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Abstract

This paper studies the distribution of the component spectrum of combinatorial structures such as
uniform random forests, in which the classical generating function for the numbers of (irreducible)
elements of the different sizes converges at the radius of convergence; here, this property is expressed
in terms of the expectations @fdependentandom variables ;, j > 1, whose joint distribution,
conditional on the event th@;’.:ljzj = n, gives the distribution of the component spectrum for a
random structure of size For a large class of such structures, we show that the component spectrum
is asymptotically composed @f; components of small sizgsj > 1, with the remaining part, of size
close ton, being made up of a single, giant component.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the distribution of the asymptotic component spectrum of
certain decomposable random combinatorial structures. A structure of Ez®mposed
of parts whose (integer) sizes sumripwe let C® := (C{"), Cé"), ..., C"y denote
its component spectrum, the numbers of components of siz&s 1., n, noting that we
always hav@j’}:1 jCﬁ.”) = n. For each givem, we assume that the probability distribution
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on the space of all such component spectra satisfies the Conditioning Relation

LC)Y=L|(Z1.Za, ... Z0) | _jZj=n |, (1.1)
j=1

whereZ := (Z;, j > 1) is a sequence of independent random variables, the sameior all
thatis, foryy, y2, ..., yu € Z4,

P, c3”, ., ¢y = (1, y2, -+, vl
n 71 n n

={P[> jzj=n [TPiz=yi11m | D ivi |- (1.2)
j=1 j=1 j=1

This apparently curious assumption is satisfied by an enormous number of classical com-
binatorial objects, such as, for instance, permutationsalfjects under the uniform dis-
tribution, decomposed into cycles as components, wherZthare Poisson distributed,
with Z; ~ Po(1/j); or forests of unlabelled unrooted trees under the uniform distribution,
decomposed into tree components, whenzhare negative binomially distributed: sie
Chapter 2for many more examples. However, such structures also arise in other contexts.
For instance, the state of a coagulation—fragmentation process evolving in a colleation of
particles can be described by the numhe ¥ of clusters of sizg, 1< j<n, andif such a
process is reversible and Markov, then its equilibrium distribution satisfies the conditioning
relation for some sequen@eof random variables. In particular, under mass-action kinet-
ics, it follows thatZ; ~ Po(a;), where(a;, j > 1) are positive reals, determined by the
coagulation and fragmentation rates; p&6,7, Chapter 8][13].

In order to describe the asymptoticsras> oo, it is necessary first to say something
about how the distributions of th&; vary withj. Now the distribution given inl(.2) remains

the same if the random variabl&s are replaced by ‘tilted’ random variabl Y where
PIZ) =il = IP[Z; = ilx/' [ kj (x) (1.3)
for anyx > 0 such that
ki) = E x4} < oo,

Specializing to the setting in whic; ~ Po(a;) for eachj, this means that exactly the
same distributions are obtained for each (1.2) if a; is replaced by ;x/ for eachj, for any
fixedx > 0. Thus, geometrically fast growth or decay of thyecan be offset by choosing

x 1= lim; 00 a]l./’ (should the limit exist), without changing the asymptotics. Hence, to
find an interesting range of possibilities, we look at rates of growth or decaygfhich

(if necessary, after appropriate tilting) can be described by a power l&y: 1 Aj* as

j — oo, or, more generally, IZ; regularly varying with exponent € IR.

Three ranges ofx can then broadly be distinguished. The most intensively
studied is that wherex = -1, and within this the logarithmic class, in which
EZ; ~IP[Z; = 1] ~ 01, for somed > 0: see the booKl] for a detailed discussion.
For o > —1, the expansive case, the asymptotics were explored for Poisson distributed
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Z; in [5,6] with the help of Khinchine’s probabilistic method, and particular models have
been studied by many authors. Here, we treat the convergent case, inawhkich1, in
considerable generality. Our approach is quite different from the classical approach by
way of generating functions, thereby allowing distributions other than the standard Poisson
and negative binomial to be easily discussed. Note also that not all classical combinatorial
structures fall into one of these three categories: random set partitions, studied using the
Conditioning Relation by PittlL2], have Poisson distributed; with meanst//j!, which
are never regularly varying, whatever the choice of 0.

