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Abstract

We consider the problem of periodic exploration of all nodes in undirected graphs by using a finite state automaton called later
a robot. The robot, using a constant number of states (memory bits), must be able to explore any unknown anonymous graph.
The nodes in the graph are neither labelled nor coloured. However, while visiting a node v the robot can distinguish between
edges incident to it. The edges are ordered and labelled by consecutive integers 1, . . . , d(v) called port numbers, where d(v)

is the degree of v. Periodic graph exploration requires that the automaton has to visit every node infinitely many times in a
periodic manner. In this paper, we are interested in minimisation of the length of the exploration period. In other words, we
want to minimise the maximum number of edge traversals performed by the robot between two consecutive visits of a generic
node, in the same state and entering the node by the same port. Note that the problem is unsolvable if the local port numbers
are set arbitrarily, see [L. Budach, Automata and labyrinths, Math. Nachr. 86 (1978) 195–282]. In this context, we are looking
for the minimum function π(n), such that, there exists an efficient deterministic algorithm for setting the local port numbers
allowing the robot to explore all graphs of size n along a traversal route with the period π(n). Dobrev et al. proved in [S. Dobrev,
J. Jansson, K. Sadakane, W.-K. Sung, Finding short right-hand-on-the-wall walks in graphs, in: Proc. 12th Colloquium on Structural
Information and Communication Complexity, SIROCCO 2005, in: Lecture Notes in Comput. Sci., vol. 3499, Springer, Berlin,
2005, pp. 127–139] that for oblivious robots π(n) � 10n. Recently Ilcinkas proposed another port labelling algorithm for robots
equipped with two extra memory bits, see [D. Ilcinkas, Setting port numbers for fast graph exploration, in: Proc. 13th Colloquium
on Structural Information and Communication Complexity, SIROCCO 2006, in: Lecture Notes in Comput. Sci., vol. 4056, Springer,
Berlin, 2006, pp. 59–69], where the exploration period π(n) � 4n−2. In the same paper, it is conjectured that the bound 4n−O(1)

is tight even if the use of larger memory is allowed. In this paper, we disprove this conjecture presenting an efficient deterministic
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algorithm arranging the port numbers, such that, the robot equipped with a constant number of bits is able to complete the traversal
period in π(n) < 3.75n − 2 steps hence decreasing the existing upper bound. This reduces the gap with the lower bound of
π(n) � 2n − 2 holding for any robot.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the task of graph exploration by a mobile entity equipped with small (constant number of bits) mem-
ory. The mobile entity may be, e.g., an autonomous piece of software navigating through an underlying graph of
connections of a computer network. The mobile entity is expected to visit all nodes in the graph in a periodic manner.
For the sake of simplicity, we call the mobile entity a robot and model it as a finite state automaton. The task of
periodic traversal of all nodes of a network is particularly useful in network maintenance, where the status of every
node has to be checked regularly.

We consider here undirected graphs that are anonymous, i.e., the nodes in the graph are neither labelled nor
coloured. However, while visiting a node the robot can distinguish between edges incident to it. At each node v

the incident edges are ordered and labelled by consecutive integers 1, . . . , d(v) called port numbers, where d(v) is the
degree of v. We will refer to port ordering as a local orientation.

Following formalism from [20], we model robots as Mealy automata. A Mealy automaton uses only input actions,
i.e., output depends on input and the current state. In our case, the Mealy automaton has a transition function f

and a finite number of states governing the actions of the robot. More precisely, if the automaton enters a node v of
degree d(v) through port i in state s, it switches to state s′ and exits the node through port i′. This corresponds to
f (s, i, d(v)) = (s′, i′).

Periodic graph exploration requires that the automaton has to visit every node infinitely many times in a periodic
manner. In this paper, we are interested in minimising the length of the exploration period. In other words, we want
to minimise the maximum number of edge traversals performed by the robot between two consecutive visits of a
generic node, in the same state and entering the node by the same port. Budach [7] proved that no finite automaton
can explore all graphs if the local orientation is given by an adversary. In this context, we want to determine the
minimum function π(n), such that, there exists an efficient deterministic algorithm for setting the local port numbers
allowing the robot to explore all graphs of size n along a traversal route with the period π(n). Dobrev et al. proved
in [12] that for oblivious robots π(n) � 10n. Very recently Ilcinkas proposed another port labelling algorithm for
robots equipped with two extra memory bits, see [20], with exploration period π(n) � 4n − 2. The traversal route
constructed by Ilcinkas’ algorithms is based on edges of an arbitrary spanning tree encoded neatly by the port numbers.
The automaton proposed by Ilcinkas is not oblivious but it has only three states. Basically, such an automaton performs
the spanning tree traversal by means of a refined version of the so-called right-hand-on-the-wall rule.2 During a period
it might traverse twice at most one edge not belonging to the chosen spanning tree for each node. It performs periodic
exploration independently of its starting position and the initial state. In addition, if required, the robot is able to stop
at the root of the spanning tree after finishing each period of the traversal route, and wait there, e.g., for the next
wake-up message. In the same paper, Ilcinkas conjectured that the bound 4n − O(1) is tight even if the use of larger
memory is allowed.

1.1. Our results

We present an efficient deterministic algorithm arranging port numbers in the graph, such that, the robot equipped
with a constant number of bits is able to accomplish each period of the traversal route in π(n) < 3.75n− 2 steps. This

2 The right-hand-on-the-wall rule specifies that whenever the automaton enters a node v via port number i, if i < d(v) then it leaves v via port
number i + 1, 1 otherwise.
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invalidates Ilcinkas’ conjecture and shows that the problem of determining the minimum function π(n) remains wide
open. In addition, our result reduces the gap with the lower bound of π(n) � 2n − 2 holding for any robot.3

The improvement is a consequence of the construction of the traversal route on the basis of a very specific (rooted)
spanning tree, rather than an arbitrary tree used by Ilcinkas. The main idea resides in powering the robot in such
a way that it can recognise, or more precisely it can expect to meet, specific subtrees in the chosen spanning tree,
hence saving in the number of so-called penalties. We say the robot pays a penalty at the node v if, starting from v, it
traverses an edge not belonging to the spanning tree.

