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Abstract

This paper studies the distribution of the component spectrum of combinatorial structures such as
uniform random forests, in which the classical generating function for the numbers of (irreducible)
elements of the different sizes converges at the radius of convergence; here, this property is expressed
in terms of the expectations ofindependentrandom variablesZj , j �1, whose joint distribution,
conditional on the event that

∑n
j=1jZj = n, gives the distribution of the component spectrum for a

random structure of sizen. For a large class of such structures, we show that the component spectrum
is asymptotically composed ofZj components of small sizesj, j �1, with the remaining part, of size
close ton, being made up of a single, giant component.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider the distribution of the asymptotic component spectrum of
certain decomposable random combinatorial structures. A structure of sizen is composed
of parts whose (integer) sizes sum ton; we let C(n) := (C

(n)
1 , C

(n)
2 , . . . , C

(n)
n ) denote

its component spectrum, the numbers of components of sizes 1,2, . . . , n, noting that we
always have

∑n
j=1 jC

(n)
j = n. For each givenn, we assume that the probability distribution
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on the space of all such component spectra satisfies the Conditioning Relation

L(C(n)) = L

(Z1, Z2, . . . , Zn)

∣∣∣∣∣∣
n∑

j=1

jZj = n


 , (1.1)

whereZ := (Zj , j�1) is a sequence of independent random variables, the same for alln;
that is, fory1, y2, . . . , yn ∈ Z+,

IP[(C(n)
1 , C

(n)
2 , . . . , C(n)

n ) = (y1, y2, . . . , yn)]

=

IP


 n∑
j=1

jZj = n







−1
n∏

j=1

IP[Zj = yj ]1{n}


 n∑

j=1

jyj


 . (1.2)

This apparently curious assumption is satisfied by an enormous number of classical com-
binatorial objects, such as, for instance, permutations ofn objects under the uniform dis-
tribution, decomposed into cycles as components, when theZj are Poisson distributed,
with Zj ∼ Po(1/j); or forests of unlabelled unrooted trees under the uniform distribution,
decomposed into tree components, when theZj are negative binomially distributed: see[1,
Chapter 2]for many more examples. However, such structures also arise in other contexts.
For instance, the state of a coagulation–fragmentation process evolving in a collection ofn
particles can be described by the numbersC

(n)
j of clusters of sizej, 1�j�n, and if such a

process is reversible and Markov, then its equilibrium distribution satisfies the conditioning
relation for some sequenceZ of random variables. In particular, under mass-action kinet-
ics, it follows thatZj ∼ Po(aj ), where(aj , j�1) are positive reals, determined by the
coagulation and fragmentation rates; see[4,5,7, Chapter 8], [13].

In order to describe the asymptotics asn → ∞, it is necessary first to say something
about how the distributions of theZj vary withj. Now the distribution given in (1.2) remains

the same if the random variablesZj are replaced by ‘tilted’ random variablesZ(x)
j , where

IP[Z(x)
j = i] = IP[Zj = i]xji/kj (x) (1.3)

for anyx > 0 such that

kj (x) := IE
{
xjZj

}
< ∞.

Specializing to the setting in whichZj ∼ Po(aj ) for eachj, this means that exactly the
same distributions are obtained for eachn in (1.2) if aj is replaced byajxj for eachj, for any
fixed x > 0. Thus, geometrically fast growth or decay of theaj can be offset by choosing

x−1 = limj→∞ a
1/j
j (should the limit exist), without changing the asymptotics. Hence, to

find an interesting range of possibilities, we look at rates of growth or decay of IEZj which
(if necessary, after appropriate tilting) can be described by a power law: IEZj ∼ Aj� as
j → ∞, or, more generally, IEZj regularly varying with exponent� ∈ IR.

Three ranges of� can then broadly be distinguished. The most intensively
studied is that where� = −1, and within this the logarithmic class, in which
IEZj ∼ IP[Zj = 1] ∼ �j−1, for some� > 0: see the book[1] for a detailed discussion.
For � > −1, the expansive case, the asymptotics were explored for Poisson distributed
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Zj in [5,6] with the help of Khinchine’s probabilistic method, and particular models have
been studied by many authors. Here, we treat the convergent case, in which� < −1, in
considerable generality. Our approach is quite different from the classical approach by
way of generating functions, thereby allowing distributions other than the standard Poisson
and negative binomial to be easily discussed. Note also that not all classical combinatorial
structures fall into one of these three categories: random set partitions, studied using the
Conditioning Relation by Pittel[12], have Poisson distributedZj with meansxj /j !, which
are never regularly varying, whatever the choice ofx > 0.