As will be seen in what follows, a key element in the arguments is establishing the
asymptotics of the probabilities[IP,,,(Z) = [] for | nearn, where, fory := (y1, y2,...) €
z%,

n
Ton(y) == »_ jyj. O<b<n. (1.4)
Jj=b+1

That this should be so is clear frorh.p), in which the normalizing constant is just the
probability IH 7o, (Z) = n], and is the only element which cannot immediately be written
down. In the context of reversible coagulation—fragmentation processes with mass—action
kinetics, the partition function, investigated by Freiman and Granovgky is given by

Cn = EXP Zaj IP[T0,(Z) = n], (1.5)
j=1

explaining its relation to many of their quantities of interest. Now, in the expansive case,
taking Poisson distributed; with meansz; ~ Aj*, « > —1, one has

ET0,(Z) < n°™*>>n and SD(Tp,(Z)) = nCt9/2 < ETy,(2).

The Bernstein inequality then implies that, for lamgyethe probability IR7p,(Z) = n] is
extremely small, making a direct asymptotic argument very delicate. However, recall from
(1.3) that the conditioning relatiori(1) delivers the same distribution for the combinatorial
structure if the Poisson distributed random variali#fgswith meansa; are replaced by
Poisson distributed random variablé§“) with meanSajxf, for any x > 0. Choosing
x = x,, in such a way that I, (Z*)) = n makes the probability #o, (Z*)) = n] much
larger, and a local limit theorem based on the normal approximation can then be used to
determine its asymptotics. The resulting component spectra typically have almost all their
weight in components of size abotl 2| a few smaller components making up the rest.
For the logarithmic case, taking Poisson distributgdwith meansaz; ~ 0/, 0 > 0,
one has

ETon(Z) ~nO and STy, (Z)) < n,

so that no tilting is required. However, singg, (Z) >0, these asymptotics also imply that
L(n"1To,(2)) is not close to a normal distribution—there is a different limiting distribu-
tion that has a density related to the Dickman function from number theory—and special
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techniques have to be developed in order to complete the analysis. Here, the component
spectra typically have components of sizes arawhtbr all 0< < 1.

In the convergent case, taking Poisson distribigdvith meansz; ~ Aj%, o < —1,
the sequence of random variabl&g (Z) converges without normalization, and both the
methods of proof and the typical spectranas> oo are again qualitatively different. We
demonstrate that, for larggthe typical picture is that of small components whose numbers
have the independent joint distribution of tAg, the remaining weight being made up by
asinglecomponent of size close to This remains true without the Poisson assumption,
under fairly weak conditions; for instance, our theory applies to the example of uniform
random forests, where the asymptotic distribution of the size of the largest component was
derived using generating function methods by Mutafchégv Bell et al.[3, Theorem 2]
have also used generating function methods to examine the convergent case for labelled and
unlabelled structures, which, in our setting, correspond to Poisson and negative binomially
distributedZ;’s, respectively, we allow an even wider choice of distributions forZhe
They use somewhat different conditions, and are primarily interested in whether or not the
probability that the largest component is of sizbas a limit as: — oo, though they also
consider the limiting distribution of the number of components. Under our conditions, these
limits always exist.

2. Results

We work in a context in which the random variablés may be quite general, provided
that, for largg, their distributions are sufficiently close to Poisson. From now on, we use
the notationa; := IEZ;, and then writer; = j~971A(j) forg = —« — 1 > 0 in the
convergent case, where the quantiti€g) are required to satisfy certain conditions given
below.

Since nows; — 0, being close to Poisson mainly involves assuming that I 2] «

IP[Z; = 1] asj — oo, so that theZ; can be thought of as independent random variables
which usually take the value 0, and occasionally (but only a.s. finitely often) the value 1. This
setting is broad enough to include a number of well known examples, including uniform
random forests consisting of (un)labelled (un)rooted trees. In such circumstances, we are
able to use a technique based on recurrence relations which are exactly true for Poisson
distributedZ ;, and which can be simply derived using Stein’s method for the compound
Poisson distributioi2]. A corresponding approach is used 1, though the detail of the
argument here is very different.

