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1. Introduction

Let T be an n × n complex matrix. The classical numerical range of T is defined as the set

W(T) = {ξ∗Tξ : ξ ∈ Cn, ξ∗ξ = 1}.
The numerical rangeW(T) provides various information on the structure of thematrix T and localiza-

tion of the eigenvalues of T (cf. [8]). One of the important generalizations of classical numerical range

is the joint numerical range. Suppose that n and m are positive integers and (H1,H2, . . . ,Hm) is an

ordered m-tuple of n × n Hermitian matrices. The joint numerical range of H1,H2, . . . ,Hm is defined

as the set

W(H1,H2, . . . ,Hm) = {(ξ∗H1ξ , ξ
∗H2ξ , . . . , ξ

∗Hmξ) ∈ Rm : ξ ∈ Cn, ξ∗ξ = 1}.
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The joint numerical range is not necessarily convex (cf. [6,11–13]). If m = 2 then the range is convex

(cf. [7,15]). It is also known that if m = 3 and n� 3, the range W(H1,H2,H3) is convex too(cf. [2,3]).

The structure of the joint numerical range W(H1,H2, (H1 + iH2)
∗(H1 + iH2)) is closely related with

the so called q-numerical range of the n × nmatrix T = H1 + iH2 (cf. [5]).

We introduce a homogeneous polynomial

F(y0, y1, y2, . . . , ym) = F(y0, y1, y2, . . . , ym : H1,H2, . . . ,Hm)

= det(y0In + y1H1 + y2H2 + · · · + ymHm) (1)

associated with the m-tuple of Hermitian matrices (H1,H2, . . . ,Hm). This form is hyperbolic with

respect to the point (1, 0, 0, . . . , 0) ∈ Rm+1 (cf. [1]), that is,

(i) F(1, 0, . . . , 0) /= 0.
(ii) Every root of the equation F(t, y1, y2, . . . , yn) = 0 in t is real for an arbitrary fixed (y1, y2, . . . ,

ym) ∈ Rm.

Suppose that

F(y0, y1, y2, . . . , ym) =
p∏

j=1

Fj(y0, y1, y2, . . . , ym)mj ,

and

F0(y0, y1, y2, . . . , ym) =
p∏

j=1

Fj(y0, y1, y2, . . . , ym), (2)

are respectively the irreducible decomposition and reducedpolynomial of the form F in thepolynomial

ring C[y0, y1, . . . , ym], where Fj aremutually distinct irreducible factors andmj are their multiplicities.

It is known that each factor Fj has a non-zero scalar cj for which cjFj is a real polynomial. Hencewemay

assume that F ′
j s are real polynomials. It is also known that all factors Fj are hyperbolic with respect to

(1, 0, . . . , 0). We consider the algebraic variety

SF = SF0 = {[(y0, y1, . . . , ym)] ∈ CPm : F0(y0, y1, . . . , ym) = 0},
where [(y0, y1, . . . , ym)] is the equivalence class containing (y0, y1, . . . , ym) ∈ Cm+1 − (0, . . . , 0) un-
der the relation (y0, y1, . . . , ym) ∼ (z0, z1, . . . , zm) if (y0, y1, . . . , ym) = k(z0, z1, . . . , zm) for some

nonzero complex number k. The dual surface S∧
F of the form F (1) is the set of points (x0, x1, x2, . . . , xm)

= (1, x1, x2, . . . , xm) for which the hyperplane y1x1 + y2x2 + · · · + ymxm + y0x0 = 0 is tangent to

SF at a non-singular point of SF . The real affine part S∧
F (R) of S∧

F is called the boundary generating

hypersurface ofW(H1,H2, . . . ,Hm). The main aim of this paper is the treatment of the joint numerical

rangeW(H1,H2, . . . ,Hm) via the hypersurface SF and the boundary generating hypersurface S∧
F .

2. Boundary generating hypersurface

Let F(y0, y1, y2, . . . , ym)bean irreduciblehomogeneouspolynomial. Apoint (1, x1, . . . , xm) ∈ Rm+1

is a singular real point of the surface SF if

F(1, x1, x2, . . . , xm) = Fyi(1, x1, x2, . . . , xm) = 0,

where Fyi denotes the partial derivative of F with respect to yi, i = 0, 1, . . . ,m.

At first, we obtain a result form = 2.

Theorem 2.1. Let F0(y0, y1, y2) be the reduced real form (2) for m = 2. If (a0, a1, a2) is a real singular

point of the curve SF0 then the curve SF0 is expressed as the union of analytically parametrized arcs

(a
(j)
0 , a

(j)
1 , a

(j)
2 ) = (fj(t), gj(t), hj(t)), j = 1, 2, . . . , �, |t| < ε
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near the points (a0, a1, a2) satisfying

(fj(0), gj(0), hj(0)) = (a0, a1, a2) and (f ′j (0), g′
j (0), h

′
j(0)) /= (0, 0, 0).

