expression is pre- and
post-multiplied by the orthogonal material basis vectors P and
Q . Proceeding in that way

E2ð ÞPQ ¼ P � E2Q ¼
1
2 k2

P � 1
� �

if P ¼ Q
1
2 kPkQ cos hPQ if P – Q

(
ð6Þ

with kP ¼ pj j and kQ ¼ qj j. In this case, unlike for E1 – see Eq. (3) –
the diagonal terms of E2 correspond to the unidimensional E2-strain
measures of the fibers initially located along the reference frame
axes. In a general situation, however, these fibers are not disposed
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along the reference axes in the current configuration. On the other
hand, the off-diagonal term E2ð ÞPQ gives a measure of the angular
deformation corresponding to the initially orthogonal material
directions P and Q , quantified by means of the angle hPQ formed be-
tween both deformed lines p and q, but also affected by the stretch-
ing ratios kP and kQ . In the following section, we will see that in
some cases this shear measure may lead to some misleading phys-
ical interpretations.

However, for the three-dimensional interpretation of the loga-
rithmic strain tensor E0, one cannot turn to the corresponding
expression in Eq. (3), as we did for the cases n ¼ �1 and n ¼ �2.
In order to introduce a handy procedure to better grasp the phys-
ical meaning of this measure, we define a time-like variable s, with
its domain of definition being 0 6 s 6 t. The time alike s (pseudo-
time) variable is a parameter that continuously maps the reference
configuration (s ¼ 0) to the current configuration (s ¼ t) following
any uniform fictitious motion n X; ŝð Þ;0 6 ŝ ¼ s=t 	 1, which pre-
serves the principal strain directions of the current configuration
Ni for every value of ŝ. The homogeneous deformation gradient
(it can also be considered as a local gradient) associated to
n X; ŝð Þ is then

! X; ŝð Þ ¼
X3

i¼1

Ki ŝð ÞNi � Ni ð7Þ

where Ki ŝð Þ are the principal stretches associated to the considered
fictitious motion at the normalized (pseudo) time ŝ. Then, we per-
form an integration process from the reference configuration
(Ki 0ð Þ ¼ 1) to the current configuration (Ki 1ð Þ ¼ ki), with the
restrictions Ki ŝð Þ > 0 and the eigenvectors Ni being fixed. Note that
the actual rotationless motion �x X; sð Þ will not necessarily be in-
cluded in the set n X; ŝð Þ. If we denote the Lagrangian and Eulerian
descriptions of the fictitious velocity field by t X; ŝð Þ and t n; ŝð Þ
respectively (note the abuse of notation), the spatial velocity gradi-
ent associated to the motion n X; ŝð Þ is

@t n; ŝð Þ
@n

¼ @t X; ŝð Þ
@X

@X n; ŝð Þ
@n

¼ @

@ŝ
@n X; ŝð Þ
@X

� �
@X n; ŝð Þ
@n

¼ _!!�1 ð8Þ

This tensor may be written using the basis of principal directions as

@t n; ŝð Þ
@n

¼ _!!�1 ¼
X3

i¼1

_Ki

Ki
Ni � Ni ð9Þ

where the terms involving time-derivatives of eigenvectors Ni van-
ish. Using any of these motions, Eq. (2)2 provides

E0 ¼ ln U ¼
X3

i¼1

ln kiNi � Ni ¼
X3

i¼1

Z ki

1

dKi

Ki

� �
Ni � Ni ð10Þ

¼
Z 1

0

X3

i¼1

_Ki

Ki
Ni � Ni

 !
dŝ ¼

Z 1

0

_!!�1dŝ ¼
Z 1

0

@t n; ŝð Þ
@n

dŝ ð11Þ

Proceeding this way, we observe that E0 represents a direct measure
of the sum (integral) of the infinitesimal spatial displacement
gradients

@t n; ŝð Þ
@n

dŝ ¼: de0 n; ŝð Þ ð12Þ

relating positions between two consecutive intermediate configura-
tions at times ŝ and ŝþ dŝ on any motion n X; ŝð Þ evolving from the
reference configuration to the current configuration with constant
strain eigenvectors, hence the introduced de0 notation. Using this
infinitesimal strain tensor with respect to the configuration at time
s, i.e., de0, Eq. (11) can be written symbolically as