In describing the closeness of the distributions ofh¢o Poisson, we start by exploiting
any divisibility that they may possess, supposing that eachan be written in the form
Zj= Z;le Z i for somer; > 1, where, for each the non-negative integer valued random
variables(Z j;, 1<k<r;) are independent and identically distributed. Clearly, this is al-
ways possible if we take; = 1. However, Poisson distributions are infinitely divisibte (
may be taken to be arbitrarily large), and the error bounds in our approximations become
correspondingly smaller, if we are able to choose largeNote, however, that negative
binomially distributedZ; also have infinitely divisible distributions, so that closeness to
Poisson is not a consequence of infinite divisibility alone. We now deéfige s, j > 1) by
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setting
rilP[Zj1 =1 =:j~7 ()1 - e;0);
riPlZj=s1=j"7Y(ejs, =2, (2.1)

so that then

0<ej1 = Zsejsgl,

§s=2

becausg ~¢~1i(j) = a; = [EZ; = r;|IEZj1. We then assume that

0<5js ga(j)“/s, S>2’ (2'2)
where
G := Zsys <oo and lime(j) =0; (2.3)
Jj—o0
s=2

we write s*(j) := max > ;41 (/) andr*(j) := min;. ; r;. For the subsequent argument,
we need to strengthel.Q) by assuming in addition that

Gg:=) L™y <oo, where Ly :=supi(ll/s])/A(D)}. (2.4)

$>2 [>5

We also need some conditions on the functioklVe assume that

T = lrgsaéll(s) =o(P) foranyp > 0; (2.5)
L :=ls;§[/£rl?él{i(l —0)/MD)} < oo (2.6)

and that
lin;){i(l —s/AD}=1 foralls>1; 2.7)

note that, if/ is slowly varying at infinity, then condition(5—(2.7) are automatically
satisfied, and that, defined in @.4) is finite. We then writeA := max >1 /=% i(0) for
f > 0, and we also observe that

IP[Z x> 1 foroo manyj, k] = 0 and hence that 7o (Z) < oo a.s, (2.8)

from (2.1), (2.5 and the Borel-Cantelli lemma. Finally, we assume that the distributions of
the random variableZ ;; of (2.1) are such that

po :=minIP[Z;1 =0] > 0. (2.9)
j=1

This restriction can actually be dispensed with—see Re@&k-but it makes the proofs
somewhat simpler.

We are now in a position to state our first theorem, in which the asymptotics of the
probabilities IRT},,(Z) = ] are described.
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Theorem 2.1. Suppose that conditior(2.2)—(2.7) are satisfied for somg > 0 and that
(2.9 holds. For1<i<n, define

Hy():= max |[A7*OIMP[T,, =10 - 1).
0<h<iI-1

ThenH (l) := sup, >, H,(l) satisfiedim; . H(l) = 0.

Note that the conditioiir, < oo of (2.4) is really needed here: see Remark

As is strongly suggested by the formuth3), Theorem2.1, in giving the asymptotics
of IP[Tp,(Z) = n], can directly be applied to establish the asymptotic joint distribution
of the entire component spectrum. This is given in the following theorem. For probability
distributions on a discrete sét, we define the total variation distanggy by

dry(P, Q) := sup |P(A) — Q(A)|.
AcCX

Theorem 2.2. Suppose that condition2.2—(2.7) are satisfied for somg > 0, and that
(2.9 holds. Then

Ug;)dTV(E(C””),Qn)-+ 0

whereQ,, is the distribution of(Z1, Zo, ..., Z,) + e(n — To,(Z)), ande(j) denotes the
jth unit n-vector ifj > 1, and the zero n-vector otherwise.

Theoren®.2has a number of immediate consequences, which all follow directly because
Toso(Z) < o0 a.s.