We introduce the concept of Extended Leaves, paired Extended Leaves and paired Leaves. An extended leaf of
the spanning tree is a path of length 1 in which one endpoint is a leaf of the tree and the other is an internal node of
the tree which has no other children than the leaf. A paired extended leaf is an extended leaf rooted in a node whose
children contain at least two nodes that are the endpoints of two extended leaves (see, e.g., Fig. 3). A paired leaf is a
leaf rooted at a node whose children contain at least two leaves.

Intuitively, our arrangement of the port numbers at each vertex means once the robot has met an extended leaf it
expects to visit a paired one, and once it meets a leaf it expects to visit a paired one. In doing so, it saves penalties at
each second, third, etc., paired extended leaf as well as at each second, third, etc., paired leaf since it knows what the
topology should be, and hence does not have to explore further edges beyond such a leaf or extended leaf.

Our robot requires few (constant number) states allowing it to take advantage of the specific topology of the
spanning tree.

1.2. Related work

Graph exploration by robots has recently attracted growing attention. The unknown environment in which the
robots operate is often modelled as a graph, assuming that the robots may only move along its edges. The graph
setting is available in two different forms.

In [1,4,5,10,14], the robot explores strongly connected directed graphs and it can move only in one pre-specified
direction along each edge. In [2,6,8,13,16,17,21], the explored graph is undirected and the agent can traverse edges
in both directions. Also, two alternative efficiency measures are adopted in most papers devoted to graph exploration,
namely, the time of completing the task [1,2,4–6,10,13], or the number of memory bits (states in the automaton)
available to the agent [8,11,15–17,19].

Graph exploration scenarios considered in the literature differ in an important way: it is either assumed that nodes of
the graph have unique labels which the agent can recognise, or it is assumed that nodes are anonymous. Exploration of
directed graphs assuming the existence of labels was investigated in [1,10,14]. In this case, no restrictions on the agent
moves were imposed, other than by directions of edges, and fast exploration algorithms were sought. Exploration of
undirected labelled graphs was considered in [2,3,6,13,21]. Since in this case a simple exploration based on depth-first
search can be completed in time 2m, where m is the number of edges, investigations concentrated either on further
reducing the time for an unrestricted agent, or on studying efficient exploration when moves of the agent are restricted
in some way. The first approach was adopted in [21], where an exploration algorithm working in time m+O(n), with
n being the number of nodes, was proposed. Restricted agents were investigated in [2,3,6,13]. It was assumed that the
agent is a robot with either a restricted fuel tank [2,6], forcing it to periodically return to the base for refuelling, or
that it is a tethered robot, i.e., attached to the base by a “rope” or “cable” (a path from the original node) of restricted
length [13]. For example, in [13] it was proved that exploration can be done in time O(m) under both scenarios.

Exploration of anonymous graphs by robots with limited memory presents different types of challenges. In this
case, it is impossible to explore arbitrary graphs if no marking of nodes is allowed [7]. Hence, the scenario adopted
in [4,5] was to allow pebbles which the agent can drop on nodes to recognise already visited ones, and then remove
them and drop in other places. The authors concentrated attention on the minimum number of pebbles allowing
efficient exploration of arbitrary directed n-node graphs. (In the case of undirected graphs, one pebble suffices for
efficient exploration.) In [5], the authors compared the exploration power of one agent with pebbles to that of two
cooperating agents without pebbles. In [4], it was shown that one pebble is enough, if the agent knows an upper bound
on the size of the graph, and Θ(log logn) pebbles are necessary and sufficient otherwise.

3 Note that this lower bound is obtained, e.g., when the graph to be explored is a tree. And indeed, in a full periodic exploration of a tree every
edge of the tree must be traversed at least twice.
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In [8,11,15–17], the adopted measure of efficiency was the memory size of the agent exploring anonymous graphs.
In [15,17], the agent was allowed to mark nodes by pebbles, or even by writing messages on whiteboards with
which nodes are equipped. In [8], the authors studied special schemes of labelling nodes, which facilitate exploration
with small memory. Another aspect of distributed graph exploration by robots with bounded memory was studied
in [11,19], where the topology of graphs is restricted to trees. In [11] Diks et al. proposed a robot requiring O(log2 n)

memory bits to explore any tree with at most n nodes. They also provided the lower bound Ω(logn) if the robot is
expected to return to its original position in the tree. Very recently the gap between the upper bound and the lower
bound was closed in [19] by Gąsieniec et al. who showed that O(logn) bits of memory suffice in tree exploration.
However it is known, see [16], that in arbitrary graphs the number of memory bits required by any robot expected to
return to the original position is Θ(D logd), where D is the diameter and d is the maximum degree in the graph. In
comparison, Reingold [22] proved recently that SL = L, i.e., any decision problem which can be solved by a deter-
ministic Turing machine using logarithmic memory (space) is log-space reducible to the USTCON (st-connectivity
in undirected graphs) problem. This proves the existence of a robot equipped with asymptotically optimal number
of O(logn) bits being able to explore any n-node graph in the perpetual exploration model, where the return to the
original position is not required. The respective lower bound Ω(logn) is provided in [23].

In this paper, we are interested in robots characterised by very low memory utilisation. In fact, the robots are al-
lowed to use only a constant number of memory bits. This restriction permits modelling robots as finite state automata.
Budach [7] proved that no finite automaton can explore all graphs. Rollik [23] showed later that even a finite team of
finite automata cannot explore all planar cubic graphs. This result is improved in [9], where Cook and Rackoff intro-
duce a powerful tool, called the JAG, for Jumping Automaton for Graphs. A JAG is a finite team of finite automata
that permanently cooperate and that can use teleportation to move from their current location to the location of any
other automaton. However, even JAGs cannot explore all graphs [9].