E0 ¼ ln U ¼
Z E0

0
de0 ð13Þ
This symbolic expression is based on the well-known physical
meaning of the components of an infinitesimal strain tensor, hence
giving a clear meaning to the PQ-component of E0. However, unlike
the unidimensional case and similar to what happened with E1,
note that in general

E0ð ÞPP – ln kP ð14Þ

The identity in Eq. (14) only holds when P is a principal direction of
deformation. Also, it can be considered as an acceptable approxima-
tion if P is not a principal direction but small strains are assumed,
that is E0ð ÞPP � ln kP � kP � 1 � ePP . In the following section we give
more insight into the components of this tensor in an arbitrary sys-
tem of representation through a couple of well-known shear tests.
Using the interpretation given by Eq. (13) one should not be sur-
prised by some of the special and intuitive properties of the loga-
rithmic strain tensor. For example, the volumetric and isochoric
parts are computed as in the small strain context

EV
0 ¼ ln J1=3I

� �
¼ 1

3 ln Jð ÞI ¼ 1
3 tr E0ð ÞI

ED
0 ¼ ln J�1=3U

� �
¼ ln UJ�1=3I

� �
¼ E0 � 1

3 tr E0ð ÞI
ð15Þ

where J ¼ det Uð Þ, J1=3I is the volumetric part of the deformation
gradient from Flory’s decomposition and J�1=3U is the isochoric
deformation part of the rotationless deformation gradient. As a re-
sult, they are additive: E0 ¼ EV

0 þ ED
0 . It can also be easily shown that

superposed deformation gradients result in additive logarithmic
strains if principal directions are preserved. These facts have been
used in many algorithms for elastoplasticity which preserve the
simple and efficient structure of small strain formulations, both in
the isotropic case (Eterović and Bathe, 1990; Montáns and Bathe,
2005; Simó, 1992; Weber and Anand, 1990) and in the anisotropic
case (Caminero et al., 2011).

Another interpretation that can be given to the tensor E0 arises
when one imposes the specific fictitious spatial velocity gradient
_!!�1 to be independent of the time-parameter ŝ, that is, the ficti-
tious motion is steady. Then

E0 ¼ ln U ¼
Z 1

0

_!!�1dŝ ¼ _!!�1
Z 1

0
dŝ ¼ _!!�1 ð16Þ

which tell us that the logarithmic strain tensor E0 ¼ ln U can be
interpreted as a constant spatial velocity gradient which, acting
over the continuum during a unit of time, leads the reference con-
figuration to the current (rotationless) configuration under a steady
motion. The specific deformation gradient ! that fulfills this condi-
tion can be obtained from Eq. (16) in principal directions

ln ki ¼
_Ki

Ki
ð17Þ

which, integrated between ŝ ¼ 0 and a generic value of ŝ gives

Ki ¼ kið Þŝ ð18Þ

or symbolically

! ¼ Uŝ ð19Þ

which, effectively, is a monotonically increasing deformation gradi-
ent between the reference (ŝ ¼ 0) gradient tensor ! ¼ U0 ¼ I and
the current (ŝ ¼ 1) gradient tensor ! ¼ U1 ¼ U.

All the previous derivations yield very interesting tools in order
to interpret the shear components in different load cases and
experimental procedures. Strain measures are an absolute local
measure between two given configurations which do not depend
on the specific path that brings one to the other. Hence, an impor-
tant observation is that we can define any fictitious path to com-
pute and interpret the meaning of the logarithmic strains. We
have seen that those which keep the principal directions are better
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suited for the physical interpretation, regardless of the time evolu-
tion used on each of the principal axes.

3. Examples

In this section we consider some examples and select for them
some specific fictitious paths in which the previous concepts are
better understood.

3.1. Pure shear

The deformation gradient of a pure shear state, see Fig. 2, repre-
sented in a basis Xe ¼ fe1; e2g rotated clockwise 45� with respect to
the principal strain directions XN ¼ fN1;N2g, is

U ¼
X3

i¼1

kiNi � Ni ¼
1

2k
k2 þ 1 k2 � 1
k2 � 1 k2 þ 1

" #
Xe

ð20Þ

where k and 1=k are the principal stretches with respect to the ref-
erence configuration and, for example N1 ¼ 1=

ffiffiffi
2
p

1;1½ �TXe
. A plain

strain state is assumed, so the remaining components U13 ¼ 0,
U23 ¼ 0 and U33 ¼ 1 are omitted in Eq. (20). The subscript Xe means
that the tensor U is being expressed in the Cartesian basis Xe.

