The joint numerical range is not necessarily convex (cf. [6,11-13]). If $m=2$ then the range is convex (cf. [7,15]). It is also known that if $m=3$ and $n \geqslant 3$, the range $W\left(H_{1}, H_{2}, H_{3}\right)$ is convex too(cf. [2,3]). The structure of the joint numerical range $W\left(H_{1}, H_{2},\left(H_{1}+i H_{2}\right)^{*}\left(H_{1}+i H_{2}\right)\right)$ is closely related with the so called q-numerical range of the $n \times n$ matrix $T=H_{1}+i H_{2}$ (cf. [5]).

We introduce a homogeneous polynomial

$$
\begin{align*}
F\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right) & =F\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}: H_{1}, H_{2}, \ldots, H_{m}\right) \\
& =\operatorname{det}\left(y_{0} I_{n}+y_{1} H_{1}+y_{2} H_{2}+\cdots+y_{m} H_{m}\right) \tag{1}
\end{align*}
$$

associated with the m-tuple of Hermitian matrices $\left(H_{1}, H_{2}, \ldots, H_{m}\right)$. This form is hyperbolic with respect to the point $(1,0,0, \ldots, 0) \in \mathbf{R}^{m+1}$ (cf. [1]), that is,
(i) $F(1,0, \ldots, 0) \neq 0$.
(ii) Every root of the equation $F\left(t, y_{1}, y_{2}, \ldots, y_{n}\right)=0$ in t is real for an arbitrary fixed $\left(y_{1}, y_{2}, \ldots\right.$, $\left.y_{m}\right) \in \mathbf{R}^{m}$.

Suppose that

$$
F\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right)=\prod_{j=1}^{p} F_{j}\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right)^{m_{j}}
$$

and

$$
\begin{equation*}
F_{0}\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right)=\prod_{j=1}^{p} F_{j}\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right) \tag{2}
\end{equation*}
$$

are respectively the irreducible decomposition and reduced polynomial of the form F in the polynomial ring $\mathbf{C}\left[y_{0}, y_{1}, \ldots, y_{m}\right]$, where F_{j} are mutually distinct irreducible factors and m_{j} are their multiplicities. It is known that each factor F_{j} has a non-zero scalar c_{j} for which $c_{j} F_{j}$ is a real polynomial. Hence we may assume that $F_{j}^{\prime} s$ are real polynomials. It is also known that all factors F_{j} are hyperbolic with respect to $(1,0, \ldots, 0)$. We consider the algebraic variety

$$
S_{F}=S_{F_{0}}=\left\{\left[\left(y_{0}, y_{1}, \ldots, y_{m}\right)\right] \in \mathbf{C P}^{m}: F_{0}\left(y_{0}, y_{1}, \ldots, y_{m}\right)=0\right\}
$$

where $\left[\left(y_{0}, y_{1}, \ldots, y_{m}\right)\right]$ is the equivalence class containing $\left(y_{0}, y_{1}, \ldots, y_{m}\right) \in \mathbf{C}^{m+1}-(0, \ldots, 0)$ under the relation $\left(y_{0}, y_{1}, \ldots, y_{m}\right) \sim\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ if $\left(y_{0}, y_{1}, \ldots, y_{m}\right)=k\left(z_{0}, z_{1}, \ldots, z_{m}\right)$ for some nonzero complex number k. The dual surface S_{F}^{\wedge} of the form $F(1)$ is the set of points ($x_{0}, x_{1}, x_{2}, \ldots, x_{m}$) $=\left(1, x_{1}, x_{2}, \ldots, x_{m}\right)$ for which the hyperplane $y_{1} x_{1}+y_{2} x_{2}+\cdots+y_{m} x_{m}+y_{0} x_{0}=0$ is tangent to S_{F} at a non-singular point of S_{F}. The real affine part $S_{F}^{\wedge}(\mathbf{R})$ of S_{F}^{\wedge} is called the boundary generating hypersurface of $W\left(H_{1}, H_{2}, \ldots, H_{m}\right)$. The main aim of this paper is the treatment of the joint numerical range $W\left(H_{1}, H_{2}, \ldots, H_{m}\right)$ via the hypersurface S_{F} and the boundary generating hypersurface S_{F}^{\wedge}.