As will be seen in what follows, a key element in the arguments is establishing the
asymptotics of the probabilities IP[Tbn(Z) = l] for l nearn, where, fory := (y1, y2, . . .) ∈
Z∞+ ,

Tbn(y) :=
n∑

j=b+1

jyj , 0�b < n. (1.4)

That this should be so is clear from (1.2), in which the normalizing constant is just the
probability IP[T0n(Z) = n], and is the only element which cannot immediately be written
down. In the context of reversible coagulation–fragmentation processes with mass–action
kinetics, the partition functioncn investigated by Freiman and Granovsky[5] is given by

cn := exp




n∑
j=1

aj


 IP[T0n(Z) = n], (1.5)

explaining its relation to many of their quantities of interest. Now, in the expansive case,
taking Poisson distributedZj with meansaj ∼ Aj�, � > −1, one has

IET0n(Z) � n2+� � n and SD(T0n(Z)) � n(3+�)/2 � IET0n(Z).

The Bernstein inequality then implies that, for largen, the probability IP[T0n(Z) = n] is
extremely small, making a direct asymptotic argument very delicate. However, recall from
(1.3) that the conditioning relation (1.1) delivers the same distribution for the combinatorial
structure if the Poisson distributed random variablesZj with meansaj are replaced by

Poisson distributed random variablesZ(x)
j with meansajxj , for any x > 0. Choosing

x = xn in such a way that IET0n(Z
(x)) = n makes the probability IP[T0n(Z

(x)) = n] much
larger, and a local limit theorem based on the normal approximation can then be used to
determine its asymptotics. The resulting component spectra typically have almost all their
weight in components of size aboutn1/(�+2), a few smaller components making up the rest.

For the logarithmic case, taking Poisson distributedZj with meansaj ∼ �/j , � > 0,
one has

IET0n(Z) ∼ n� and SD(T0n(Z)) � n,

so that no tilting is required. However, sinceT0n(Z)�0, these asymptotics also imply that
L(n−1T0n(Z)) is not close to a normal distribution—there is a different limiting distribu-
tion that has a density related to the Dickman function from number theory—and special
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techniques have to be developed in order to complete the analysis. Here, the component
spectra typically have components of sizes aroundn� for all 0���1.

In the convergent case, taking Poisson distributedZj with meansaj ∼ Aj�, � < −1,
the sequence of random variablesT0n(Z) converges without normalization, and both the
methods of proof and the typical spectra asn → ∞ are again qualitatively different. We
demonstrate that, for largen, the typical picture is that of small components whose numbers
have the independent joint distribution of theZj , the remaining weight being made up by
a singlecomponent of size close ton. This remains true without the Poisson assumption,
under fairly weak conditions; for instance, our theory applies to the example of uniform
random forests, where the asymptotic distribution of the size of the largest component was
derived using generating function methods by Mutafchiev[9]. Bell et al.[3, Theorem 2]
have also used generating function methods to examine the convergent case for labelled and
unlabelled structures, which, in our setting, correspond to Poisson and negative binomially
distributedZj ’s, respectively; we allow an even wider choice of distributions for theZj .
They use somewhat different conditions, and are primarily interested in whether or not the
probability that the largest component is of sizen has a limit asn → ∞, though they also
consider the limiting distribution of the number of components. Under our conditions, these
limits always exist.

2. Results

We work in a context in which the random variablesZj may be quite general, provided
that, for largej, their distributions are sufficiently close to Poisson. From now on, we use
the notationaj := IEZj , and then writeaj = j−q−1�(j) for q = −� − 1 > 0 in the
convergent case, where the quantities�(j) are required to satisfy certain conditions given
below.

Since nowaj → 0, being close to Poisson mainly involves assuming that IP[Zj �2] �
IP[Zj = 1] asj → ∞, so that theZj can be thought of as independent random variables
which usually take the value 0, and occasionally (but only a.s. finitely often) the value 1. This
setting is broad enough to include a number of well known examples, including uniform
random forests consisting of (un)labelled (un)rooted trees. In such circumstances, we are
able to use a technique based on recurrence relations which are exactly true for Poisson
distributedZj , and which can be simply derived using Stein’s method for the compound
Poisson distribution[2]. A corresponding approach is used in[1], though the detail of the
argument here is very different.

In describing the closeness of the distributions of theZj to Poisson, we start by exploiting
any divisibility that they may possess, supposing that eachZj can be written in the form
Zj = ∑rj

k=1Zjk for somerj �1, where, for eachj, the non-negative integer valued random
variables(Zjk, 1�k�rj ) are independent and identically distributed. Clearly, this is al-
ways possible if we takerj = 1. However, Poisson distributions are infinitely divisible (rj
may be taken to be arbitrarily large), and the error bounds in our approximations become
correspondingly smaller, if we are able to choose largerrj . Note, however, that negative
binomially distributedZj also have infinitely divisible distributions, so that closeness to
Poisson is not a consequence of infinite divisibility alone. We now define(εjs, s, j�1) by
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setting

rj IP[Zj1 = 1] =: j−q−1�(j)(1 − εj1);
rj IP[Zj1 = s] =: j−q−1�(j)εjs, s�2, (2.1)

so that then

0�εj1 =
∑
s�2

sεjs �1,

becausej−q−1�(j) = aj = IEZj = rj IEZj1. We then assume that

0�εjs �ε(j)�s , s�2, (2.2)

where

G :=
∑
s�2

s�s < ∞ and lim
j→∞ ε(j) = 0; (2.3)

we writeε∗(j) := maxl� j+1 ε(l) andr∗(j) := minl>j rl . For the subsequent argument,
we need to strengthen (2.3) by assuming in addition that