Corollary 2.3. (a)For any fixedk > 1,
L, e - L(Za, ..., Zy) as n— oo

() If Y, := max{j : Cj(.") > 0} and K, := min{j : C;”) > 0} are the sizes of the
maximal and minimal components of the spectriman asn — oo,

L(n —Yy) —» L(Toco(Z2))

and

b
P[K, > b] - [ [ P[Z; = 0]
j=1

for anyb > 1.In particular, it follows that

lim IP[Y, = K, =n]= [ ] IPZ; =0l. (2.10)

n—>00
j=1
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(c) The asymptotic distribution of the number of componémtsf the spectrum is given
by

LX)~ L1+ 25

j=1

Remark 2.4. The assertion (a) of the above corollary states the asymptotic independence
of the numbers of components of small sizes, a fact that has also been establ{dhéal in

the logarithmic case, and also in the Poisson setting fer0 in Freiman and Granovsky

[6]. This fact can be viewed as a particular manifestation of the heuristic general principle
of asymptotic independence of particles in models of statistical physics.

Assertion (b) says that, as— oo, the structures considered exhibit the gelation phe-
nomenon; the formation, with positive probability, of a component with size comparable
to n (see, for examplgl4, Chapter 13] Gelation also occurs in the logarithmic cd%g
while it is not seen fog; > 0 in the setting of Freiman and Granovgl}. In this sense,

g = 0 (0 = —1) represents a critical value of the exponent.

Now IP[Y, = =] is the probability that a structure is ‘connected’, as, for
instance, in Bell et al[3], who give a very general discussion of circumstances in which
p = lim,_ « IP[Y, = n] exists, as well as giving a formula for the asymptotic distribution
of X,,. They work in the settings of either labelled or unlabelled structures; in our terms,
they assume that th&; have either Poisson or negative binomial distributions, respectively.
Theorem2.2implies thatp always exists under our conditions, and gives its value.

Example. We apply our results to some classical models of random forests, referring for
a discussion of the literature to the books of Pa\lbl] and Kolchin[8]; see alsq9, pp.
212-213] We begin by considering the uniform distribution over all forests of unlabelled,
unrooted trees. The number; of such trees of siz¢ was studied by Ottef10], who
showed thatn; ~ cp~Ij=%?2 wherep < 1, and gave values for both andc. This
combinatorial structure satisfies the conditioning relation with negative binomial random
variablesZ; ~ NB (m}, p/), so that

. s —1 .
PIZ; = 5] = (1—p/)"™ (m’ o )p“, 520,

It thus follows that IEZ; = mp/ /(1 — p/) ~ ¢j~>?, implying that our results can be
applied withA(j) — c andg = % Note that, if we take; = 1 for allj, we have

. 41 . .
P[Z; =2] = (1—p/)™ (mf; >pi = (mjp!)?,

so thate;, =< j~%2 as j — oo. On the other hand, negative binomial distributions
are infinitely divisible, and other choices of in (2.1) are possible: for each we can
take Zjx ~ NB(m;/r;, p/), 1<k<r;, for any choice of-;. The corresponding values
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of 5, s > 2, are then given, usin@ (1), by
e e A\ O,
rjIP[Zj1=s]=rj(1—p/)’j (’.i )p“‘f
N
o (-1 (4D
=ril—p/)ip¥— J J
= {mjp’ /(L= p))ejs,
from which, for fixedj ands > 2, we deduce the limiting value

s!

-1 i\ A (s=1)j
Sjs =g (1_p./)p(s )J

of ¢;; asr; — oo. Note that, ag — oo, s;’fz ~ 2-1p/ is of very much smaller order than

the orderj ~>2 obtained for j, when taking-; = 1. As a result, many of the contributions
to the boundH (/) of Theorem2.1 for the relative error in approximating[i®,, = /] are
reduced. These include the terms arising frggny; ands,, which enter in 8.15 and
(3.16 below; furthermore, as observed in Remar, lettingr; — oo also allows us to
take pg = 1 andy, (1) = 0, 3<k<6.

Similar arguments can be used for forests of unlabelled, rooted trees, now:yvith
¢/p~7j=3/2, For forests of labelled, (un)rooted tree¥(To.) is the compound Poisson
distribution of} ;1 jZ;, where

J? VA
Z; ~Po <—> (unrooted) Z;j ~Po (—) (rooted)
Jjlel jlel

The asymptotics of(n — Y,,) then implied by Corollary2.3do not appear to agree with
those of Mutafchiey9].