Proof. We prove this theorem by the Newton–Puiseux method. By a real transformation, we may

assume that (a0, a1, a2) = (a0, 1, 0) and F(y0, 1, 0) = (y0 − a0)
�(y0 − t1) · · · (y0 − tq) for some real

numbers tj /= a0, j = 1, . . . , q. By the Newton–Puiseux method, we solve the equation

F(y0, 1, y2) = y
�+q
0 + f1(y2)y

�+q−1
0 + · · · + f�+q(y2) = 0

in y0. Then the solutions are expressed in Puiseux series.Weare interested in � solutions corresponding

to y0 = a0 for y2 = 0. Each of the � solutions is expressed as a fractional power series

y0 = gj(y2) = a0 + b
(j)
1 y

1/p
2 + b

(j)
2 y

2/p
2 + b

(j)
3 y

3/p
2 + · · · , (3)

where p is a natural number and b
(j)
k are real coefficients (cf. [16, pp. 98–106]). As a function of y

1/p
2 ,

the series (3) converges absolutely on some disc |y1/p2 | < ε. We assume that the greatest common

divisor of {k ∈ N : b(j)
k /= 0} ∪ {p}, j = 1, 2, . . . , �, is 1. If p = 1 for every 1� j � �, then by taking the

variable t = y2,we have nothing to prove.We assume that p� 2 for some j. Thenwehave the following

equation for every pth root η of 1:

F(a0 + b
(j)
1 ηt + b

(j)
2 η2t2 + b

(j)
2 η3s3 + · · · , 1, tp) = 0

(cf. [16, p. 107]). By the hyperbolicity of F , the series

a0 + b
(j)
1 ηt + b

(j)
2 η2t2 + b

(j)
2 η3s3 + · · ·

takes real value for every t ∈ R. By repeating differentiation of this relationwith respect to t, it implies

that b
(j)
k exp(i 2khπ/p) ∈ R for every k ∈ N and h ∈ Z. Hence 2k is a multiple of p for every k with

b
(j)
k /= 0. We set ζ = 1 if p is odd and ζ = 2 if p is even. Then the above relation implies that p/ζ is a

common divisor of {k ∈ N : b(j)
k /= 0}. By the assumption on the coefficients b

(j)
k , we have p = 2 and

b
(j)
2k−1 /= 0 for some k ∈ N. Under this condition, we obtain that

F(a0 + b
(j)
1 t + b

(j)
2 t2 + b

(j)
3 t3 + · · · , 1, t2) = 0,

F(a0 + ib
(j)
1 t − b

(j)
2 t2 − ib

(j)
3 t3 + · · · , 1, (it)2) = 0

for every t ∈ R. By the hyperbolicity of F , we have b
(j)
k ∈ R and ikb

(j)
k ∈ R for every k, and hence

b2k−1 = 0, a contradiction. Thus we conclude that p = 1 for every 1� j � �. �

Theorem 2.1 is related to Rellich’s theorem (cf. [9,14]). However the above proof does not depend

on the properties of Hermitian matrices.

For general m and n, we consider the convex hull conv(W(H1,H2, . . . ,Hm)) of the compact set

W(H1,H2, . . . ,Hm). By the separation theorem for compact convex sets, we have that

conv(W(H1,H2, . . . ,Hm))

= {(x1, x2, . . . , xm) ∈ Rm : c1x1 + c2x2 + · · · + cmxm � g(c1, c2, . . . , cm),

(c1, c2, . . . , cm) is a unit vector in Rm},
where

g(c1, c2, . . . , cm)

= max{c1y1 + c2y2 + · · · + cmym : (y1, y2, . . . , ym) ∈ W(H1,H2, . . . ,Hm)}
= max{ξ∗(c1H1 + c2H2 + · · · + cmHm)ξ : ξ ∈ Cn, ξ∗ξ = 1}
= max σ(c1H1 + c2H2 + · · · + cmHm).
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The dual set of the convex hull of the joint numerical range is defined and denoted as

conv(W(H1,H2, . . . ,Hm))∧

= {(y1, y2, . . . , ym) ∈ Rm : x1y1 + x2y2 + · · · + xmym + 1� 0,

(x1, x2, . . . , xm) ∈ W(H1,H2, . . . ,Hm)}
= {(y1, y2, . . . , ym) ∈ Rm : ξ∗(y1H1 + y2H2 + . . . + ymHm + In)ξ � 0, ξ ∈ Cn}
= {(y1, y2, . . . , ym) ∈ Rm : y1H1 + y2H2 + . . . + ymHm + In is positive semidefinite.