In order to obtain the strain tensors E1 and E2 we may perform a
direct calculation, i.e.,

E1 ¼ U� I ¼ k� 1
2k

k� 1 kþ 1
kþ 1 k� 1

	 

Xe

ð21Þ

E2 ¼
1
2

U2 � I
� �

¼ k2 � 1

2kð Þ2
k2 � 1 k2 þ 1
k2 þ 1 k2 � 1

" #
Xe

ð22Þ

with the interpretation of their components already explained
above. Visualizing Fig. 2c, one could have deduced that no compo-
nent of both tensors could be zero and, furthermore, that all of them
are monotonically increasing with k, as it is effectively apparent
from Eqs. (21) and (22).

Unlike E1 and E2, the usual approach to calculate the logarith-
mic strain tensor is through the spectral decomposition:

E0 ¼
X3

i¼1

ln kiNi � Ni ¼
0 ln k

ln k 0

	 

Xe

ð23Þ
(a) (b)

(d) (c)

Fig. 2. Pure Shear State. From left upper corner clockwise: (a) reference configu-
ration represented in principal strain basis Nif g, (b) deformed configuration and
corresponding principal stretches, (c) pure shear state represented in the reference
basis eif g, (d) reference configuration represented in eif g.
Both longitudinal logarithmic strains vanish, and the interpretation
of these results in the considered reference frame is lost (note the
difference with the two previous strain measures). However, we
can understand this last result if we compute E0 performing the inte-
gration process detailed in the previous Section. In this example, the
principal directions of U have always the same orientation, whatever
the value of k (or t). Hence, for each time t, a suitable virtual motion
n X; ŝð Þ as defined in the previous section is given by the true path
n X; ŝð Þ ¼ x X; sð Þ, with 0 6 ŝ ¼ s=t 	 1, and ! X; ŝð Þ ¼ U X; sð Þ.
Denoting the principal stretches at time ŝ by K and 1=K, the
integrand (spatial velocity gradient @t=@n) of Eq. (11)2 is

_!!�1 ¼
K2�1
2K2

K2þ1
2K2

K2þ1
2K2

K2�1
2K2

24 35
Xe

_K
K2þ1

2K
K2�1

2K

K2�1
2K

K2þ1
2K

24 35�1

Xe

¼
0 _K

K

_K
K 0

24 35
Xe

ð24Þ

Therefore, tensor E0 is

E0 ¼
Z 1

0

_!!�1dŝ ¼
Z k

1

0 1=K

1=K 0

" #
Xe

dK ¼
0 ln k

ln k 0

" #
Xe

ð25Þ

recovering the previous result, i.e., Eq. (23). Obviously, recalling
Eqs. (10)–(13), since the longitudinal (diagonal) components of each
infinitesimal spatial displacement gradient relating configurations
at times ŝ and ŝþ dŝ are always identically zero in this case, their
sum from the reference to the current configuration results zero
as well. Or, in other words, the large strain pure shear state is a
deformation state formed from successive spatial small strain pure
shear states. Logarithmic strains simply manifest this fact, the other
strain measures do not.

As shown in the previous section, Eq. (19), another possible fic-
titious deformation gradient that can be considered and will be
used below is ! X; ŝð Þ ¼ U X; tð Þð Þŝ, so Ki X; ŝð Þ ¼ ki X; tð Þð Þŝ. However,
in this particular example

! ¼ Uŝ ¼
X3

i¼1

kŝ
i Ni � Ni ¼

1

2kŝ

k2ŝ þ 1 k2ŝ � 1

k2ŝ � 1 k2ŝ þ 1

" #
Xe

ð26Þ

which is only a specific time dependence for ! which provides a
constant spatial velocity gradient

_!!�1 ¼
0 ln k

ln k 0

" #
Xe

ð27Þ

included in the more general expression given in Eq. (24), since
_K=K ¼ ln k for this specific fictitious motion.