1.3. Outline of the paper

Section 2 presents the spanning tree construction that will constitute the main route of the robot during its explo-
ration. The same section also shows how to assign port numbers at each vertex. Section 3 includes specification of the
robot by means of a finite state machine. Section 4 states the main result of the paper, that is, the analytical proof of
the new upper bound of 3.75n − 2 for the length of traversal period π(n) required by robots equipped with constant
memory. Further comments on the main themes of this paper can be found in Section 5.

2. The spanning tree construction and the port numbering

In this section, we describe the spanning tree construction and how the port labelling is performed. This will define
the route allowing the robot to periodically visit all the nodes of G. During the tree construction we make use of
colouring strategies. These will be useful to analyse the length, π , of the closed walk P adopted by our robot to
visit G. However, the robot is not aware of such a colouring.

We construct the spanning tree starting from a special subtree, from now on called the backbone and denoted
by B = (VB,EB). Procedures Color() and Backbone_Construction() realise this structure (see Fig. 1). Procedure
Backbone_Construction() takes graph G as an input and generates a tree, the backbone. Later, using procedure Color(),
it colours all the nodes of G. The backbone is formed of Red and Yellow nodes, with the property that if a path
connecting two Red nodes contains only yellow nodes, it contains exactly two of them. The remaining nodes are
coloured Green or Blue if their distance from a Red node is 1 or 2, respectively. This implies another important
property of the backbone, namely, every node outside the backbone is at distance at most two from it.

On the basis of the backbone, procedure Tree_Construction() builds the spanning tree of G, from now on called
ST(G) = (VT ,ET ) (see Fig. 1). The procedure also recolours some Yellow nodes (not having Blues as neighbours) into
Orange. Again, such a recolouring will be used only for the purpose of analysing the length of P . Having constructed
the spanning tree ST(G), we then need to set the port numbers.

Let v be a node of a rooted tree T . We assume that the children c1, . . . , ck of v are listed in a non-increasing order
according to the sizes of T (c1), . . . , T (ck), where T (ci) is the subtree of T rooted in ci . The main idea is that we set
the port numbers so that the robot will explore the large subtrees at v first, followed by Extended Leaves (at v), and
then (regular) Leaves (at v), allowing it to avoid paying penalties for most of the extended leaves and (regular) leaves.
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Fig. 1. The construction of ST(G) and its labelling. The path characterised by double lines and joining the red nodes constitutes the backbone. The
black node is the chosen root of ST(G).

procedure Color(node: v)
1: Node v becomes Red;
2: All nodes at distance 1 from v become Green;
3: All not yet coloured nodes at distance 2 from v become Blue;

procedure Backbone_Construction(graph: G) → Tree
1: Pick an arbitrary node v ∈ V ;
2: Color(v);
3: VB = {v};
4: EB = ∅;
5: while the set of not yet coloured nodes in G is not empty do
6: Pick a not yet coloured node v ∈ V at distance 1 from some Blue node w1

which is itself connected via node w2 to some Red node v′;
7: Color(v);
8: VB = VB ∪ {w1,w2, v};
9: EB = EB ∪ {(v′,w2), (w2,w1), (w1, v)};

10: Nodes w1 and w2 become Yellow;
11: end while

In what follows we use dG(v) (respectively, dST (v)) to denote the degree of a node v in the graph G (respectively,
the spanning tree ST(G)). Procedures Set_Ports() and Labelling() first label ports on edges of the input tree and then
provide a consistent labelling to the remaining edges in G (see Fig. 1).

3. The automaton

In this section we provide a formal definition of the automaton that governs the robot’s behaviour. The automaton
has eleven states, namely, I (Initial), RS (Root Search), RB (Root Backtrack), FF (Forward), N (Normal), T (Test),
B (Backtrack), L (Leaf), LB (Leaf Backtrack), E (Extended Leaf), EB (Extended Leaf Backtrack). Moreover, the
automaton is powered by an extra two-bits counter c. Indeed, combining c with each one of the eleven states mentioned
above, we obtain 33 possible states since c ranges among values {0,1,2}. We also denote by d the degree of the
currently visited node and by i the entering port number.
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procedure Tree_Construction(graph: G, backbone of G: B) → Tree
1: VT = VB ;
2: ET = EB ;
3: for each node v ∈ V \ VT at distance 1 from a red node v′ ∈ VB do
4: VT = VT ∪ {v};
5: ET = ET ∪ {(v, v′)};
6: end for
7: TMP = VT ;
8: for each node v ∈ V \ VT at distance 1 from some node v′ ∈ TMP do
9: VT = VT ∪ {v};

10: ET = ET ∪ {(v, v′)};
11: end for
12: Each Yellow node v not connected to any Blue node v′ by an edge (v, v′) ∈ ET

becomes Orange;

procedure Set_Ports(node: v)
// under assumption |ST(c1)| � |ST(c2)| � · · · � |ST(cdST (v)−1)|
1: for each edge {v, ci} ∈ ET with i = 1, . . . , dST (v) − 1 do
2: Set the port incident to v as i + 1;
3: Set the port incident to ci as 1;
4: end for

procedure Labelling(graph: G, spanning tree of G: ST(G))
1: Pick an arbitrary leaf in ST(G) and set it as root r ;
2: Set the port on the edge {r, v} incident to the root r to 1 on both ends;
3: for each v ∈ VT \ {r} do
4: Set_Ports(v);
5: end for
6: Set the remaining ports arbitrarily but consistently with degrees of the nodes;

Regardless of its starting vertex, the robot begins in state I , exiting port number 1 to visit the nodes of the input
graph G. Its first goal is to find the right direction of the visit, i.e., from the root down to the leaves. In the worst case
this process requires a constant number of steps. For example, it can happen, that the robot starts exploration going
through a special edge e1,1, the only edge in G with ports labelled 1 at both its endpoints. In this case the robot has to
figure out which endpoint is the root. This task is realised by checking which endpoint is a leaf.4 Once the robot finds
out which endpoint leads to the rest of the tree, this initialisation phase is complete and the proper exploration starts.
Let v be the only child of the root in ST(G) (this is guaranteed by code line 1 of the Labelling procedure). The robot
visits the tree following the order of the ports from 2 to dST (v). It first goes further in a depth-first-search manner
(state T ) as long as the entering port is 1. If different, it switches its state to L since a leaf has been discovered (recall
that order of ports leading to subtrees of an internal node reflects the sizes of the subtrees). At this stage, the robot does
not know whether such a leaf is a regular leaf or an extended leaf. It retreats through the same edge remembering (by
setting the counter c to 1) that a leaf has been discovered, and it looks for another paired leaf while being in state L.