This dual set is a closed convex set, and every point (y1, y2, . . . , ym) on the boundary of

conv(W(H1,H2, . . . ,Hm))∧ satisfies

det(In + y1H1 + y2H2 + . . . + ymHm) = 0. (4)

We consider the open set

Ω = {(y1, y2, . . . , ym) ∈ Rm : F(1, y1, y2, . . . , ym : H1,H2, . . . ,Hm) /= 0}.
The interiors of conv(W(H1,H2, . . . ,Hm))∧ are contained in Ω , and by Corollary 3.2 in [1], the set

of the interiors coincides with the connected component Ω0 of Ω containing the origin (0, . . . , 0).
Moreover we have that

conv(W(H1,H2, . . . ,Hm))∧ = closure(Ω0) = conv(∂Ω0), (5)

conv(W(H1,H2, . . . ,Hm)) = conv(∂Ω0)
∧. (6)

These facts provide an algebraic method to determine all supporting hyperplanes of

conv(W(H1, . . . ,Hm)).

Theorem 2.2. Let F0(y0, y1, y2, . . . , ym) be the reduced real form (2). Suppose that (a0, a1, . . . , am) ∈
Rm+1 is a non-singular real point of SF0 with (a1, . . . , am) /= (0, . . . , 0) andα0y0 + α1y1 + · · · + αmym= 0 is the equation of the tangent hyperplane of SF0 at this point. Then this hyperplane does not pass

through any point of Ω0.

Proof. Suppose, on the contrary, the hyperplane passes through a point of Ω0. Since the form F0 is

hyperbolicwith respect to every point ofΩ0 (cf. [1, p. 133]),wemay assume that the hyperplane passes

through the point (1, 0, . . . , 0) by using a real projective transformation. We may also assume that

(a0, a1, a2, . . . , am) = (1, 1, 0, . . . , 0). The line joining the two points (a0, a1, . . . , am) = (1, 0, . . . , 0)
and (1, 1, 0, . . . , 0) is contained in the tangent hyperplane. Define a polynomial f (t, y2, . . . , ym) by

f (t, y2, . . . , ym) = F0(t, 1, y2, . . . , ym).

It is obvious that f (1, 0, . . . , 0) = 0 and ft(1, 0, . . . , 0) = 0. Since (a0, a1, . . . , am) = (1, 1, 0, . . . , 0) is a
non-singular point of SF0 , it follows that fyj(1, 0, . . . , 0) /= 0 for some 2� j �m. By using a rotation, we

may assume that j = 2. Then the ternary form F̃(t, y1, y2) = F0(t, y1, y2, 0, . . . , 0) is hyperbolic with

respect to (1, 0, 0), and the point (a0, a1, a2) = (1, 1, 0) is a non-singular point of SF̃ and the tangent

line of SF̃ at this point is y2 = 0. Set n = deg(F0). By the hyperbolicity, the equation

f̃ (t, y) = F0(t, 1, y, 0, . . . , 0) = 0

in t has n real solutions counting multiplicity for every y ∈ R. It implies geometrically that the real

affine algebraic curve f̃ (t, y) = 0 and the real line y = y0 interset at n points counting multiplicity for

every y0 ∈ R. By Theorem 2.1, even if the line y = 0 has singular points of the curve f̃ (t, y) = 0, the

real affine curve f̃ (t, y) = 0 is expressed as the union of analytic arcs near the singular points. So we

can treat such a case in the same fashion. By the assumption

f̃ (t, 0) = (t − α1)
m1(t − α2)

m2 · · · (t − αk)
mk ,

where α1,α2, . . . ,αk are distinct real numbers and α1 = 1, the numbers m1,m2, . . . ,mk are positive

integers satisfying m1 � 2, m1 + m2 + · · · + mk = n. If (tj , 0) is a non-singular point of the curve
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f̃ (t, y) = 0, we define two numbers N+(mj) = 1 and N−(mj) = 1 for odd number mj , j = 1, . . . , k. If

mj is even, the implicit function y = yj(t) defined by f̃ (t, y) = 0 near t = αj satisfies

dmjy

dtmj
(αj) > 0, or

dmjy

dtmj
(αj) < 0.