3. Proofs
3.1. The perturbed Stein recursion and the basic lemma

Stein’s method for the Poisson distribution @9 is based on the Stein—Chen identity
E{Zf(Z)} =alEf(Z + 1),

true for all bounded functiong : Z, — IR whenZ ~ Po(a); this can be checked by
writing the expectations on each side of the equation as sums, and then examining the
coefficients off (/) for each/ > 0. In particular, it then follows that

E{jZjg(JZj)} = jajlEE(jZj + J)

if Z; ~ Po(a;), by putting f(/) = g(jl). Hence, for the compound Poisson distributed
weighted sum

n
T i=Ton(2) = Y jZ,
j=b+1
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whenZ; ~ Po(a;) and theZ; are all independent, we deduce the Stein identity

n
E{Ty,e (T} = Y jajEg(Ty, + j). (3.1)
j=b+1

true for all bounded functiong: Z, — IR and for any 6<b < n. Takingg = 1y, for any
[>Db + 1, it thus follows that

n
IP[T;, =1= Y j9Aj)PIT =1-j]
j=b+1
AR
= > JUGDPIT,, =1— 1. 12b+1; (3.2
j=b+1
note thatthis recursion can also be deduced directly by differentiating the compound Poisson
generating function, and equating coefficients. Recurs3a),(coupled with the fact that
IP[T;;,, = 1] =0 for 1<I<b, successively expresses the probabiliti¢gjP = /] in terms
of the probability IR7," = 0. In particular, ifl <n is large and i j =7 A(j)}/{I"9 A1)} is
close to 1 wheijis close td, it suggests that

IP[T = 1]~ I"PT <1 —b— 1]~ 179(0),

giving the large asymptotics for IP7);, = /]. Our approach consists of turning this heuristic
into a precise argument, which can be applied also whenZthéo not have Poisson
distributions.

Observing that the Stein identit@.Q) is deduced from the Stein—Chen identity

E(Z;g(Ty)} = j T 9A(DE((Ty, + )}, b+1<j<n, (3.3)

whenZz; ~ Po(j~19)(})), our first requirement is to establish an analogue3d®)(for
more general random variabl&s. To do so, as in the previous section, we suppose that
eachZ; can be written in the fornz,; = ")’ ; Z; for somer; >1, where, for eaclj,

the non-negative integer valued random varial§lés,, 1<k <r;) are independent and
identically distributed. Then, writin@}, := Tp,(Z), it is immediate that

E{Zj1g(Ton)} = Y sP(Zj1 = sIEg(Ty) + js),
s>1

whereT,”) := Tyn — jZ i1, SO that, with the above definitions,
bn J4j

n

E{Tong(Ton)} = Y IE{jZ;g(Ton)) (3.4)
Jj=b+1

n
3 g Y sPLZjy = sIEg(TY) + jis)
j=b+1  s>1
n

= Z ij)»(])lEg(Tbn-l-j)
j=b+1
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+ Y T~ e )ES(TL) + ) — Eg(Thn + 1))
j=b+1

n
+ 30N TG se s Eg (T + js). (3.5)
j=b+1s>2

Taking g = 1y, as before then gives the recursion

IAn
IP[Tyy =11= Y j~IA)P[Tpn =1 j]

j=b+1
IAn ‘

+ > A= e)PITY =1 — j1 = P[Tyy =1 — j1}
j=b+1
Ld/2)An] _

+ > ST G)sej P =1 — sl (3.6)
j=b+1 5s>2

which can be understood as a perturbed form of the recur8iéhn (
In order to show that the perturbation is indeed small, it is first necessary to derive bounds
for the probabilities IPT},, = s] and II-'[Tb(,{) =s].

PIT. = s1< pg HP[Tpy =51, s=0,1, ..., (3.7)

However, since IFT;,, = s1>IP[Z;1 = 0] IP[Tb(,{) = s], we have the immediate bound
wherepg > 0is as in 2.9). Hence the following lemma is all that is required.

Lemma 3.1. Suppose that condition®.2)—(2.7) are satisfied for somg > 0, and that
(2.9 holds. Then there exists a constant> 0, depending only on the distributions of the
Zj, such that

P[Tp, = 1< KADI™Y9, [>1.