If now the robot encounters another entering port 1, it updates its leaves counter c to 2 and continues the search for
more leaves. Note that, in this way the robot does not pay a penalty (it does not go beyond the leaf) at the second leaf.
Moreover, the counter of leaves is not updated anymore, i.e., it is used to count at most two paired leaves. As soon as
the robot arrives at some node via a port different from 1 or the whole degree of the node in which the paired leaves
are rooted has been explored, it retreats further in the tree, it sets c to 0 and switches its state to N .

Alternatively, if after visiting the first leaf the encountered port number was not 1, the robot goes backwards in the
tree, sets the leaves counter to 0, and switches its state to E, since an extended leaf has been discovered. Now the
robot searches for extended leaves, i.e., for two consecutive entering ports set to 1.

If after the first port 1 (that is counted by c), it finds a second one, a new extended leaf has been discovered and no
penalties are paid at the two visited nodes. However if after the first port 1, the second one is different, the robot goes
backwards switching its state to L since a regular leaf was found. Note that, in this case, c is already set to 1. And
finally, if the first entering port is not 1, the robot retreats further in the tree while being in the state N .

4 In the case of the simple graph composed by just one edge, the first met node is considered as the root.
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Table 1
The transition function f

f (I, i, d, c) =
⎧⎨
⎩

(FF,1,0) if i = d = 1
(RS,2,0) if i = 1 & d �= 1
(T , i,0) if i �= 1

(1)

(2)

(3)

f (FF, i, d, c) =
{

(RB,1,0) if d = 1
(T ,2,0) if d �= 1

(4)

(5)

f (RS, i, d, c) =
⎧⎨
⎩

(LB,1,1) if i = d = 1
(T ,2,0) if i = 1 & d �= 1
(RB, i,0) if i �= 1

(6)

(7)

(8)

f (RB, i, d, c) = (FF,1,0) (9)

f (T , i, d, c) =
⎧⎨
⎩

(LB,1,1) if i = d = 1
(T ,2,0) if i = 1 & d �= 1
(B, i,1) if i �= 1

(10)

(11)

(12)

f (B, i, d, c) =
{

(N,1,0) if c = 0 ‖ i �= 2
(LB,1,1) if c �= 0 & i = 2

(13)

(14)

f (N, i, d, c) =
⎧⎨
⎩

(FF,1,0) if i = 1
(N,1,0) if i = d �= 1
(T , i + 1,0) if i �= 1 & i �= d

(15)

(16)

(17)

f (L, i, d, c) =
⎧⎨
⎩

(LB,1,2) if i = 1
(EB, i,1) if i �= 1 & c = 1
(B, i,0) if i �= 1 & c �= 1

(18)

(19)

(20)

f (LB, i, d, c) =
⎧⎨
⎩

(EB,1,0) if i = d = 2
(N,1,0) if i = d �= 2
(L, i + 1, c) if i �= d

(21)

(22)

(23)

f (E, i, d, c) =

⎧⎪⎨
⎪⎩

(LB,1,1) if i = d = 1 & c = 0
(E,2,1) if i = 1 & d �= 1 & c = 0
(EB,1,2) if i = 1 & c �= 0
(B, i, c) if i �= 1

(24)

(25)

(26)

(27)

f (EB, i, d, c) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(FF,1,0) if i = 1
(EB,1,0) if i �= 1 & c = 2
(N,1,0) if i = d �= 1 & c = 0
(E, i + 1,0) if i �= 1 & i �= d & c = 0
(EB,1,0) if i = 3 & c = 1
(N,1,0) if i �= 1 & i �= 3 & c = 1

(28)

(29)

(30)

(31)

(32)

(33)

The way the robot goes backwards depends on its current state, i.e., it must take into account whether it is currently
looking for the root, leaves, extended leaves, whether it has just to leave the current subtree, or finally whether it has
to go back since the traversed edge does not belong to the spanning tree (i.e., the robot paid a penalty). This is the
reason why the robot must be equipped with five different backward states (RB, LB, EB, N , and B respectively).

Formally, the transition function f is defined as follows. If the robot enters a node v of degree dG(v) through
port i in state s with current value of the two-bit counter c, it switches to state s′ and exits the node through port i′
with the counter set to c′. This corresponds to f (s, i, dG(v), c) = (s′, i′, c′). Please note that function f has now
four arguments in contrary to the more standard definition of Mealy automata presented in Section 1. This change is
necessary to incorporate the introduction of the counter c.

Table 1 shows the transition function f . The first nine rules are used in the initialisation step of the search, while
the remaining ones are devoted to the proper (periodic) graph exploration. An example of the exploration performed
by the automaton can be found in Appendix A.

Theorem 1 (Correctness). Let G be a graph of size n, and let ST(G) be a spanning tree of G constructed and labelled
as previously described in Section 2. Starting at any node of G, the robot begins in the initial state I and follows exit
port number 1. Then
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(a) After at most 8 steps, the robot enters a closed walk P and then periodically explores G forever.
(b) Along the walk P , every internal node v ∈ ST(G) that is not the endpoint of an extended leaf or a leaf, is entered

via port number 1 by the robot with state T or FF while descending ST(G) and left via port number 1 with
state N .