We remark that the pure shear example is a special case in
which the deformation gradient U, defined between time t ¼ 0
and time t, has always the same principal directions of strain. Thus,
it can directly be used to define some fictitious deformation gradi-
ents !, defined between s ¼ 0 and s ¼ t, for each time t. However,
other intermediate configurations that preserve the orientation of
the principal directions of deformation may be used to perform
all the previous integrals. This should not be of surprise since total
strain measures are measures of state, not of the path yielding to
that deformation state. For instance, the following deformation
gradient tensor

! ¼ Iþ ŝ U� Ið Þ ð28Þ

gives the same result for E0 when Eq. (11)2 is applied. As a main dif-
ference from that given in Eq. (26), note that the gradient ! of Eq.
(28) provides a non-ŝ-dependent material velocity gradient, i.e.,
_! ¼ U� I, associated to a non-steady motion. In this case, the diag-
onal components of the spatial velocity gradient _!!�1 are not zero
at each normalized time ŝ, but the total contribution to the integral
from the reference to the current configuration vanishes. For exam-
ple, the results for k ¼ 5 are



Fig. 4. Pure shear state in the small strain case. From left drawing (a) e12 ¼ c12=2.
From right drawing (b) e12 ¼ 2bA12 ¼ 2ðA12=L2Þ.
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U ¼ 1
5

13 12
12 13

	 

Xe

) ! ¼ Iþ ŝ U� Ið Þ ¼ 1
5

8ŝþ 5 12ŝ
12ŝ 8ŝþ 5

	 

Xe

ð29Þ

_!!�1 ¼ 1
16ŝ2 � 16ŝ� 5

16ŝ� 8 �12
�12 16ŝ� 8

	 

Xe

ð30Þ

E0 ¼
Z 1

0

_!!�1dŝ ¼
0 ln 5

ln 5 0

	 

Xe

ð31Þ

For a space dimension n, Jog, 2008 provides an explicit formula for
the logarithm of a tensor exploiting the specific, first-order in ŝ,
decomposition given in Eq. (28). Hence, Jog’s work can be viewed
as an application obtained following a specific fictitious path, which
is valid thanks to this path invariance principle.

Other simple possibility is given by the fictitious deformation
gradient

! ¼
1þ ŝ

T
1
2 trU� 1ð Þ � 1
� �� �

I if 0 6 ŝ 6 T
1
2 trU� 1ð ÞIþ ŝ�T

1�T U� 1
2 trU� 1ð ÞI

� �
if T < ŝ 	 1

(
ð32Þ

which first accounts for a pure volumetric contribution (0 6 ŝ 6 T)
and subsequently for the remaining contribution of U (T < ŝ 	 1). It
can be shown that the integral Eq. (11 )2 gives the same final result
for E0, i.e., Eq. (23), when Eq. (32) is used.

The path followed to compute the integrals for the virtual defor-
mation gradients ! ¼ U X; sð Þ (or as a particular case, ! ¼ Uŝ),
! ¼ I þ ŝ U� Ið Þ and that given in Eq. (32) can be seen in Fig. 3,
where the evolution of ! from ŝ ¼ 0 to ŝ ¼ 1 is represented in
the Mohr’s plane corresponding to directions e1 and e2. Any other
fictitious path from the point which represents the unit tensor I
(reference configuration) to the circumference associated to the
tensor U (current configuration) which preserves the principal
directions (vertical lines are preserved) leads to the same final
result, i.e., the expression given in Eq. (23), when the logarithmic
strain tensor E0 is calculated using Eq. (11)2.

3.1.1. Geometrical interpretation of the shear logarithmic strain
For deformation states in which strains are small, it is well

known that the off-diagonal component PQ of the infinitesimal
strain tensor e represent a measure of the angular distortion asso-
ciated to the initially orthogonal directions P and Q , i.e., ePQ ¼ c=2,
see Fig. 4a.