Gq :=
∑
s�2

Lss
1+q�s < ∞, where Ls := sup

l� s

{�(�l/s�)/�(l)}. (2.4)

We also need some conditions on the function�. We assume that

�+(l) := max
1� s� l

�(s) = o(l�) for any� > 0; (2.5)

L := sup
l�2

max
l/2<t � l

{�(l − t)/�(l)} < ∞ (2.6)

and that

lim
l→∞{�(l − s)/�(l)} = 1 for all s�1; (2.7)

note that, if� is slowly varying at infinity, then conditions (2.5)–(2.7) are automatically
satisfied, and thatLs defined in (2.4) is finite. We then write�� := maxl�1 l−��(l) for
� > 0, and we also observe that

IP[Zjk�1 for ∞ manyj, k] = 0 and hence thatT0∞(Z) < ∞ a.s., (2.8)

from (2.1), (2.5) and the Borel–Cantelli lemma. Finally, we assume that the distributions of
the random variablesZj1 of (2.1) are such that

p0 := min
j �1

IP[Zj1 = 0] > 0. (2.9)

This restriction can actually be dispensed with—see Remark3.2—but it makes the proofs
somewhat simpler.

We are now in a position to state our first theorem, in which the asymptotics of the
probabilities IP[Tbn(Z) = l] are described.
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Theorem 2.1. Suppose that conditions(2.2)–(2.7) are satisfied for someq > 0 and that
(2.9) holds. For1� l�n, define

Hn(l) := max
0�b� l−1

|�−1(l)l1+q IP[Tbn = l] − 1|.

ThenH(l) := supn� l Hn(l) satisfieslim l→∞ H(l) = 0.

Note that the conditionGq < ∞ of (2.4) is really needed here: see Remark3.4.
As is strongly suggested by the formula (1.2), Theorem2.1, in giving the asymptotics

of IP[T0n(Z) = n], can directly be applied to establish the asymptotic joint distribution
of the entire component spectrum. This is given in the following theorem. For probability
distributions on a discrete setX , we define the total variation distancedT V by

dT V (P,Q) := sup
A⊂X

|P(A) − Q(A)|.

Theorem 2.2. Suppose that conditions(2.2)–(2.7) are satisfied for someq > 0, and that
(2.9) holds. Then

lim
n→∞ dT V (L(C(n)),Qn) → 0,

whereQn is the distribution of(Z1, Z2, . . . , Zn) + e(n − T0n(Z)), ande(j) denotes the
jth unit n-vector ifj�1,and the zero n-vector otherwise.

Theorem2.2has a number of immediate consequences, which all follow directly because
T0∞(Z) < ∞ a.s.

Corollary 2.3. (a)For any fixedk�1,

L(C(n)
1 , . . . , C

(n)
k ) → L(Z1, . . . , Zk) as n → ∞.

(b) If Yn := max{j : C
(n)
j > 0} andKn := min{j : C

(n)
j > 0} are the sizes of the

maximal and minimal components of the spectrum, then, asn → ∞,

L(n − Yn) → L(T0∞(Z))

and

IP[Kn > b] →
b∏

j=1

IP[Zj = 0]

for anyb > 1. In particular, it follows that

lim
n→∞ IP[Yn = Kn = n] =

∏
j �1

IP[Zj = 0]. (2.10)
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(c)The asymptotic distribution of the number of componentsXn of the spectrum is given
by

L(Xn) → L

1 +

∑
j �1

Zj


 .

Remark 2.4. The assertion (a) of the above corollary states the asymptotic independence
of the numbers of components of small sizes, a fact that has also been established in[1] in
the logarithmic case, and also in the Poisson setting forq > 0 in Freiman and Granovsky
[6]. This fact can be viewed as a particular manifestation of the heuristic general principle
of asymptotic independence of particles in models of statistical physics.

Assertion (b) says that, asn → ∞, the structures considered exhibit the gelation phe-
nomenon; the formation, with positive probability, of a component with size comparable
to n (see, for example,[14, Chapter 13]). Gelation also occurs in the logarithmic case[1],
while it is not seen forq > 0 in the setting of Freiman and Granovsky[6]. In this sense,
q = 0 (� = −1) represents a critical value of the exponent.