(c) Suppose that v is the root of k extended leaves in ST(G). The robot avoids paying possible penalties at the second,
third, etc., extended leaf (so it avoids 2(k − 1) penalties from these extended leaves). Similarly, if v is the root
of j paired leaves, the robot only pays a single penalty for the whole set of these paired leaves, hence avoiding
j − 1 possible penalties.

Proof. First we show how the robot recognises the direction of the exploration from the root towards the leaves. At the
beginning the robot is in the initial state I and follows port number 1. As shown in the first equation of the transition
function f , three different cases can occur:

• If the entering port is 1 and the entering node has degree 1 then such a node is considered as the root since it is
a leaf connected to the edge e1,1. The robot then exits the current node by means of rule 1 in state FF and the
real exploration can start by means of rule 5. The only case in which it is unclear whether the considered node is
the root is when G is composed of a single special edge e1,1. In this case indeed, both nodes can be considered
indifferently as the root since the resulting exploration is symmetric. The task is performed by switching the robot
state first from I to FF (rule 1) and then repetitively from FF to RB and vice versa (rules 4 and 9).

• If the entering port is 1 and the entering node has degree larger than 1, then the robot has to verify whether such
a node is a leaf or not, and this requires two steps. If a leaf is found (by means of rules 2 and 8) the robot retreats
and starts proper exploration with state FF by means of rule 9. If not, then it continues in the current direction
assuming that the proper exploration was done from the beginning (either by applying rules 2 and 6 or 2 and 7).

• If the entering port is different from 1 then the direction is determined since, by construction of ST(G), the node
connected via the exiting port on the edge is clearly a child of the node connected via the entering port. Hence,
the robot has to reverse its direction (rule 3). In the worst case the robot has to perform six steps more before
the proper exploration starts. It can happen, e.g., that the robot starts from a paired leaf or from a leaf of a paired
extended leaf of ST(G) for which in P no penalties are paid. However, since the robot has just started and does
not know whether the current leaf or extended leaf is a paired one or not, it pays some extra penalties that at the
successive traversals will not be paid. Namely, it needs at most two steps (sequence of rules 11, 12) to find out
whether it is exploring a leaf, whereas, it needs at most six steps (sequence of rules 11, 12, 14, 23, 19, 32) to find
out whether it is exploring an extended leaf.

Once this initialisation phase has been completed, the proper (periodic) graph exploration starts. Note that, at this
point, states I , RS and RB are no longer accessible by the robot. Apart from cases where G coincides with e1,1 and
when the “tricks” of skipping penalties at paired leaves and paired extended leaves are used, the exploration follows
the approach presented in [20]. It is, in fact, a tree-based exploration. Thus, in order to prove the theorem we have to
show that while handling the above mentioned special cases the robot does not skip any nodes in ST(G) and that it
switches between standard and special cases safely.

We prove the claim by induction on the height of a node v in ST(G), denoted from now on by ht(v). By means of
the following two lemmata, we first analyse the basic cases given by considering nodes at height 0 and 1 in ST(G) and
then we formalise the induction hypothesis for nodes at height bigger than 0 that are not the endpoints of extended
leaves; see Fig. 2 for a clarification of the considered subcases.

Lemma 1. Let node v be such that ht(v) = 0, i.e., v is a leaf in ST(G). As described in Table 2, while descending the
tree, i.e., entering v via port number 1, the robot can be in state T (respectively L or E with c = 0 or E with c > 0)
and it leaves v via port number 1 in state LB with c = 1 (respectively LB with c = 2 or LB with c = 1 or EB with
c = 1).

Proof. Let {w,v} be the edge along which the robot enters v via port number 1 (and let w be the node from which
it comes). The case in which {w,v} ≡ e1,1 was already considered before, hence we can assume {w,v} �≡ e1,1. Then,
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Fig. 2. Possible subtrees rooted in v of height 0, 1 or bigger than 1. Sketched lines stand for possible edges of G not belonging to ST(G).

Table 2
All the possible incoming and outgoing states of the automaton
when exploring a node v of height 0, 1 or bigger than 1

Height ↓ incoming state ↑ outgoing state

T LB, c = 1
ht(v) = 0 L LB, c = 2
(Lemma 1) E, c = 0 LB, c = 1

E, c > 0 EB, c = 1

ht(v) = 1, case (i) T EB, c = 0
(Lemma 2) E, c = 0 EB, c = 0

FF EB, c = 0

ht(v) = 1, case (ii) T N

(Lemma 2) FF N

ht(v) > 1 T N

FF N

the other label of {w,v} in w must be different from 1. By the definition of the transition function f , the state s with
which the robot could exit w via a port number different from 1 is in the set {B,EB, T ,L,E}.

If s = B , the only rules that could have led the robot to v from w are rules 12 and 27. If 12, then w should have
been reached from v in state T via port number 1 but there is no rule allowing it. If 27, then w should have been
reached from v in state E via port number 1, but again there is no rule allowing it. This implies that the robot cannot
enter v in state B from w.

If s = EB, the only rule that could have led the robot to v from w is rule 19 but in order to apply rule 19 the robot
should have come from w and the entering port should have been different from 1. This implies that the robot cannot
enter v in state EB from w.

If s = T , then we can distinguish two cases. Either dG(v) = 1, then rule 10 is applied, or dG(v) > 1, then the
sequence of rules 11, 12, 14 is applied since v is a leaf of ST(G). In both cases the robot exits v in state s′ = LB and
c = 1 via port number 1.

If s = L, then the robot retreats to w in state s′ = LB via port number 1 and c = 2 (rule 18).
If s = E, then we can distinguish two cases. Either the counter c is 0 or bigger. If c = 0, then either dG(v) = 1 and

rule 24 is applied, or dG(v) > 1 and the sequence of rules 25, 27, 14 is applied since v is a leaf of ST(G). In both
cases the robot exits v in state s′ = LB with c = 1 via port number 1. If c > 0, then rule 26 is applied and the robot
retreats to w in state s′ = EB with c = 1. �
Lemma 2. Let node v be such that ht(v) = 1 in ST(G). As described in Fig. 2 and Table 2, while descending the tree,
i.e., entering v via port number 1, two cases can occur,
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(i) only 1 leaf is rooted in v. The robot can be either in state T or in state E with c = 0 or in state FF, and it leaves
v via port number 1 in state EB with c = 0.