Proof. For 1<1<b, the statement is trivial. For largerwe proceed by induction, using
the recursion3.6), in which, on the right-hand side, probabilities of the forrfT}z, = s]
appear only fos < [, so that we may suppose that thefillp, = s]1< K i(s)s 179 for
all 1<s < [. Under this hypothesis, we split the right-hand side36)into three terms,
which we bound separately; we take the first two lines together, and then split the third
according to the value taken s
For the first term, we use(7), the induction hypothesis and conditiors5) and @.6)
to give
IAn
> iTMDA-epIPITy) =1 - j]
Jj=b+1
/2] l
<Y UG p P =1 = j1+ Y TG pg P T =1 — ]
j=1 j=l/2]+1
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/2]
<po AT (U/2DK LA/ Y " 70 + pgt L) 2/ 1)1
j=1
= K2 o) + po LA (2/ 1), (3.8)
where
/2]
no() = p 2 A (U/2DLITE Y T = 0(1) asl — oo
j=1

For the second term, arguing much as before, we have

L/2)An] .
S S W<z TTAG)sessPITL) =1 — js]
j=b+1 s>2
L1/2]
<O Njs<wani iG)sejspg TK LA (2/ 1
j=1s>2
l1/2]
S pg 2T (U/2DKLITE Y ()G
j=1
<X (O)GKADI o). (3.9)
For the third and final term, we have
Lt/2An) _
33 Lwzjs<ni1i)ses P, =1 js)
j=b+1 s>2

1 [l/s]—1 ) 1
<Y > T UsePITY = 1= jsT+ Y L/sITTA s))se sy
s=2 j=|l/2s]+1 s=2
=81+ 52, (3.10)

say. Now

I [I/s]—1
SL<Y Y JTAse()y g K AL — o) — js) T
s=2 j=1/2s]+1
1
< po K Y (1/25) 1L LA()sy e ([1/2s]) Rys™79/2, (3.11)
s=2

whereR, := Ag2 Y, 11 +9/2, and this implies that

S1<KADI Ty (1), (3.12)
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where

t
n() := pg LR, 2 zg"lz 8*([1/2tj)2sq/2Lsys + £*(0) Z s91/2Lgy,
= s=2 s>t+1
=o0(1) asl— oo,

in view of (2.3) and @.4). For S2, we have

l

S2 < Y /1m0 /s De(l /s sy

s=2
S ADITY s Leye(ll/s))

s=2

= A1y, (3.13)

wheren,(l) = o(1) as/ — oo, again in view of 2.3) and @.4).
Collecting these bounds, we can ap@ygj to show that

HP[Tpn =1] <)~(l)l_q{2"Lp51 + (D) + K[no(H(1 + £*(0)G) +n1(D]}  (3.14)
and this in turn is less thaki A(/)/~4 provided that
K{1— o)A+ &*©0)G) + ny (D1} > 27 Lpg ™ + (1),
which can be achieved uniformly for &l [g, for some largéy, by choosings > 2‘1+1Lp0‘1.
As observed before, [Py, = [] = 0 for 1<I<b. For b + 1<I1<lp, we can sup-
pose that IPT}, = t1<K;_14(t)r~179 for all r<I — 1, and deduce from3(14 that
IP[ T}, = t]1< K A1)~ 179 for all 1 <1, if we take
K; = maxK;-1,2! Lpal +12(0) + Ki—1[no(D) (A + £*(0)G) 4+ ny (D1}
this then completes the proof. [
Lemma3.], together with the bounds derived in the course of its proof, are enough to

enable us to exploit the recursioB.§), and thereby to prove Theorerisl and2.2, the
detailed argument is given in the next two sections.

3.2. Proof of Theorem 2.1

We exploit the recursior3(6), observing first that the contribution from its last line was
bounded in the proof of Lemntalby

ADI e (O)GKno() + Kny (D) + (D}, (3.19)
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uniformly in 0<bh <1 — 1. We now need to examine the second line in more detail. First,
note that, by Lemma.1, for i <n,

IAn
Y T UealPITY =1 j]
j=b+1
/2]
<Y TN GE()pg t 2/ DK LA + patGe* (11 /2 L) 2/ 1)
j=1
2D UK Ge* O)no() + o)), (3.16)

where
o) := 21 py*GLe*(1/2]) = 0(1) asl — oo.