If
d
mj y

dt
mj (αj) > 0, we set N+(mj) = 2 and N−(mj) = 0. If

d
mj y

dt
mj (αj) < 0, we set N+(mj) = 0 and

N+(mj) = 2. In the case (tj , 0) is a singular point of the curve f̃ (t, y) = 0, we express the curve

f̃ (t, y) = 0 as the union of analytic arcs, and set m̃j the multiplicity of the intersection of the arc

and the line y = 0 at (tj , 0). We define N+(mj),N−(mj) as the sum of the numbers Ñ+(m̃j), Ñ−(m̃j)
defined for each arc as in the above fashion. Then the number of the intersection points of the curve

f̃ (t, y) = 0 and the curve y = y0 is

N+(m1) + N+(m2) + · · · + N+(mk) (7)

if y0 > 0 is sufficiently small, and

N−(m1) + N−(m2) + · · · + N−(mk) (8)

if y0 < 0 and |y0| is sufficiently small. One of the numbers (7) and (8) is strictly less than n, a

contradiction to the hyperbolicity of F̃ . �

By the argument used in the proof of Theorem 2.2, we obtain the following corollary.

Corollary 2.3. Let F0(y0, y1, y2) be the reduced real form (2) for m = 2. If (a0, a1, a2) is a non-singular

real point of the curve SF0 then any tangent line of the curve SF0 at (a0, a1, a2) does not pass through any

point of Ω0.

In particular, we improve the result of Theorem 2.2 for m = 2.

Theorem 2.4. Let F0(y0, y1, y2) be the reduced real form (2) for m = 2. Suppose that α0y0 + α1y1 +
α2y2 = 0 is the common real tangent of a pair of imaginary non-singular point (a0, a1, a2) of the curve SF0
and its conjugate, or α0y0 + α1y1 + α2y2 = 0 is a real tangent of imaginary singular point (a0, a1, a2)
and its conjugate. Then the tangent line does not pass through any point of Ω0.

Proof. Wemay assume that the tangent line passes through the point (y0, y1, y2) = (1, 0, 0). By a real

transformation, we assume that the equation of the tangent line is given by y1 = 0 and the point of SF0
is (a0, 0, a2). If a0 = 0, then the point is given by (0, 0, 1) which is real, contradicting the assumption.

Thus we have that a0 /= 0. Since F0(1, 0, 0) /= 0, the coordinate a2 does not vanish. So wemay assume

that a2 = 1 and a0 is imaginary. But this implies that the equation F0(t, 0, 1) = 0 in t has an imaginary

solution which contradicts the hyperbolicity of F0. �

Corollary 2.5. Let F(y0, y1, y2) be the polynomial (1) for m = 2. If (x0, x1, x2) = (1, x1, x2) is a real affine
point of S∧

F for the form F(y0, y1, y2) then the point (x1, x2) belongs to the numerical range W(H1,H2).

Proof. If the point (x1, x2) does not belong to the compact convex set W(H1,H2), then by the duality

of the closed convex sets, there exists a point (ỹ1, ỹ2) of the closure of the convex set Ω0 such that

x1ỹ1 + x2ỹ2 + 1 < 0.

Further, the point (y
(0)
1 , y

(0)
2 ) = (0, 0) ∈ Ω0 satisfies

x1y
(0)
1 + x2y

(0)
2 + 1 = 1.

By the convexity of the open set Ω0, there exists a point (ŷ1, ŷ2) in the line segment joining the above

two points satisfying
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x1ŷ1 + x2ŷ2 + 1 = 0.

The point (ŷ1, ŷ2) belongs to Ω0, which contradicts Corollary 2.3 and Theorem 2.4. �

The result of Corollary 2.5was obtained byKippenhahn in [10]. However, its proof is rather intuitive.

The proof provided here is more rigorous.

We come back to a general situation. For each irreducible form Fj , we consider the linear reduction

of variables. If

Fj(y0, y1, . . . , ym−1, ym) = Fj(y0 + α0ym, y1 + α1ym, . . . , ym−1 + αm−1ym, 0)

or equivalently

∂Fj/∂ym = α0∂Fj/∂y0 + · · · + αm−1∂Fj/∂ym−1.

Then the number of essential variables for Fj is less thanm. We consider whether there exist non-zero

coefficients (α0,α1, . . . ,αm) for which

α0∂Fj/∂y0 + · · · + αm∂Fj/∂ym = 0.

Such a reduction example actually appeared in [6]. The dual algebraic object S∧
F of SF is defined as the

union of the dual algebraic varieties S∧
Fj
. Each algebraic variety

S∧
Fj

= {[(x0, x1, . . . , xm)] ∈ CPm : Gj,k(x0, x1, . . . , xm) = 0, k = 0, 1, 2, . . . , �j}
is characterized by irreducible form Gj,0 and linear forms Gj,1, . . . , Gj,�j satisfying

Gj,k(a0, a1, . . . , am) = 0, k = 0, 1, . . . , �j

for every tangent hyperplane a0y0 + a1y1 + · · · + amym = 0 at a non-singular point of SFj .