(ii) More than 1 leaf is rooted in v. The robot can be either in state T or in state FF, and it leaves v via port number 1
in state N .

Proof. Let {w,v} be the edge along which the robot enters v via port number 1 (and let w be the node from which
it comes). We first assume {w,v} �≡ e1,1. Then, the other label of {w,v} in w must be different from 1. The subtree
rooted at v is made either by (i) one or (ii) more leaves (see Fig. 2).

By the definition of the transition function f , the state s with which the robot could exit w via a port number
different from 1 is in the set {T ,B,EB,L,E}.

If either s = B or s = EB is the case, then the same arguments of Lemma 1 hold.
If s = E with c > 0 in (i) or s = E in (ii) or s = L is the case, then by construction it is possible to show that such

cases cannot occur. This is implied by the fact that the subtree rooted in w is ordered (and labelled) according to the
size of the subtrees rooted at the children of w in a non-increasing order. In order to have state s = E with c > 0 in (i),
the robot should be looking for a leaf of a paired extended leaf, i.e., there must be an extended leaf rooted at the parent
of w reachable via a port number smaller than the one that leads to w. This contradicts the labelling procedure since
the size of the subtree rooted in w is bigger than an extended leaf. Similarly, in order to have state s = E in (ii), the
robot should be looking for paired extended leaves, i.e., there must be an extended leaf rooted at w reachable from w

via a port number smaller than the one that leads to v but again this contradicts the labelling procedure since the size
of the tree rooted in v is bigger than an extended leaf. Finally, in order to have state s = L, the robot should be looking
for paired leaves, i.e., there must be a leaf rooted at w reachable from w via a port number smaller than the one that
leads to v but this again contradicts the labelling procedure since the size of the tree rooted in v is bigger than a leaf.

If s = E with c = 0 in (i), then rules 25, 26 and 29 are sequentially applied, hence the robot exits v in state s′ = EB
with c = 0 via port number 1.

If s = T in (i), then the possible sequences of rules are either 11, 10, 21 or 11, 10, 23, 19, 32 or 11, 11, 12, 14 or
11, 11, 12, 14, 23, 19, 32. This depends on whether dG(v) = 2 and the only node rooted in v in the subtree rooted
at v is a leaf in G as well, or dG(v) = 2 and the only node rooted in v in the subtree rooted at v is not a leaf in G,
or dG(v) > 2 and the only node rooted in v in the subtree rooted at v is a leaf in G, or dG(v) > 2 and the only node
rooted in v in the subtree rooted at v is a not a leaf in G, respectively. In all the above cases the robot exits v in state
s′ = EB with c = 0 via port number 1.

If s = T in (ii), then the possible sequences of rules for the first leaf rooted to v are either 11, 10 or 11, 11, 12,
14. Then, for each paired leaf the robot will apply rules 23, 18 until all the paired leaves rooted in v are visited while
saving possible penalties on them. Once the robot is back in v, it may apply rule 22 or the sequence of rules 23, 20,
13 depending on whether dST (v) = dG(v) or not. In both the cases the robot exits v in state s′ = N via port number 1.

Let us now consider the case {w,v} ≡ e1,1. w is then the root of ST(G) and v is entered with state s = FF. No
other states are possible since (apart for the initialisation phase) whenever e1,1 is traversed toward the root, the robot
backtracks in state FF (rules 15 or 28). In case (i), ST(G) is just a path of length 2 and node v is the middle point
with ht(v) = 2. P is then defined by either the sequence of rules 28, 5, 10, 21 or the sequence 28, 5, 11, 12, 14, 21
depending on whether G ≡ ST(G) or G is a cycle of length 3. In both cases the robot exits v in state s′ = EB with
c = 0 via port number 1. In case (ii), ST(G) is a star centred in v and dST (v) = dG(v). After the first leaf rooted in v

is explored by means of the sequence of rules 5, 10 or 5, 11, 11, 12, the sequence of rules 23, 18 is applied at each
paired leaf, hence saving possible penalties. Once the robot is back in v from the last paired leaf, it applies rules 22
and leaves v with state s′ = N via port number 1. �

We are now ready to formulate the inductive hypothesis in order to prove the theorem.

Inductive Hypothesis. While visiting graph G, every node v at height ht(v) > 0 that is not the endpoint of an extended
leaf in ST(G) is entered via port number 1 in state T or FF by the robot and left via port number 1 in state N .
Moreover, the robot visits every node in the subtree rooted at v while paying at most one penalty at each node but for
the nodes belonging to the second, third, etc., extended leaves and for the second, third, etc., leaves rooted to v.
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The base of the induction holds from case (ii) of Lemma 2 (see also Fig. 2). We assume the inductive hypothesis
true for every node w with 0 < ht(w) � x for some x > 0 and we prove it for height x + 1. Let node v be such that
ht(v) = x + 1, let c1, c2, . . . , cq be its children ordered according to the non-increasing sizes of the corresponding
rooted subtrees T (c1), T (c2), . . . , T (cq), where T (ci) is the subtree rooted in ci with 1 � i � q (see Fig. 2). Let r be
the first index for which T (cr) is an extended leaf, and t be the first index for which T (ct ) is a leaf. We will show that
(c) of the theorem holds, namely if v is the root of k = t − r extended paired leaves and j = q − t + 1 paired leaves,
the robot must pay at most two penalties at T (cr) and one at T (ct ) while skipping all the other 2(k − 1) possible
penalties among paired extended leaves, and all the other j − 1 possible penalties among paired leaves.