2. Boundary generating hypersurface

Let $F\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right)$ be an irreducible homogeneous polynomial. A point $\left(1, x_{1}, \ldots, x_{m}\right) \in \mathbf{R}^{m+1}$ is a singular real point of the surface S_{F} if

$$
F\left(1, x_{1}, x_{2}, \ldots, x_{m}\right)=F_{y_{i}}\left(1, x_{1}, x_{2}, \ldots, x_{m}\right)=0,
$$

where $F_{y_{i}}$ denotes the partial derivative of F with respect to $y_{i}, i=0,1, \ldots, m$.
At first, we obtain a result for $m=2$.
Theorem 2.1. Let $F_{0}\left(y_{0}, y_{1}, y_{2}\right)$ be the reduced real form (2) for $m=2$. If $\left(a_{0}, a_{1}, a_{2}\right)$ is a real singular point of the curve $S_{F_{0}}$ then the curve $S_{F_{0}}$ is expressed as the union of analytically parametrized arcs

$$
\left(a_{0}^{(j)}, a_{1}^{(j)}, a_{2}^{(j)}\right)=\left(f_{j}(t), g_{j}(t), h_{j}(t)\right), \quad j=1,2, \ldots, \ell,|t|<\epsilon
$$

near the points $\left(a_{0}, a_{1}, a_{2}\right)$ satisfying

$$
\left(f_{j}(0), g_{j}(0), h_{j}(0)\right)=\left(a_{0}, a_{1}, a_{2}\right) \quad \text { and } \quad\left(f_{j}^{\prime}(0), g_{j}^{\prime}(0), h_{j}^{\prime}(0)\right) \neq(0,0,0)
$$

Proof. We prove this theorem by the Newton-Puiseux method. By a real transformation, we may assume that $\left(a_{0}, a_{1}, a_{2}\right)=\left(a_{0}, 1,0\right)$ and $F\left(y_{0}, 1,0\right)=\left(y_{0}-a_{0}\right)^{\ell}\left(y_{0}-t_{1}\right) \cdots\left(y_{0}-t_{q}\right)$ for some real numbers $t_{j} \neq a_{0}, j=1, \ldots, q$. By the Newton-Puiseux method, we solve the equation

$$
F\left(y_{0}, 1, y_{2}\right)=y_{0}^{\ell+q}+f_{1}\left(y_{2}\right) y_{0}^{\ell+q-1}+\cdots+f_{\ell+q}\left(y_{2}\right)=0
$$

in y_{0}. Then the solutions are expressed in Puiseux series. We are interested in ℓ solutions corresponding to $y_{0}=a_{0}$ for $y_{2}=0$. Each of the ℓ solutions is expressed as a fractional power series

$$
\begin{equation*}
y_{0}=g_{j}\left(y_{2}\right)=a_{0}+b_{1}^{(j)} y_{2}^{1 / p}+b_{2}^{(j)} y_{2}^{2 / p}+b_{3}^{(j)} y_{2}^{3 / p}+\cdots, \tag{3}
\end{equation*}
$$

where p is a natural number and $b_{k}^{(j)}$ are real coefficients (cf. [16, pp. 98-106]). As a function of $y_{2}^{1 / p}$, the series (3) converges absolutely on some disc $\left|y_{2}^{1 / p}\right|<\epsilon$. We assume that the greatest common divisor of $\left\{k \in \mathbf{N}: b_{k}^{(j)} \neq 0\right\} \cup\{p\}, j=1,2, \ldots, \ell$, is 1 . If $p=1$ for every $1 \leqslant j \leqslant \ell$, then by taking the variable $t=y_{2}$, we have nothing to prove. We assume that $p \geqslant 2$ for some j. Then we have the following equation for every p th root η of 1 :

$$
F\left(a_{0}+b_{1}^{(j)} \eta t+b_{2}^{(j)} \eta^{2} t^{2}+b_{2}^{(j)} \eta^{3} s^{3}+\cdots, 1, t^{p}\right)=0
$$