In a more general context in which large strains are considered,
the off-diagonal component PQ of the logarithmic strain tensor E0

can be considered as the natural extension of this measure since it
accounts for the sum of the infinitesimal angular distortions asso-
ciated to initially orthogonal directions P and Q , as we have shown
Fig. 3. Evolution of the intermediate deformation gradient ! from the reference configu
state. Left (a): ! ¼ U X; sð Þ. Center (b): ! ¼ Iþ ŝ U� Ið Þ. Right (c): ! given in Eq. (32). The o
‘‘D’’ means ‘‘Diagonal component’’ and subscript ‘‘O’’ means ‘‘Off-diagonal component’’.
in the previous section, see Eq. (13). However, the geometrical
interpretation of this component is apparently lost because, as
shown below, E0ð ÞPQ is not the total angular distortion associated
to the initially orthogonal directions P and Q , i.e., E0ð ÞPQ – cPQ=2.
A more accurate meaning is obtained using the fact that ePQ also
represents twice the dimensionless area indicated in Fig. 4b, i.e.,
ePQ ¼ 2bAPQ . Then, we can give another more general interpretation
(valid for both small and large strains) of the off-diagonal compo-
nents of tensor E0, which is based in area distortions rather than
angular distortions and that provides a geometrical interpretation
for any state of deformation and system of representation.

In order to see the difference between angular and area distor-
tions, consider the example in Fig. 5. As it can be seen in that figure,
if dy1 ¼ dy2, then dA1 ¼ dA2 without any approximation. However,
dc1 – dc2 if we do not consider infinitesimal deformations. Fur-
thermore, dc=2 is only an approximation of the engineering shear
strain increment de12 if we again assume infinitesimal deforma-
tions, whereas 2dbA is exactly the amount of engineering strain
increment by definition. When integrating engineering strains
the correct interpretation is crucial because total deformations
may no longer be infinitesimal. This example helps us to under-
stand why area distortions must be considered as the correct inter-
pretation at large strains.

Using the surface-like measure, component 12 of Eq. (13) reads

E0ð Þ12 ¼
Z ŝ¼1

ŝ¼0
de012 ŝð Þ ¼

Z ŝ¼1

ŝ¼0
2dbA12 ŝð Þ ¼ 2bA12 ð33Þ

where 2bA12 accounts for the sum of all the infinitesimal dimension-
less area distortions (Fig. 4b) occurring between ŝ ¼ 0 and ŝ ¼ 1,
each one of them being measured with respect to the unit differen-
tial volume at time ŝ (Eulerian description). Considering the plain
strain condition and that the motion described by the deformation
gradient given in Eq. (26) is isochoric, as can be seen by the fact that
det ! ¼ 1 for any value of ŝ, it can be readily deduced that bA12 is
coincident with the area swept by each side of the reference unit
infinitesimal volume element (Lagrangian description) when the
continuum evolves following the constant spatial velocity gradient
ration I (big solid dot) to the current configuration U (solid squares) of a pure shear
rientation of the principal strain directions is preserved in all three cases. Subscript



Fig. 5. Sketch: incremental engineering shear strains e12 with associated angular
distortions dc and area distortions dbA.
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_!!�1 ¼ ln U given in Eq. (27). This area is shown in Fig. 6, where the
specific pure shear deformation state for k ¼ 2 is illustrated. In this
example, it is straightforward to obtain that bA12 ¼ 0:34657 and
E0ð Þ12 ¼ ln 2 ¼ 0:69314, hence effectively 2bA12 ¼ E0ð Þ12.

On the other hand, using the angular-like measure c, compo-
nent 12 of Eq. (13) reads

E0ð Þ12 ¼
Z ŝ¼1

ŝ¼0
de012 ŝð Þ ¼

Z ŝ¼1

ŝ¼0
dc12 ŝð Þ=2 ¼ C12=2 ð34Þ

where C12 accounts for the sum of all the infinitesimal angular dis-
tortions (Fig. 4a) occurring between ŝ ¼ 0 and ŝ ¼ 1, each one of
them being measured with respect to the unit differential volume
at time ŝ. As it has been explained before using Fig. 5, equal infini-
tesimal increments of shear strain de012 generate equal increments
of swept area but different increments of swept angle, which im-
plies that

E0ð Þ12 ¼ 2bA12 ¼ C12=2 – c12=2 ð35Þ
Fig. 6. Pure shear state with k ¼ 2, represented in a basis fx1, x2g rotated clockwise
45o with respect to the principal strain directions fN1;N2g (see Fig. 2). Geometrical
interpretation of the dimensionless areal distortion bA12 and the total angular
distortion c12.
where c12 is the total angular distortion, see Fig. 6. For the particular
deformation state represented in Fig. 6, it is obtained that
c12=2 ¼ 0:54 – ln 2 ¼ E0ð Þ12.