Now IP[Yn = n] is the probability that a structure is ‘connected’, as, for
instance, in Bell et al.[3], who give a very general discussion of circumstances in which
� := limn→∞ IP[Yn = n] exists, as well as giving a formula for the asymptotic distribution
of Xn. They work in the settings of either labelled or unlabelled structures; in our terms,
they assume that theZj have either Poisson or negative binomial distributions, respectively.
Theorem2.2 implies that� always exists under our conditions, and gives its value.

Example.We apply our results to some classical models of random forests, referring for
a discussion of the literature to the books of Pavlov[11] and Kolchin[8]; see also[9, pp.
212–213]. We begin by considering the uniform distribution over all forests of unlabelled,
unrooted trees. The numbermj of such trees of sizej was studied by Otter[10], who
showed thatmj ∼ c�−j j−5/2, where� < 1, and gave values for both� and c. This
combinatorial structure satisfies the conditioning relation with negative binomial random
variablesZj ∼ NB (mj ,�j ), so that

IP[Zj = s] = (1 − �j )mj

(
mj + s − 1

s

)
�js, s�0.

It thus follows that IEZj = mj�j /(1 − �j ) ∼ cj−5/2, implying that our results can be
applied with�(j) → c andq = 3

2. Note that, if we takerj = 1 for all j, we have

IP[Zj = 2] = (1 − �j )mj

(
mj + 1

2

)
�2j � (mj�j )2,

so thatεj2 � j−5/2 as j → ∞. On the other hand, negative binomial distributions
are infinitely divisible, and other choices ofrj in (2.1) are possible: for eachj, we can
takeZjk ∼ NB (mj/rj ,�j ), 1�k�rj , for any choice ofrj . The corresponding values
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of εjs , s�2, are then given, using (2.1), by

rj IP[Zj1 = s] = rj (1 − �j )

mj
rj

(mj

rj
+ s − 1

s

)
�sj

= rj (1 − �j )

mj
rj �sj

(
mj

rj
+ s − 1) · · · (mj

rj
+ 1)

mj

rj

s!
= {mj�j /(1 − �j )}�js,

from which, for fixedj ands�2, we deduce the limiting value

�∗js = s−1(1 − �j )�(s−1)j

of �js asrj → ∞. Note that, asj → ∞, ε∗
j2 ∼ 2−1�j is of very much smaller order than

the orderj−5/2 obtained forεj2 when takingrj = 1. As a result, many of the contributions
to the boundH(l) of Theorem2.1 for the relative error in approximating IP[Tbn = l] are
reduced. These include the terms arising from�′

0, �1 and�2, which enter in (3.15) and
(3.16) below; furthermore, as observed in Remark3.3, letting rj → ∞ also allows us to
takep0 = 1 and�k(l) = 0, 3�k�6.

Similar arguments can be used for forests of unlabelled, rooted trees, now withmj ∼
c′�−j j−3/2. For forests of labelled, (un)rooted trees,L(T0∞) is the compound Poisson
distribution of

∑
j �1 jZj , where

Zj ∼ Po

(
jj−2

j !ej
)

(unrooted); Zj ∼ Po

(
jj−1

j !ej
)

(rooted).

The asymptotics ofL(n − Yn) then implied by Corollary2.3 do not appear to agree with
those of Mutafchiev[9].

3. Proofs

3.1. The perturbed Stein recursion and the basic lemma

Stein’s method for the Poisson distribution Po(a) is based on the Stein–Chen identity

IE{Zf (Z)} = aIEf (Z + 1),

true for all bounded functionsf : Z+ → IR whenZ ∼ Po(a); this can be checked by
writing the expectations on each side of the equation as sums, and then examining the
coefficients off (l) for eachl�0. In particular, it then follows that

IE{jZjg(jZj )} = jaj IEg(jZj + j)

if Zj ∼ Po(aj ), by puttingf (l) = g(j l). Hence, for the compound Poisson distributed
weighted sum

T ∗
bn := Tbn(Z) =

n∑
j=b+1

jZj ,
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whenZj ∼ Po(aj ) and theZj are all independent, we deduce the Stein identity

IE{T ∗
bng(T

∗
bn)} =

n∑
j=b+1

jaj IEg(T ∗
bn + j), (3.1)

true for all bounded functionsg : Z+ → IR and for any 0�b < n. Takingg = 1{l}, for any
l�b + 1, it thus follows that

lIP[T ∗
bn = l] =

n∑
j=b+1

j−q�(j)IP[T ∗
bn = l − j ]

=
l∧n∑

j=b+1

j−q�(j)IP[T ∗
bn = l − j ], l�b + 1; (3.2)

note that this recursion can also be deduced directly by differentiating the compound Poisson
generating function, and equating coefficients. Recursion (3.2), coupled with the fact that
IP[T ∗

bn = l] = 0 for 1� l�b, successively expresses the probabilities IP[T ∗
bn = l] in terms

of the probability IP[T ∗
bn = 0]. In particular, ifl�n is large and if{j−q�(j)}/{l−q�(l)} is

close to 1 whenj is close tol, it suggests that

lIP[T ∗
bn = l] ≈ l−q�(l)IP[T ∗

bn < l − b − 1] ≈ l−q�(l),

giving the largel asymptotics for IP[T ∗
bn = l]. Our approach consists of turning this heuristic

into a precise argument, which can be applied also when theZj do not have Poisson
distributions.