(cf. [16, p. 107]). By the hyperbolicity of F, the series

$$
a_{0}+b_{1}^{(j)} \eta t+b_{2}^{(j)} \eta^{2} t^{2}+b_{2}^{(j)} \eta^{3} s^{3}+\cdots
$$

takes real value for every $t \in \mathbf{R}$. By repeating differentiation of this relation with respect to t, it implies that $b_{k}^{(j)} \exp (i 2 k h \pi / p) \in \mathbf{R}$ for every $k \in \mathbf{N}$ and $h \in \mathbf{Z}$. Hence $2 k$ is a multiple of p for every k with $b_{k}^{(j)} \neq 0$. We set $\zeta=1$ if p is odd and $\zeta=2$ if p is even. Then the above relation implies that p / ζ is a common divisor of $\left\{k \in \mathbf{N}: b_{k}^{(j)} \neq 0\right\}$. By the assumption on the coefficients $b_{k}^{(j)}$, we have $p=2$ and $b_{2 k-1}^{(j)} \neq 0$ for some $k \in \mathbf{N}$. Under this condition, we obtain that

$$
\begin{aligned}
& F\left(a_{0}+b_{1}^{(j)} t+b_{2}^{(j)} t^{2}+b_{3}^{(j)} t^{3}+\cdots, 1, t^{2}\right)=0, \\
& F\left(a_{0}+i b_{1}^{(j)} t-b_{2}^{(j)} t^{2}-i b_{3}^{(j)} t^{3}+\cdots, 1,(i t)^{2}\right)=0
\end{aligned}
$$

for every $t \in \mathbf{R}$. By the hyperbolicity of F, we have $b_{k}^{(j)} \in \mathbf{R}$ and $i^{k} b_{k}^{(j)} \in \mathbf{R}$ for every k, and hence $b_{2 k-1}=0$, a contradiction. Thus we conclude that $p=1$ for every $1 \leqslant j \leqslant \ell$.

Theorem 2.1 is related to Rellich's theorem (cf. [9,14]). However the above proof does not depend on the properties of Hermitian matrices.

For general m and n, we consider the convex hull $\operatorname{conv}\left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right)$ of the compact set $W\left(H_{1}, H_{2}, \ldots, H_{m}\right)$. By the separation theorem for compact convex sets, we have that

$$
\begin{aligned}
& \operatorname{conv}\left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right) \\
& =\left\{\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in \mathbf{R}^{m}: c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{m} x_{m} \leqslant g\left(c_{1}, c_{2}, \ldots, c_{m}\right),\right. \\
& \left.\quad\left(c_{1}, c_{2}, \ldots, c_{m}\right) \text { is a unit vector in } \mathbf{R}^{m}\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
& g\left(c_{1}, c_{2}, \ldots, c_{m}\right) \\
& \quad=\max \left\{c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{m} y_{m}:\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right\} \\
& \quad=\max \left\{\xi^{*}\left(c_{1} H_{1}+c_{2} H_{2}+\cdots+c_{m} H_{m}\right) \xi: \xi \in \mathbf{C}^{n}, \xi^{*} \xi=1\right\} \\
& \quad=\max \sigma\left(c_{1} H_{1}+c_{2} H_{2}+\cdots+c_{m} H_{m}\right) .
\end{aligned}
$$

The dual set of the convex hull of the joint numerical range is defined and denoted as

$$
\begin{aligned}
\operatorname{conv} & \left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right)^{\wedge} \\
= & \left\{\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbf{R}^{m}: x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{m} y_{m}+1 \geqslant 0\right. \\
& \left.\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right\} \\
= & \left\{\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbf{R}^{m}: \xi^{*}\left(y_{1} H_{1}+y_{2} H_{2}+\ldots+y_{m} H_{m}+I_{n}\right) \xi \geqslant 0, \quad \xi \in \mathbf{C}^{n}\right\} \\
= & \left\{\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbf{R}^{m}: y_{1} H_{1}+y_{2} H_{2}+\ldots+y_{m} H_{m}+I_{n}\right. \text { is positive semidefinite. }
\end{aligned}
$$