We mention that with this geometrical interpretation one can
easily understand why the component ðE0Þ12 ¼ 2bA12 increases until
infinite with the deformation evolution, which is the result
deduced from the analytical calculation, i.e., Eq. (23). This does
not happen with c12.

3.2. Simple Shear

The deformation gradient F and the right stretch tensor U of the
simple shear state, under a plain strain condition, shown in Fig. 7
are, expressed in the system of representation Xe ¼ eif g in terms
of the angle w (cf. Chadwick, 1999)

F ¼
1 0
�c 1

	 

Xe

¼
1 0
2

tan 2wð Þ 1

" #
Xe

ð36Þ

U ¼
X3

i¼1

kiNi � Ni ¼
1þcos2 2wð Þ

sin 2wð Þ cos 2wð Þ
cos 2wð Þ sin 2wð Þ

" #
Xe

ð37Þ

where w ¼ 1=2ð Þ arctan 2=�cð Þ is the angle between the Lagrangian
axes Nif g and the basis eif g, whereas �c is the so-called amount of
shear strain. Both measures, w and �c, are shown in Fig. 7. The prin-
cipal stretches have been expressed in terms of the angle w, being
k2 ¼: k ¼ tan w the compressive stretch associated to direction N2

and k1 ¼ 1=k the stretch in direction N1, as shown in Fig. 7b. We
want to note here the difference between the amount of shear mea-
sure used in this example, i.e., �c, and the total angular distortion
measure used in the pure shear example explained above, denoted
by c. Within the small strain framework they are coincident and no
distinction is needed, but for large strains they can differ to a large
extent. In this example, the angular distortion c goes to p=2 when
the amount of shear strain �c goes to infinite. At the same time, as
shown below, E0ð Þ12 goes to zero.

There is a fundamental difference between the Green–Lagrange
strain tensor E2 and the logarithmic strain tensor E0 corresponding
to this example. This difference has to do with the shear (off-diag-
onal) components of both tensors when they are projected into the
reference frame eif g. On the one hand (not considering the zero-
value components involving direction N3), the tensor E2 is

E2 ¼
1
2

FT F� I
� �

¼ 1
2

U2 � I
� �

¼
�c2=2 �c=2
�c=2 0

" #
Xe

ð38Þ

where we note that the component E2ð Þ12 ¼ �c=2 increases
monotonically until infinite with the shear deformation. Recalling
the expression for this component given above, Eq. (6)2 in which
e1 and e2 play the role of P and Q , respectively, this result can be
easily inferred from Fig. 7a, since both kx1 and cos hx1x2 increase with
�c (kx1 from 1 to 1 and cos hx1x2 from 0 to 1) while kx2 ¼ 1 remains
constant.
Fig. 7. Simple shear state. Left (a): Definition of the amount of shear strain �c over
the current configuration. Right (b): Lagrangian principal strain directions, their
corresponding stretches and definition of angle w.
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On the other hand, the tensor E0 is

E0 ¼
X3

i¼1

ln kiNi � Ni ¼ � ln tan wð Þ
cos 2wð Þ sin 2wð Þ

sin 2wð Þ � cos 2wð Þ

" #
Xe

ð39Þ

where the evolution of E0ð Þ12 ¼ � ln tan wð Þ sin 2wð Þ with the shear
deformation process have to be analyzed with w decreasing from
w ¼ p=4 (i.e., �c ¼ 0) to w! 0 (i.e., �c!1). In Fig. 8, the component
E0ð Þ12 is plotted as a function of the amount of shear strain �c. As can

be seen, this component reaches a maximum value for �c ¼ 3:018,
which corresponds to the principal stretches k1 ¼ 3:319 and
k2 ¼ 0:301. This could be regarded an unexpected result because
the shear deformation (if represented by �c) increases indefinitely,
so one could expect that E0ð Þ12 was an increasing function as well.
Moreover, the ‘‘direct’’ extrapolation of the small strain behavior
to large strains might lead to the same erroneous conclusion. At this
point, the difference between the behavior of the shear components
of the two tensors being analyzed is thus apparent. As another
appreciation regarding both strain measures, note that although
the correspondence between components E0ð Þ12 and �c (or E2ð Þ12)
is not unique in this example, which is clear in Fig. 8, the correspon-
dence between tensors E0 and E2 is obviously a one-to-one
mapping.