By applying the same arguments of Lemmas 1 and 2, node v is entered from its parent via port number 1 in state T

or FF. No other options are possible. The robot will then apply rule 11 for starting the visit of T (c1). By the inductive
hypothesis, the robot visits every node in T (c1) by skipping penalty payments at every second, third, etc., extended
leaf and every second, third, etc., leaf encountered. Then, it goes back from c1 to v via port number 1 in state N .
Subsequently, the robot applies rule 17 in order to start the visit of T (c2) and so forth until cr is met. At this point the
robot will start the visit of T (cr ) paying the possible penalties and by Lemma 1 it will be back in v via port number 1
in state EB, with c = 0. The next subtrees will be visited then by sequentially applying rules 31, 25, 26 and 29 until
ct is entered hence avoiding all the possible penalties at the second, third, etc., paired extended leaves rooted in v.
Now the robot will start the visit of T (ct ) paying the possible penalty and by Lemma 2 it will be back in v via port
number 1 in state LB. The next subtrees will be visited then by sequentially applying rules 23 and 18 until the robot
is back in v from cq hence avoiding all the possible penalties at the second, third, etc., paired leaves rooted in v. Once
entered in v via port number q + 1 coming from cq via port number 1 and rule 18, either dG(v) = dST (v) = q + 1 and
rule 22 is applied or the sequence of rules 23, 13 is applied. In both cases the robot will exit node v via port number 1
in state N and the claim holds. �

Concerning the length π of P , in the next section we provide an upper bound to the number of penalties that our
robot might pay during the exploration.

4. Analysis

In this section, we show our upper bound on the length of the periodic exploration of the graph G. Our analysis
uses the colouring of the nodes of G introduced in Section 2. Let RED be the set of Red nodes. We remind the reader
that the robot is said to pay a penalty at node v if it traverses an edge, starting from v, that does not belong to ST(G).
The main goal is to give a bound on the number of penalties in order to prove our result.

Theorem 2. The period length π(n) needed by the robot described in Section 3 to visit a graph G of n nodes, according
to the spanning tree ST(G) with the assigned port numbering, is less than 3.75n − 2.

Proof. Consider v ∈ RED. By construction, by removing the edges of the backbone connected to v, the remaining
subtree T ′ rooted at v has height at most 2. We decompose the children of v into 3 different types (see Fig. 3):

• Type L: Leaves.
• Type E: Endpoints of extended leaves.
• Type A: Neither leaves nor endpoints of extended leaves.

Let sL(v) (respectively sE(v)) be 0 if the number of children of v of type L (respectively E) is 0, 1 otherwise. Let
sA(v) be the number of children of v of type A. For all the children of type L, the robot might incur at most 1 penalty,
since all those children (if any) are paired leaves and the robot pays only at the first one (see Section 3). For all the
children of type E, the robot might incur at most 2 penalties, since all those children (if any) are the endpoints of
paired extended leaves and the robot pays only at the first one. For children of type A, by construction, each subtree
rooted at a node of type A consists of two or more leaves. This implies that for each subtree rooted at a node of type A

the robot might incur at most 2 penalties, i.e., one for the node of type A and the other for the first paired leaf.
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Fig. 3. The subdivision of the children of a red node. The other possible nodes connected to it can only be part of the backbone. The p associated
to a node indicates where a penalty might be paid.

Concerning the backbone, let SY (respectively, SO , SR) be the number of Yellow (respectively, Orange, Red) nodes
in the tree. Consider a Yellow node w, and its Blue children. Note that there can be at most 2 penalties in this subtree.
In fact, the Blue children of w are paired leaves in this subtree, hence the robot does not pay penalties from the
second paired leaf. Consider an Orange node z. Note that z has no Blue children in the tree, hence there can be at
most 1 penalty in this subtree (made up of z itself). Concerning Red nodes, no penalties are paid on them, since by
construction they are used with their full degree in ST(G).

Let

SL =
∑

v∈RED

sL(v), SE =
∑

v∈RED

sE(v), SA =
∑

v∈RED

sA(v),

and p be the number of nodes with penalties in the tree. As a consequence of the observations above, we have

p � 2SA + 2SE + SL + 2SY + SO,

n � 3SA + 2SE + SL + 2SY + SO + SR.

As the backbone tree has the property that between two Red nodes there are exactly two nodes (each of them Yellow
or Orange), we have

SY + SO = 2SR − 2.

Moreover, from the previous discussion, it also follows that

SL � SR, SE � SR,

because for each Red node, at most one child of type L (respectively E) is counted in SE (respectively SL). Hence,
we can bound the number of penalties with respect to the total number of nodes as follows:

p

n
� 2SA + 2SE + SL + 2SY + SO

3SA + 2SE + SL + 2SY + SO + SR

� 2SA + 2SE + SL + 2(SY + SO)

3SA + 2SE + SL + 2(SY + SO) + SR

<
2SA + 2SE + SL + 4SR

3SA + 2SE + SL + 4SR + SR

[SY + SO = 2SR − 2]

� 2 · 0 + 2SR + SR + 4SR

3 · 0 + 2SR + SR + 4SR + SR

[SA � 0, SE,SL � SR]

� 7

8
.

By construction of the automaton, whenever a penalty is paid, i.e., whenever a non-tree edge is traversed, the robot
incurs another penalty because it has to traverse again the same edge backward. As the automaton traverses every tree
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Fig. 4. Labelled ST(G), node “i” is assumed to be the one from which the exploration of the robots starts.

edge twice (once in each direction) it follows that

π(n) = 2(n − 1) + 2p < 2n − 2 + 2 · 7

8
n = 3.75n − 2. �

5. Conclusion

In this paper, we studied the problem of periodic graph exploration by means of a simple robot that uses constant
memory. We disproved the conjecture given in [20] claiming that it was not possible to obtain a period less than
4n − O(1). The new proved upper bound is in fact 3.75n − 2, hence the gap with the lower bound of 2n − 2 is
reduced. The improvement is obtained by means of a careful construction of the route (i.e., the spanning tree) that the
robot has to follow during the graph exploration, and by designing a smart automaton (still using constant memory)
able to recognise some specific subtrees.