This dual set is a closed convex set, and every point $\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ on the boundary of $\operatorname{conv}\left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right)^{\wedge}$ satisfies

$$
\begin{equation*}
\operatorname{det}\left(I_{n}+y_{1} H_{1}+y_{2} H_{2}+\ldots+y_{m} H_{m}\right)=0 \tag{4}
\end{equation*}
$$

We consider the open set

$$
\Omega=\left\{\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbf{R}^{m}: F\left(1, y_{1}, y_{2}, \ldots, y_{m}: H_{1}, H_{2}, \ldots, H_{m}\right) \neq 0\right\} .
$$

The interiors of $\operatorname{conv}\left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right)^{\wedge}$ are contained in Ω, and by Corollary 3.2 in [1], the set of the interiors coincides with the connected component Ω_{0} of Ω containing the origin ($0, \ldots, 0$). Moreover we have that

$$
\begin{align*}
& \operatorname{conv}\left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right)^{\wedge}=\operatorname{closure}\left(\Omega_{0}\right)=\operatorname{conv}\left(\partial \Omega_{0}\right), \tag{5}\\
& \operatorname{conv}\left(W\left(H_{1}, H_{2}, \ldots, H_{m}\right)\right)=\operatorname{conv}\left(\partial \Omega_{0}\right)^{\wedge} . \tag{6}
\end{align*}
$$

These facts provide an algebraic method to determine all supporting hyperplanes of $\operatorname{conv}\left(W\left(H_{1}, \ldots, H_{m}\right)\right)$.

Theorem 2.2. Let $F_{0}\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right)$ be the reduced real form (2). Suppose that $\left(a_{0}, a_{1}, \ldots, a_{m}\right) \in$ \mathbf{R}^{m+1} is a non-singular real point of $S_{F_{0}}$ with $\left(a_{1}, \ldots, a_{m}\right) \neq(0, \ldots, 0)$ and $\alpha_{0} y_{0}+\alpha_{1} y_{1}+\cdots+\alpha_{m} y_{m}$ $=0$ is the equation of the tangent hyperplane of $S_{F_{0}}$ at this point. Then this hyperplane does not pass through any point of Ω_{0}.

Proof. Suppose, on the contrary, the hyperplane passes through a point of Ω_{0}. Since the form F_{0} is hyperbolic with respect to every point of Ω_{0} (cf. [1, p. 133]), we may assume that the hyperplane passes through the point $(1,0, \ldots, 0)$ by using a real projective transformation. We may also assume that $\left(a_{0}, a_{1}, a_{2}, \ldots, a_{m}\right)=(1,1,0, \ldots, 0)$. The line joining the two points $\left(a_{0}, a_{1}, \ldots, a_{m}\right)=(1,0, \ldots, 0)$ and $(1,1,0, \ldots, 0)$ is contained in the tangent hyperplane. Define a polynomial $f\left(t, y_{2}, \ldots, y_{m}\right)$ by

$$
f\left(t, y_{2}, \ldots, y_{m}\right)=F_{0}\left(t, 1, y_{2}, \ldots, y_{m}\right)
$$