The a priori contradictory result mentioned just above, that is,
the change from increasing to decreasing tendency of the shear
logarithmic strain when the amount of shear strain increases in
the simple shear example, can be satisfactorily explained if one
computes the tensor E0 by means of the corresponding integration
process detailed above. As seen before, for each deformation state,
we can define a fictitious motion n X; ŝð Þ with an associated defor-
mation gradient ! ¼ Uŝ and a constant spatial velocity gradient
_!!�1 ¼ ln U. The integration of this velocity gradient between
ŝ ¼ 0 and ŝ ¼ 1 provides the final result (i.e., E0) as an additive con-
tribution of equal infinitesimal strain states acting over the contin-
uum. For any deformation state defined by the angle w in the
rotated configuration, ! is

!¼
X3

i¼1

kŝ
i Ni�Ni ¼

kŝ sin2 wþk�ŝ cos2 w ðk�ŝ�kŝÞcoswsinw

ðk�ŝ�kŝÞcoswsinw kŝ cos2 wþk�ŝ sin2 w

24 35
Xe

ð40Þ
Fig. 8. Logarithmic shear strain as a function of the amount of shear strain �c for the
simple shear example, illustrating the maximum value reached by E0ð Þ12. The three
points marked over the curve correspond to the deformation states represented in
Fig. 9. For �c > 8; E0ð Þ12 keeps on decreasing and tends to zero when �c tends to 1.
where k ¼ tan w with w fixed for ŝ 2 0;1½ �. The three deformation
states marked over the graph in Fig.8 are represented in Fig.9.For
each one of them (w ¼ 1=2ð Þ arctan 2=�cð Þ), the path followed from
the reference configuration (ŝ ¼ 0) to the current configuration
(ŝ ¼ 1) by the corresponding fictitious motion with deformation
gradient given in Eq.(40) are shown. Focusing on this geometrical
interpretation of the shear components of the logarithmic strain
tensor, note that, although the amount of shear strain �c increases,
the surface distortion measure E0ð Þ12 (the area swept using constant
incremental infinitesimal strains) reaches a maximum.This fact tells
us that the contribution of the constant incremental infinitesimal
shear strains needed to obtain the deformation state corresponding
to �c ¼ �cðE0Þ12max

� 3:018 is greater than for the other cases:
�c < �cðE0Þ12max

, where longitudinal strains are of lower or equal order
of magnitude than shear strains, and �c > �cðE0Þ12max

, where longitudi-
nal strains become more and more relevant than shear strains when
�c increases. Moreover, note that the limit �c! 0 can also be repre-
sented by Fig.4 and that for the limit �c!1; E0ð Þ12 ¼ 2bA12 ! 0. Hence,
once we have understood how any simple shear state can be addi-
tively generated and why the shear logarithmic strain reaches a
maximum value in this example, one should question if the amount
of shear �c is the most correct variable to effectively measure the
amount of shear undergone by the continuum.This appreciation is
crucial in the choice of the constitutive law which models the
mechanical behavior of a material.Obviously, the shear response
of a material model will be significantly different if stresses are
assumed to be linear in E2ð Þ12 or in E0ð Þ12. That is, arguably the best
strain measure to represent the shear behavior may be E0ð Þ12 and so
if a linear relationship is to be assumed over a strain measure to
compute stresses, E0ð Þ12 is a strong candidate. Furthermore, a linear
relation between stress and strain measures would be equivalent to
the small strain linear relation if E0 is used as the strain measure,
since we have seen that this measure may be considered as the
sum of constant infinitesimal engineering strains. This is a fact
somehow observed experimentally by Anand (1979) and Anand
(1986) for metals.