Observing that the Stein identity (3.1) is deduced from the Stein–Chen identity

IE{Zjg(T
∗
bn)} = j−1−q�(j)IE{g(T ∗

bn + j)}, b + 1�j�n, (3.3)

whenZj ∼ Po(j−1−q�(j)), our first requirement is to establish an analogue of (3.3) for
more general random variablesZj . To do so, as in the previous section, we suppose that
eachZj can be written in the formZj = ∑rj

k=1Zjk for somerj �1, where, for eachj,
the non-negative integer valued random variables(Zjk, 1�k�rj ) are independent and
identically distributed. Then, writingTbn := Tbn(Z), it is immediate that

IE{Zj1g(Tbn)} =
∑
s�1

sIP[Zj1 = s]IEg(T (j)
bn + js),

whereT (j)
bn := Tbn − jZj1, so that, with the above definitions,

IE{Tbng(Tbn)} =
n∑

j=b+1

IE{jZjg(Tbn)} (3.4)

=
n∑

j=b+1

jrj
∑
s�1

sIP[Zj1 = s]IEg(T (j)
bn + js)

=
n∑

j=b+1

j−q�(j)IEg(Tbn + j)
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+
n∑

j=b+1

j−q�(j){(1 − εj1)IEg(T
(j)
bn + j) − IEg(Tbn + j)}

+
n∑

j=b+1

∑
s�2

j−q�(j)sεjs IEg(T
(j)
bn + js). (3.5)

Takingg = 1{l} as before then gives the recursion

lIP[Tbn = l] =
l∧n∑

j=b+1

j−q�(j)IP[Tbn = l − j ]

+
l∧n∑

j=b+1

j−q�(j){(1 − εj1)IP[T (j)
bn = l − j ] − IP[Tbn = l − j ]}

+
�(l/2)∧n�∑
j=b+1

∑
s�2

j−q�(j)sεjs IP[T (j)
bn = l − js], (3.6)

which can be understood as a perturbed form of the recursion (3.2).
In order to show that the perturbation is indeed small, it is first necessary to derive bounds

for the probabilities IP[Tbn = s] and IP[T (j)
bn = s].

IP[T (j)
bn = s]�p−1

0 IP[Tbn = s], s = 0,1, . . . , (3.7)

However, since IP[Tbn = s]� IP[Zj1 = 0] IP[T (j)
bn = s], we have the immediate bound

wherep0 > 0 is as in (2.9). Hence the following lemma is all that is required.

Lemma 3.1. Suppose that conditions(2.2)–(2.7) are satisfied for someq > 0, and that
(2.9) holds. Then there exists a constantK > 0,depending only on the distributions of the
Zj , such that

IP[Tbn = l]�K�(l)l−1−q, l�1.

Proof. For 1� l�b, the statement is trivial. For largerl, we proceed by induction, using
the recursion (3.6), in which, on the right-hand side, probabilities of the form IP[Tbn = s]
appear only fors < l, so that we may suppose that then IP[Tbn = s]�K�(s)s−1−q for
all 1�s < l. Under this hypothesis, we split the right-hand side of (3.6) into three terms,
which we bound separately; we take the first two lines together, and then split the third
according to the value taken byjs.

For the first term, we use (3.7), the induction hypothesis and conditions (2.5) and (2.6)
to give

l∧n∑
j=b+1

j−q�(j)(1 − εj1)IP[T (j)
bn = l − j ]

�
�l/2�∑
j=1

j−q�(j)p−1
0 IP[Tbn = l − j ] +

l∑
j=�l/2�+1

j−q�(j)p−1
0 IP[Tbn = l − j ]
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�p−1
0 �+(�l/2�)KL�(l)(2/l)1+q

�l/2�∑
j=1

j−q + p−1
0 L�(l)(2/l)q

= K�(l)l−q�0(l) + p−1
0 L�(l)(2/l)q, (3.8)

where

�0(l) := p−1
0 21+q�+(�l/2�)Ll−1

�l/2�∑
j=1

j−q = o(1) asl → ∞.