The main open problem left is whether it is possible to further close the gap of the bounds. For the tree-based
approach, a more powerful robot able to recognise more structured topologies (of a constant number of nodes) than
just our paired leaves and extended leaves may be helpful in decreasing the number of penalties. Moreover, a modified
tree construction and/or port numbering may still lead to further improvements. Another interesting question is if there
is a better strategy than tree-based exploration.
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Appendix A. Running example

In this section we compare the exploration algorithm defined in [20] with ours in this paper. The graph in Fig. 4
is repeated from Fig. 1, with our spanning tree ST(G) indicated as the solid edges. We assume that the robot starts at
node “i” in both algorithms.

Table 3 shows the steps performed by the robot in each algorithm. The first few steps are devoted to the initialisation
phase in each algorithm. The robot of [20] starts with state T and exits via port number 1. The initial state of our robot
is instead fixed to be I but the first move is also to exit through port number 1. Our robot requires four steps in this
setting to start the real exploration while the Ilcinkas’ one needs two steps. We note that on this proposed graph our
robot performs a periodic walk P of eight steps shorter than the one performed by the Ilcinkas robot. This comes from
the fact that ST(G) contains two paired leaves (nodes “i” and “h”) and two paired extended leaves (paths {e, l}{l,m}
and {e, f }{f,g}). Moreover, during the exploration phase our robot does not pay any penalty on the root “a” of ST(G)

since it reverses its direction as soon as edge e1,1 is crossed. Hence, nodes “a,” “i,” “l” and “m” are the ones at which
we can avoid penalties which account for the shorter exploration length of our method.
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Table 3
The exploration performed by the robot in the graph G of Fig. 4 starting from node “i”

Ilcinkas [20] Our
f (state, i, d) Output f (state, i, d, c) Output

Step Node State i d State Port Node State i d c State Port c

Initialisation phase

0 i T 1 i I 1 . . .

1 d T 4 5 B 4 d I 4 5 0 T 4 0
2 i B 1 3 N 1 i T 1 3 0 T 2 0
3 m T �= 1 . . . 0 B i 1
4 i B 2 3 1 LB 1 1

Exploration phase

1 d N 4 5 T 5 d LB 4 5 1 L 5 1
2 n T �= 1 . . . B i n L �= 1 . . . 1 EB i 1
3 d B 5 5 N 1 d EB 5 5 1 N 1 0
4 c N 2 2 N 1 c N 2 2 0 N 1 0
5 b N 2 3 T 3 b N 2 3 0 T 3 0
6 n T 1 5 T 2 n T 1 5 0 T 2 0
7 o T 1 2 T 2 o T 1 2 0 T 2 0
8 a T �= 1 . . . B i a T �= 1 . . . 0 B i 1
9 o B 2 2 N 1 o B 2 2 1 LB 1 1

10 n N 2 5 T 3 n LB 2 5 1 L 3 1
11 f T �= 1 . . . B i f L �= 1 . . . 1 EB i 1
12 n B 3 5 N 1 n EB 3 5 1 EB 1 0
13 b N 3 3 N 1 b EB 3 3 0 N 1 0
14 a N 1 3 T 2 a N 1 3 0 FF 1 0
15 n T �= 1 . . . B i b FF 1 3 0 T 2 0
16 a B 2 3 N 1 c T 1 2 0 T 2 0
17 b N 1 3 T 2 d T 1 5 0 T 2 0
18 c T 1 2 T 2 e T 1 3 0 T 2 0
19 d T 1 5 T 2 f T 1 3 0 T 2 0
20 e T 1 3 T 2 g T 1 1 0 LB 1 1
21 f T 1 3 T 2 f LB 2 3 1 L 3 1
22 g T 1 1 N 1 n L �= 1 . . . 1 EB i 1
23 f N 2 3 T 3 f EB 3 3 1 EB 1 0
24 n T �= 1 . . . B i e EB 2 3 0 E 3 0
25 f B 3 3 N 1 l E 1 3 0 E 2 1
26 e N 2 3 T 3 m E 1 2 1 EB 1 2
27 l T 1 3 T 2 l EB 2 3 2 EB 1 0
28 m T 1 2 T 2 e EB 3 3 0 N 1 0
29 i T �= 1 . . . B i d N 2 5 0 T 3 0
30 m B 2 2 N 1 h T 1 3 0 T 2 0
31 l N 2 3 T 3 i T �= 1 . . . 0 B i 1
32 h T �= 1 . . . B i h B 2 3 1 LB 1 1
33 l B 3 3 N 1 d LB 3 5 1 L 4 1
34 e N 3 3 N 1 i L 1 3 1 LB 1 2
35 d N 3 5 T 3
36 h T 1 4 T 2
37 i T �= 1 . . . B i
38 h B 2 4 N 1
39 d N 3 5 T 4
40 i T 1 3 T 2
41 m T �= 1 . . . B i
42 i B 2 3 N 1
Until step 13 of the exploration phase, both the robots visit the same sequence of nodes.
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[19] L. Gąsieniec, A. Pelc, T. Radzik, X. Zhang, Tree exploration with logarithmic memory, in: Proc. 18th Annual ACM–SIAM Symposium on
Discrete Algorithms, SODA 2007.

[20] D. Ilcinkas, Setting port numbers for fast graph exploration, in: Proc. 13th Colloquium on Structural Information and Communication Com-
plexity, SIROCCO 2006, in: Lecture Notes in Comput. Sci., vol. 4056, Springer, Berlin, 2006, pp. 59–69.

[21] P. Panaite, A. Pelc, Exploring unknown undirected graphs, J. Algorithms 33 (1999) 281–295.
[22] O. Reingold, Undirected ST-connectivity in log-space, in: Proc. 37th ACM Symposium on Theory of Computing, STOC 2005, pp. 376–385.
[23] H. Rollik, Automaten in planaren Graphen, Acta Inform. 13 (1980) 287–298.