Theorem 2.6. Let F(y0, y1, y2, . . . , ym) be the polynomial (1). Suppose that (x0, x1, . . . , xm) = (1, x1, . . . ,
xm) is a real affine point of S∧

F for which x1y1 + · · · + xmym + 1 = 0 is a tangent hyperplane of SF at some

non-singular real point of SF . Then the point (x1, . . . , xm) belongs to the convex hull of W(H1, . . . ,Hm).

Proof. If the point (x1, . . . , xm) does not belong to the convex hull ofW(H1, . . . ,Hm), by the duality of

the closed convex sets, there exists a point (ỹ1, . . . , ỹm) of the closure of the convex set Ω0 such that

x1ỹ1 + · · · + xmỹm + 1 < 0.

Further, the point (y
(0)
1 , . . . , y

(0)
m ) = (0, . . . , 0) ∈ Ω0 satisfies

x1y
(0)
1 + · · · + xmy

(0)
m + 1 = 1.

By the convexity of the open set Ω0, there exists a point (ŷ1, . . . , ŷm) in the line segment joining the

above two points satisfying

x1ŷ1 + · · · + xmŷm + 1 = 0.

The point (ŷ1, . . . , ŷm) belongs to Ω0, which contradicts Theorem 2.2. �

3. Example

If the polynomial F is a non-linear irreducible form and the hypersurface SF has no singular point,

then S∧
F is defined by a single form G ∈ C[x0, x1, . . . , xm] and its degree is n(n − 1)m−1 (cf. [4, p. 253]).

In this case, the multiplicity of themaximal eigenvalue of the Hermitianmatrix y1H1 + y2H2 + · · · +
ymHm is 1 for every unit vector (y1, y2, . . . , ym) ∈ Rm. Provided that n� 3, it implies the convexity of

the joint numerical range W(H1,H2, . . . ,Hm) by Theorem 5.1 in [6] and the range coincides with the

closed domain surrounded by the boundary generating hypersurface S∧
F (R).
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Suppose that (x0, x1, x2, x3) = (1, x1, x2, x3) is a real affine point of S∧
F and (x0, x1, x2, x3) lies on the

hyperplane y1x1 + y2x2 + y3x3 + y0x0 = 0 where (y0, y1, y2, y3) is a real singular point of SF . It may

occur that the point (x1, x2, x3) does not belong to the convex hull of W(H1,H2,H3). We provide such

an example in the below, which shows an analogous property of Kippenhahn’s result does not hold

form = 3.

Example. Let

H1 =
⎛
⎝1 0 0

0 −1 1

0 1 0

⎞
⎠ , H2 =

⎛
⎝0 0 −i

0 0 0

i 0 0

⎞
⎠ and H3 =

⎛
⎝0 0 0

0 0 0

0 0 1

⎞
⎠ .

Then the form F(y0, y1, y2, y3) (1) associated to these Hermitian matrices is given by

F(y0, y1, y2, y3) = y30 + y20y3 − 2y0y
2
1 − y0y

2
2 − y31 − y21y3 + y1y

2
2.

The cubic surface SF has a biplanar double point at (y0, y1, y2, y3) = (0, 0, 0, 1) and an ordinary double

point at (y0, y1, y2, y3) = (1,−1, 0,−1/2) (cf. [4]). The boundary of the joint numerical range has a

flat portion on the plane

−x1 − 1

2
x3 + 1 = 0

and its projection on the (x1, x2) plane is the elliptical disc bounded by the curve

20x21 − 32x1 + x22 + 12 = 0.

However the plane x3 = 0 supports the rangeW(H1,H2,H3) and its intersection with the range is not

a single point, it is a line segment

{(x1, 0, 0) : −1� x1 � 1}.
One endpoint (1, 0, 0) of the above line belongs also to the flat portion. The equation of the dual surface

of the cubic surface SF is given by

G(1, x1, x2, x3) = 20x43 − 8x1x
3
3 − 24x33 + 4x21x

2
3 + 8x22x

2
3 + 8x1x

2
3

+ 4x23 − 4x1x
2
2x3 − 4x22x3 + x42.

SinceG(1, x1, x2, 0) = x42, the line x2 = 0 on the plane x3 = 0 is contained in the quartic surface S∧
F (R).

Thus this surface contains a point (x1, x2, x3) = (2, 0, 0) /∈ W(H1,H2,H3).
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