For the second term, arguing much as before, we have

�(l/2)∧n�∑
j=b+1

∑
s�2

1{js��l/2�}j−q�(j)sεjs IP[T (j)
bn = l − js]

�
�l/2�∑
j=1

∑
s�2

1{js��l/2�}j−q�(j)sεjsp
−1
0 KL�(l)(2/l)1+q

��(l)l−q p−1
0 21+q�+(�l/2�)KLl−1

�l/2�∑
j=1

j−qε(j)G

�ε∗(0)GK�(l)l−q�0(l). (3.9)

For the third and final term, we have

�(l/2)∧n�∑
j=b+1

∑
s�2

1{�l/2�<js� l}j−q�(j)sεjs IP[T (j)
bn = l − js]

�
l∑

s=2

�l/s�−1∑
j=�l/2s�+1

j−q�(j)sεjs IP[T (j)
bn = l − js] +

l∑
s=2

�l/s�−q�(�l/s�)sε�l/s�,s

= S1 + S2, (3.10)

say. Now

S1 �
l∑

s=2

�l/s�−1∑
j=�l/2s�+1

j−q�(j)sε(j)�sp
−1
0 K�(l − js)(l − js)−1−q

� p−1
0 K

l∑
s=2

(l/2s)−qLsL�(l)s�sε
∗(�l/2s�)Rqs

−1−q/2, (3.11)

whereRq := �q/2
∑

t �1 t
−1−q/2, and this implies that

S1�K�(l)l−q�1(l), (3.12)
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where

�1(l) := p−1
0 LRq2q min

2� t � l


ε∗(�l/2t�)

t∑
s=2

sq/2Ls�s + ε∗(0)
∑

s� t+1

sq/2Ls�s




= o(1) asl → ∞,

in view of (2.3) and (2.4). ForS2, we have

S2 �
l∑

s=2

�l/s�−q�(�l/s�)ε(�l/s�)s�s

� �(l)l−q
∑
s�2

s1+qLs�sε(�l/s�)

:= �(l)l−q�2(l), (3.13)

where�2(l) = o(1) asl → ∞, again in view of (2.3) and (2.4).
Collecting these bounds, we can apply (3.6) to show that

lIP[Tbn = l]��(l)l−q{2qLp−1
0 + �2(l) + K[�0(l)(1 + ε∗(0)G) + �1(l)]} (3.14)

and this in turn is less thanK�(l)l−q provided that

K{1 − [�0(l)(1 + ε∗(0)G) + �1(l)]} > 2qLp−1
0 + �2(l),

which can be achieved uniformly for alll� l0, for some largel0, by choosingK�2q+1Lp−1
0 .

As observed before, IP[Tbn = l] = 0 for 1� l�b. For b + 1� l� l0, we can sup-
pose that IP[Tbn = t]�Kl−1�(t)t−1−q for all t� l − 1, and deduce from (3.14) that
IP[Tbn = t]�Kl�(t)t−1−q for all t� l, if we take

Kl = max{Kl−1,2qLp−1
0 + �2(l) + Kl−1[�0(l)(1 + ε∗(0)G) + �1(l)]};

this then completes the proof. �
Lemma3.1, together with the bounds derived in the course of its proof, are enough to

enable us to exploit the recursion (3.6), and thereby to prove Theorems2.1 and2.2; the
detailed argument is given in the next two sections.

3.2. Proof of Theorem 2.1

We exploit the recursion (3.6), observing first that the contribution from its last line was
bounded in the proof of Lemma3.1by

�(l)l−q{ε∗(0)GK�0(l) + K�1(l) + �2(l)}, (3.15)
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uniformly in 0�b� l − 1. We now need to examine the second line in more detail. First,
note that, by Lemma3.1, for l�n,

l∧n∑
j=b+1

j−q�(j)εj1IP[T (j)
bn = l − j ]

�
�l/2�∑
j=1

j−q�(j)Gε(j)p−1
0 (2/l)1+qKL�(l) + p−1

0 Gε∗(�l/2�)L�(l)(2/l)q

��(l)l−q(KGε∗(0)�0(l) + �′
0(l)), (3.16)

where

�′
0(l) := 2qp−1

0 GLε∗(�l/2�) = o(1) asl → ∞.

The remaining part of the second line of (3.6) is then bounded by∣∣∣∣∣∣
l∧n∑

j=b+1

j−q�(j){IP[T (j)
bn = l − j ] − IP[Tbn = l − j ]}

∣∣∣∣∣∣
=

∣∣∣∣∣∣
l∑

j=b+1

j−q�(j){IP[T (j)
bn = l − j ] −

∑
s�0

IP[Zj1 = s]IP[T (j)
bn = l − j (s + 1)]}

∣∣∣∣∣∣
�

l∑
j=1

j−q�(j){IP[Zj1�1]IP[T (j)
bn = l − j ]

+
∑
s�1

IP[Zj1 = s]IP[T (j)
bn = l − j (s + 1)]}. (3.17)

We now observe, using Lemma3.1, (3.7), (2.1) and (2.6), that
l∑

j=1

j−q�(j)IP[Zj1�1]IP[T (j)
bn = l − j ]