The remaining part of the second line 8t6) is then bounded by

Inn
3 TUDIPIT,) =1 — j1— PTy, =1 — j1}
j=b+1
[
= | > JTDIPIT) =1 = j1= ) PIZjy = sIP[Ty)) =1 = j(s + D)
j=b+1 50

1
< TUMWIPIZj > UPIT, =1 - ]
j=1
+ Y PIZj = sIPIT,) =1 - j(s + D). (3.17)
s>1

We now observe, using Lemn3al, (3.7), (2.1) and @.6), that

l
Y JTUPIZja > UPIT,) =1 — )
j=1
/2]
Z Pt iTRR () po tKLAD 2/

+{r (1/2) pg LAY 2/ D)2
= 2D I3, (3.18)
where clearlyy3(/) = o(1) asi — oo. Then we also have
1

Y iTAIPIZj = 1PIT,) =1 - 2]
j=1

L1/4]
Z “12402(j) po TR LAWY 2/ DM
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Hr (/DY pg ML ADY 4/ M
= AN Iy, (3.19)
again by Lemma.1, where alsoj,(/) = o(1) asl — oo. The remaining piece of the last

termin 3.17) is split into two, as in the proof of the previous lemma, though the argument
is a little simpler. The bound

l

ST Y ) s <y PlZis = sIPITY =1 — j(s + 1]
j=1 §=2

1
<o tKLAD/DM Y ri TP 2()Ge ()
j=1
= AN Iys(D), (3.20)

with 5(/) = o(1) asl — oo, follows immediately. For the second part, we have
!

TN Y Yzi<jsan <nPlZjy = sIPIT,) =1 — j(s + D)

j=1 s=2
-1 |I/(s+D)]

<Pty Y NG T He()y PUT =1 — (s + D]

s=2 j=[1/2(s+1)]+1
-1

<pot Y _{r(t/2(s + 1)} et (L1/2(s + DD LALyA(D)
xA;;{zzm + 1)/ 132
<{r*(0)) % (0) py 1342 li L2L; (D) Aqp2(s/ DMy
<ADI (D) - (3.21)

with
() = (r*(0)) Xe* (0) pg 31 34/2L2A oGyl = 0(1)  asl — oo.
Combining the results fronB8(19—(3.21), it follows from (3.6) that, forl <n,

I
IP[Tyy =11= Y j 1AG)PITon =1 — j1+ DI n7(0),
j=b+1

wheren;(l) = o(1) as/ — oo. Hence we deduce that
A O NPT, = 1) (3.22)

H"l{ 1991 — s)
(

= P[Tpy <l =b =11+ ) [(ERIRON

1} P[Ty = 51+ n7(0).
s=0
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In view of (2.7), we can find a sequensg— oo such that; = o(l) and

il —s) B _
1ga<xx/ 0 —1=0(1) asl— :
hence also
1A - s)
; m =1/ IP[Tp, = 5] = 7’]8(1) = 0(1) asl — oo.
It then follows from @.6) and @.8) that
L1/2]
1921 —
3 HM=s) 1‘ P[T}, = s1<(29L + DIP[Ty, > s/
=990

<(27L 4+ DIP[Toco > 511 = ng(l) = 0(1) asl — oo.
For the remaining sum, we use Lem@a to give

I—b-1 .
3 ;w—q;; - 1‘ P[Ty, = 5]
s=11/2)+1 (= sy

11/2]
et | Ly
<K LA/ 1)1 {2 + ; A(1)s4

s=1
=110() = 0(1) asl — oo. (3.23)

11/2)
SKL2 Ay ll—q/z +@/Dy] s—q/z}

Putting these estimates int8.22), it follows that, for 1</ <n,
ATY ORIy, =1 = 1= P[Tyy > [ — b — 1] + 5y1(0), (3.24)
wheren1(1) = o(1) asl — oo. Finally, since also, fob < |1/2],
IP[Tp, > 1 —b—1]<IP[Tose > /2] = 0 asl — oo,
whereas, fotl/2| < b < I,
IP[Tp, > 1 — b — 1] < IP[Tpeo > O] <IP[T};/2),00 > O]

o
< ) Mt —>0 asl— oo,
j=li/2]
(3.25)

it follows from (3.24) that, for alln > and 0< b </ — 1, we have
|2 O IPIT,, = 11— 1< H ),
where lim_.» H(l) =0, as required. [
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Remark 3.2. The assumption2(9), that po > 0, can be dispensed with, whatever the
distributions of theZ;, provided that2.3) holds. Clearly, for some: > 1 andzy, ..., t,,
we have