The objective rate-form constitutive model presented by Xiao
et al., 1997 predicts a maximum value for the shear stress at the
simple-shear deformation. Although they directly work over the
(Eulerian) stress response rather than over the (Lagrangian) strain
behavior, note that the maximum Cauchy shear stress that they
calculate is only a consequence of the linear relationship between
Cauchy stresses r and logarithmic strains in the spatial configura-
tion ln V that they obtain, i.e., r ¼ 2l ln V (cf. Eq. (71) in that paper
taking into account that the simple shear motion is isochoric).
Thus, if the Cauchy stress–logarithmic strain relation is linear
and, as explained just above, the shear component of the material
logarithmic strain tensor E0 ¼ ln U ¼ RT ln Vð ÞR reaches the maxi-
mum value ðE0Þ12max

� 0:663 at �c ¼ �cðE0Þ12max
, then the shear compo-

nent of the rotated Cauchy stress tensor rR ¼ RTrR has also to
reproduce that maximum value at that deformation state, which
will be ðrRÞ12max

¼ 2lðE0Þ12max
� 1:325l. Using R ¼ FU�1, it is

straightforward to verify that r12 ¼ ðrRÞ12. Hence, Xiao et al. effec-
tively obtain the same result – cf. Eq. (82) – analyzing the Eulerian
stress response for their constitutive model based on the rate of
spatial logarithmic strains, which provides a hyperelastic relation
when it is formally integrated (Xiao et al., 1999; Xiao et al.,
1999). Note that for materials fulfilling this specific constitutive
law, the total Cauchy shear stress can also be interpreted as an
additive contribution of constant Cauchy shear stresses in an anal-
ogous way as for shear logarithmic strains.

This maximum value taken by the logarithmic shear strain
E0ð Þ12 in the simple shear deformation example may also repre-

sent a limitation when defining certain hyperelastic energy func-
tions on uncoupled models. Recently, we have proposed an
uncoupled decomposition of the stored energy function in terms



Fig. 9. Simple shear states corresponding to the values �c ¼ 1, �c ¼ �cðE0 Þ12max
� 3:018 and �c ¼ 5 (points marked in Fig. 8). The deformation states with the rotation removed, with

the associated geometrical interpretation of the logarithmic shear strain E0ð Þ12 or surface distortion, are also represented in order to illustrate the maximum value taken by
this strain component.
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of logarithmic strains to model incompressible transversely iso-
tropic hyperelastic materials using a spline-based methodology
(Latorre and Montáns, 2013). Since the contribution of the shear
logarithmic strain to the strain energy function is considered sep-
arately (in an uncoupled way) from the other strain components,
the corresponding term of the strain energy function can only be
defined up to the maximum amount of the shear deformation
E13 ¼ E13ð Þmax (we use here the index numeration corresponding
to that work), or equivalently between E1 ¼ 0 and E1 ¼ 1 which
correspond to the same values of �c ¼ �c E13maxð Þ, respectively, as
can be easily calculated. Otherwise the strain energy function
would be a bi-valued function. If logarithmic shear strains larger
than E13ð Þmax are needed to define the model (even though this
value corresponds to a really large shear deformation, see
Fig. 9), the pure shear test can be used instead to define the
energy density term with no limitation in its range, as we prop-
erly address (Latorre and Montáns, 2013). Another possibility is
to simply extrapolate the energy function, which is an easy
operation due to the intrinsic use of splines by the model.
4. Conclusion

Logarithmic strain measures are increasingly being used in con-
stitutive modelling because of their special properties. One of these
properties is the use of the same additive nature of the volumetric-
isochoric split as in small strains. Other properties are the also
additive nature of strains due to deformation gradients when the
principal directions are preserved. Furthermore, some constitutive
equations developed for small strains can be naturally extended to
large strains simply substituting the small strain tensor by the
logarithmic strain tensor. As we have seen in this paper, all these
properties seem natural if one considers that the logarithmic strain
tensor can be regarded as the sum of infinitesimal engineering
strain tensors.

However, the physical interpretation of the components of the
logarithmic strain tensor, both diagonal and off-diagonal, are not
so evidently inherited from their small strains counterpart. In order
to obtain some insight we have used the fact that total strain mea-
sures are path independent and, hence, logarithmic strains can be
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computed using any arbitrary fictitious velocity gradient with the
condition that the final deformation gradient is the actual one.
We have seen that the angle c of the engineering shear strain
(angular distortion) is arguably not the best measure of the amount
of shear strain. Instead we propose the amount of surface distor-
tion which is also half the off-diagonal component of the logarith-
mic strain tensor, and which for small strains has the same value as
c=4. This new physical interpretation of the logarithmic shear
strain explains the maximum obtained by this measure and by
the stress in some constitutive equations for the simple shear load
case.
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