�
�l/2�∑
j=1

r−1
j j−1−2q�2(j)p−1

0 KL�(l)(2/l)1+q

+{r∗(l/2)}−1p−1
0 {L�(l)}2(2/l)1+2q

:= �(l)l−q�3(l), (3.18)

where clearly�3(l) = o(1) asl → ∞. Then we also have
l∑

j=1

j−q�(j)IP[Zj1 = 1]IP[T (j)
bn = l − 2j ]

�
�l/4�∑
j=1

r−1
j j−1−2q�2(j)p−1

0 KL�(l)(2/l)1+q
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+{r∗(l/4)}−1p−1
0 {L2�(l)}2(4/l)1+2q

:= �(l)l−q�4(l), (3.19)

again by Lemma3.1, where also�4(l) = o(1) asl → ∞. The remaining piece of the last
term in (3.17) is split into two, as in the proof of the previous lemma, though the argument
is a little simpler. The bound

l∑
j=1

j−q�(j)
∑
s�2

1{j (s+1)��l/2�}IP[Zj1 = s]IP[T (j)
bn = l − j (s + 1)]

�p−1
0 KL�(l)(2/l)1+q

l∑
j=1

r−1
j j−1−2q�2(j)Gε(j)

:= �(l)l−q�5(l), (3.20)

with �5(l) = o(1) asl → ∞, follows immediately. For the second part, we have

l∑
j=1

j−q�(j)
∑
s�2

1{�l/2�<j(s+1)� l}IP[Zj1 = s]IP[T (j)
bn = l − j (s + 1)]

�p−1
0

l−1∑
s=2

�l/(s+1)�∑
j=�l/2(s+1)�+1

r−1
j �2(j)j−1−2qε(j)�s IP[Tbn = l − j (s + 1)]

�p−1
0

l−1∑
s=2

{r∗(l/2(s + 1))}−1ε∗(�l/2(s + 1)�)L2Ls�(l)

×�q/2{2(s + 1)/ l}1+3q/2�s

�{r∗(0)}−1ε∗(0)p−1
0 31+3q/2

l−1∑
s=2

L2Ls�(l)�q/2(s/ l)
1+q�s

��(l)l−q�6(l) (3.21)

with

�6(l) := {r∗(0)}−1ε∗(0)p−1
0 31+3q/2L2�q/2Gql

−1 = o(1) asl → ∞.

Combining the results from (3.15)–(3.21), it follows from (3.6) that, forl�n,

lIP[Tbn = l] =
l∑

j=b+1

j−q�(j)IP[Tbn = l − j ] + �(l)l−q�7(l),

where�7(l) = o(1) asl → ∞. Hence we deduce that

�−1(l)l1+q IP[Tbn = l] (3.22)

= IP[Tbn� l − b − 1] +
l−b−1∑
s=0

{
lq�(l − s)

(l − s)q�(l)
− 1

}
IP[Tbn = s] + �7(l).
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In view of (2.7), we can find a sequencesl → ∞ such thatsl = o(l) and

max
1� s� sl

∣∣∣∣�(l − s)

�(l)
− 1

∣∣∣∣ = o(1) asl → ∞ :

hence also
sl∑

s=0

∣∣∣∣ lq�(l − s)

(l − s)q�(l)
− 1

∣∣∣∣ IP[Tbn = s] = �8(l) = o(1) asl → ∞.

It then follows from (2.6) and (2.8) that
�l/2�∑

s=sl+1

∣∣∣∣ lq�(l − s)

(l − s)q�(l)
− 1

∣∣∣∣ IP[Tbn = s]�(2qL + 1)IP[Tbn > sl]

�(2qL + 1)IP[T0∞ > sl] = �9(l) = o(1) asl → ∞.

For the remaining sum, we use Lemma3.1to give
l−b−1∑

s=�l/2�+1

∣∣∣∣ lq�(l − s)

(l − s)q�(l)
− 1

∣∣∣∣ IP[Tbn = s]

�KL�(l)(2/l)1+q




l

2
+

�l/2�∑
s=1

lq�(s)
�(l)sq




�KL2q�q/2


l−q/2 + (2/l)

�l/2�∑
s=1

s−q/2




= �10(l) = o(1) asl → ∞. (3.23)

Putting these estimates into (3.22), it follows that, for 1� l�n,

�−1(l)l1+q IP[Tbn = l] = 1 − IP[Tbn > l − b − 1] + �11(l), (3.24)

where�11(l) = o(1) asl → ∞. Finally, since also, forb��l/2�,

IP[Tbn > l − b − 1]� IP[T0∞ > l/2] → 0 asl → ∞,

whereas, for�l/2� < b < l,

IP[Tbn > l − b − 1] � IP[Tb∞ > 0]� IP[T�l/2�,∞ > 0]