Po = min{ m|n IP[Zjl =0], mn IP[Zj;= fj]} > 0,
j=zm 1<j<sm

since lim;_, o IEZ; = 0. Then, forj <m ands > ¢;, we have the simple bound
PIT,) =1 — jsI<IPTon =1 — j(s — 1))/ P[Zj1 = 11,

which can be used as before, together with the induction hypothesis, to bound the right-
hand side 0f3.6) in the proof of Lemma.1, provided thak > ¢;. So, recalling 8.4) with
g = 1y, we write

D EGZi1y(Ton)
j=1
= erle{zjll[zj <1511y (Ton))}

m

Z iriIE{Z;111Z; > tj111y(Ton)}.

The second term is estimated exactly as before. The first is no largexPi@n, = ],
where

m
K= erjlj
j=1

and hence can be taken onto the left-hand sid8.a# whenevel > 2k; with these modi-
fications, the proof of Lemma.1 can be carried through as before. The proof of Theorem
2.1requires almost no modification, ik is replaced by,

Remark 3.3. If the (Z;, j > 1) are infinitely divisible, then we can choose theto be
arbitrarily large for each fixefl in the limit makingy, (/) = 0, 3<k <6, andpg = 1. The
limiting values as'; — oo of gy, for fixedj ands > 1, arenot however in general zero.

Remark 3.4. The assumption4) that G, be finite is not just an artefact of the proofs.
It appears in particular when bounding the quansityin (3.13) in the proof of Lemma
3.1, and is an element in the quantiy(/), which contributes to the bound a (/) in
Theorem2.1 However,/~1S; is of the same order as the probability that is composed
of scomponents of equal siz¢& s |, plus a small remainder, for some: 2, andG, < oo

is the condition which ensures that this probability is of smaller order i 14,
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3.3. Proof of Theorem 2.2

As in[1, Lemma 3.1] it follows from the Conditioning Relation that, for ahy n,

dry(LCYY, .., CI), L(Za, ..., Zp))
D (3.26)
= PlTo, =nl |,

Pickb = b(n) withn — b(n) — oo, and observe that the right-hand side2Pg) is at most

IP[Top > jnl + IEgn(Ton),

whereg, (j) = 0 for j > j, and where, for alh such thatt (n) < 3,

n*in — j)
(n — j)*2(m)

from Theoren2.1, provided that & j, < [n/2] and thatj, <n — b(n) — 1. This implies

in particular thag, (;) is uniformly bounded for sequencgssatisfying these conditions.
Now, from @.7) and Theoren®.], it follows that lim,_. - g,(j) = 0 for each fixed.
Since alsdlp, < Toso a.S. andlps IS a.s. finite, it follows by dominated convergence that
lim,— o [Egn(Topy) = 0, provided thatj, < min{n — b(n) — 1, [n/2]} in the definition

of g,. On the other hand,

O0<gn(N< —l’+21+qL2(H(n)+H(n—j)), 0<j <

IP[TOb(n) > jnl <IP[Toso > Jnl = 0,

so long asj, — oo. Thus, taking for examplé(n) = |3n/4] andj, = |n/4] — 1, it
follows that

dry(LCY", ..., Cho), L(Za, ..., Zpw)) = O
asn — oo. On the other hand, we haYe’;_ 3, 411 C}”) <1las., becausk, (C™) =n
a.s., by the definition o€ ™. Hence, withb(n) as above, we havé‘;.”) = 0 a.s. for all

j > bn) if Tope)(C™) = n, while if Topu) (C™) = t for somer < n — b(n), then
C(”)t =1 andC(”) = 0 for all otherj > b(n). This proves the theorem.[]
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