It is obvious that $f(1,0, \ldots, 0)=0$ and $f_{t}(1,0, \ldots, 0)=0$. Since $\left(a_{0}, a_{1}, \ldots, a_{m}\right)=(1,1,0, \ldots, 0)$ is a non-singular point of $S_{F_{0}}$, it follows that $f_{y_{j}}(1,0, \ldots, 0) \neq 0$ for some $2 \leqslant j \leqslant m$. By using a rotation, we may assume that $j=2$. Then the ternary form $\widetilde{F}\left(t, y_{1}, y_{2}\right)=F_{0}\left(t, y_{1}, y_{2}, 0, \ldots, 0\right)$ is hyperbolic with respect to $(1,0,0)$, and the point $\left(a_{0}, a_{1}, a_{2}\right)=(1,1,0)$ is a non-singular point of $S_{\widetilde{F}}$ and the tangent line of $S_{\widetilde{F}}$ at this point is $y_{2}=0$. Set $n=\operatorname{deg}\left(F_{0}\right)$. By the hyperbolicity, the equation

$$
\tilde{f}(t, y)=F_{0}(t, 1, y, 0, \ldots, 0)=0
$$

in t has n real solutions counting multiplicity for every $y \in \mathbf{R}$. It implies geometrically that the real affine algebraic curve $\tilde{f}(t, y)=0$ and the real line $y=y_{0}$ interset at n points counting multiplicity for every $y_{0} \in \mathbf{R}$. By Theorem 2.1, even if the line $y=0$ has singular points of the curve $\tilde{f}(t, y)=0$, the real affine curve $\tilde{f}(t, y)=0$ is expressed as the union of analytic arcs near the singular points. So we can treat such a case in the same fashion. By the assumption

$$
\tilde{f}(t, 0)=\left(t-\alpha_{1}\right)^{m_{1}}\left(t-\alpha_{2}\right)^{m_{2}} \cdots\left(t-\alpha_{k}\right)^{m_{k}}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ are distinct real numbers and $\alpha_{1}=1$, the numbers $m_{1}, m_{2}, \ldots, m_{k}$ are positive integers satisfying $m_{1} \geqslant 2, m_{1}+m_{2}+\cdots+m_{k}=n$. If ($t_{j}, 0$) is a non-singular point of the curve
$\tilde{f}(t, y)=0$, we define two numbers $N_{+}\left(m_{j}\right)=1$ and $N_{-}\left(m_{j}\right)=1$ for odd number $m_{j}, j=1, \ldots, k$. If m_{j} is even, the implicit function $y=y_{j}(t)$ defined by $\tilde{f}(t, y)=0$ near $t=\alpha_{j}$ satisfies

$$
\frac{d^{m_{j}} y}{d t^{m_{j}}}\left(\alpha_{j}\right)>0, \quad \text { or } \quad \frac{d^{m_{j}} y}{d t^{m_{j}}}\left(\alpha_{j}\right)<0 .
$$

If $\frac{d^{m_{j}}{ }^{m^{m}}}{d t^{j_{j}}}\left(\alpha_{j}\right)>0$, we set $N_{+}\left(m_{j}\right)=2$ and $N_{-}\left(m_{j}\right)=0$. If $\frac{d^{m_{j}} y}{d t^{m_{j}}}\left(\alpha_{j}\right)<0$, we set $N_{+}\left(m_{j}\right)=0$ and $N_{+}\left(m_{j}\right)=2$. In the case $\left(t_{j}, 0\right)$ is a singular point of the curve $\tilde{f}(t, y)=0$, we express the curve $\tilde{f}(t, y)=0$ as the union of analytic arcs, and set \tilde{m}_{j} the multiplicity of the intersection of the arc and the line $y=0$ at $\left(t_{j}, 0\right)$. We define $N_{+}\left(m_{j}\right), N_{-}\left(m_{j}\right)$ as the sum of the numbers $\tilde{N}_{+}\left(\tilde{m}_{j}\right), \widetilde{N}_{-}\left(\tilde{m}_{j}\right)$ defined for each arc as in the above fashion. Then the number of the intersection points of the curve $\tilde{f}(t, y)=0$ and the curve $y=y_{0}$ is

$$
\begin{equation*}
N_{+}\left(m_{1}\right)+N_{+}\left(m_{2}\right)+\cdots+N_{+}\left(m_{k}\right) \tag{7}
\end{equation*}
$$

if $y_{0}>0$ is sufficiently small, and

$$
\begin{equation*}
N_{-}\left(m_{1}\right)+N_{-}\left(m_{2}\right)+\cdots+N_{-}\left(m_{k}\right) \tag{8}
\end{equation*}
$$

if $y_{0}<0$ and $\left|y_{0}\right|$ is sufficiently small. One of the numbers (7) and (8) is strictly less than n, a contradiction to the hyperbolicity of \widetilde{F}.