�
∞∑

j=�l/2�
�(j)j−1−q → 0 asl → ∞,

(3.25)

it follows from (3.24) that, for alln� l and 0�b� l − 1, we have

|�−1(l)l1+q IP[Tbn = l] − 1|�H(l),

where liml→∞ H(l) = 0, as required. �
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Remark 3.2. The assumption (2.9), thatp0 > 0, can be dispensed with, whatever the
distributions of theZj , provided that (2.3) holds. Clearly, for somem�1 andt1, . . . , tm,
we have

p′
0 := min

{
min

j �m+1
IP[Zj1 = 0], min

1� j �m
IP[Zj1 = tj ]

}
> 0,

since limj→∞ IEZj = 0. Then, forj�m ands > tj , we have the simple bound

IP[T (j)
bn = l − js]� IP[Tbn = l − j (s − tj )]/IP[Zj1 = tj ],

which can be used as before, together with the induction hypothesis, to bound the right-
hand side of (3.6) in the proof of Lemma3.1, provided thats > tj . So, recalling (3.4) with
g = 1{l}, we write

m∑
j=1

IE{jZj1{l}(Tbn)}

=
m∑

j=1

jrj IE{Zj1I [Zj � tj ]1{l}(Tbn)}

+
m∑

j=1

jrj IE{Zj1I [Zj > tj ]1{l}(Tbn)}.

The second term is estimated exactly as before. The first is no larger than	IP[Tbn = l],
where

	 :=
m∑

j=1

jrj tj

and hence can be taken onto the left-hand side of (3.14) wheneverl�2	; with these modi-
fications, the proof of Lemma3.1can be carried through as before. The proof of Theorem
2.1requires almost no modification, ifp0 is replaced byp′

0.

Remark 3.3. If the (Zj , j�1) are infinitely divisible, then we can choose therj to be
arbitrarily large for each fixedj, in the limit making�k(l) = 0, 3�k�6, andp0 = 1. The
limiting values asrj → ∞ of εjs , for fixed j ands�1, arenot however in general zero.

Remark 3.4. The assumption (2.4) thatGq be finite is not just an artefact of the proofs.
It appears in particular when bounding the quantityS2 in (3.13) in the proof of Lemma
3.1, and is an element in the quantity�2(l), which contributes to the bound onH(l) in
Theorem2.1. However,l−1S2 is of the same order as the probability thatT0n is composed
of scomponents of equal sizes�l/s�, plus a small remainder, for somes�2, andGq < ∞
is the condition which ensures that this probability is of smaller order than�(l)l−1−q .
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3.3. Proof of Theorem 2.2

As in [1, Lemma 3.1], it follows from the Conditioning Relation that, for anyb�n,

dT V (L(C(n)
1 , . . . , C

(n)
b ),L(Z1, . . . , Zb))

=
∑
j �0

IP[T0b = j ]
{

1 − IP[Tbn = n − j ]
IP[T0n = n]

}
+
. (3.26)

Pickb = b(n) with n−b(n) → ∞, and observe that the right-hand side of (3.26) is at most

IP[T0b > jn] + IEgn(T0b),

wheregn(j) = 0 for j > jn and where, for alln such thatH(n) < 1
2,

0�gn(j)�
∣∣∣∣ n1+q�(n − j)

(n − j)1+q�(n)
− 1

∣∣∣∣ + 21+qL2(H(n) + H(n − j)), 0�j�jn,

from Theorem2.1, provided that 0�jn��n/2� and thatjn�n − b(n) − 1. This implies
in particular thatgn(j) is uniformly bounded for sequencesjn satisfying these conditions.
Now, from (2.7) and Theorem2.1, it follows that limn→∞ gn(j) = 0 for each fixedj.
Since alsoT0b�T0∞ a.s. andT0∞ is a.s. finite, it follows by dominated convergence that
limn→∞ IEgn(T0b(n)) = 0, provided thatjn� min{n − b(n) − 1, �n/2�} in the definition
of gn. On the other hand,

IP[T0b(n) > jn]� IP[T0∞ > jn] → 0,

so long asjn → ∞. Thus, taking for exampleb(n) = �3n/4� andjn = �n/4� − 1, it
follows that

dT V (L(C(n)
1 , . . . , C

(n)
b(n)),L(Z1, . . . , Zb(n))) → 0

asn → ∞. On the other hand, we have
∑n

j=�3n/4�+1C
(n)
j �1 a.s., becauseT0n(C

(n)) = n

a.s., by the definition ofC(n). Hence, withb(n) as above, we haveC(n)
j = 0 a.s. for all

j > b(n) if T0b(n)(C
(n)) = n, while if T0b(n)(C

(n)) = t for somet < n − b(n), then

C
(n)
n−t = 1 andC(n)

j = 0 for all otherj > b(n). This proves the theorem.�
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