By the argument used in the proof of Theorem 2.2, we obtain the following corollary.
Corollary 2.3. Let $F_{0}\left(y_{0}, y_{1}, y_{2}\right)$ be the reduced real form (2) for $m=2$. If $\left(a_{0}, a_{1}, a_{2}\right)$ is a non-singular real point of the curve $S_{F_{0}}$ then any tangent line of the curve $S_{F_{0}}$ at $\left(a_{0}, a_{1}, a_{2}\right)$ does not pass through any point of Ω_{0}.

In particular, we improve the result of Theorem 2.2 for $m=2$.
Theorem 2.4. Let $F_{0}\left(y_{0}, y_{1}, y_{2}\right)$ be the reduced real form (2) for $m=2$. Suppose that $\alpha_{0} y_{0}+\alpha_{1} y_{1}+$ $\alpha_{2} y_{2}=0$ is the common real tangent of a pair of imaginary non-singular point (a_{0}, a_{1}, a_{2}) of the curve $S_{F_{0}}$ and its conjugate, or $\alpha_{0} y_{0}+\alpha_{1} y_{1}+\alpha_{2} y_{2}=0$ is a real tangent of imaginary singular point (a_{0}, a_{1}, a_{2}) and its conjugate. Then the tangent line does not pass through any point of Ω_{0}.

Proof. We may assume that the tangent line passes through the point $\left(y_{0}, y_{1}, y_{2}\right)=(1,0,0)$. By a real transformation, we assume that the equation of the tangent line is given by $y_{1}=0$ and the point of $S_{F_{0}}$ is $\left(a_{0}, 0, a_{2}\right)$. If $a_{0}=0$, then the point is given by $(0,0,1)$ which is real, contradicting the assumption. Thus we have that $a_{0} \neq 0$. Since $F_{0}(1,0,0) \neq 0$, the coordinate a_{2} does not vanish. So we may assume that $a_{2}=1$ and a_{0} is imaginary. But this implies that the equation $F_{0}(t, 0,1)=0$ in t has an imaginary solution which contradicts the hyperbolicity of F_{0}.

Corollary 2.5. Let $F\left(y_{0}, y_{1}, y_{2}\right)$ be the polynomial (1) form $=2$. If $\left(x_{0}, x_{1}, x_{2}\right)=\left(1, x_{1}, x_{2}\right)$ is a real affine point of S_{F}^{\wedge} for the form $F\left(y_{0}, y_{1}, y_{2}\right)$ then the point $\left(x_{1}, x_{2}\right)$ belongs to the numerical range $W\left(H_{1}, H_{2}\right)$.

Proof. If the point (x_{1}, x_{2}) does not belong to the compact convex set $W\left(H_{1}, H_{2}\right)$, then by the duality of the closed convex sets, there exists a point ($\left.\tilde{y_{1}}, \tilde{y_{2}}\right)$ of the closure of the convex set Ω_{0} such that

$$
x_{1} \tilde{y_{1}}+x_{2} \tilde{y_{2}}+1<0
$$

Further, the point $\left(y_{1}^{(0)}, y_{2}^{(0)}\right)=(0,0) \in \Omega_{0}$ satisfies

$$
x_{1} y_{1}^{(0)}+x_{2} y_{2}^{(0)}+1=1 .
$$

By the convexity of the open set Ω_{0}, there exists a point ($\hat{y_{1}}, \hat{y_{2}}$) in the line segment joining the above two points satisfying

$$
x_{1} \hat{y_{1}}+x_{2} \hat{y_{2}}+1=0 .
$$

The point ($\hat{y_{1}}, \hat{y_{2}}$) belongs to Ω_{0}, which contradicts Corollary 2.3 and Theorem 2.4.
The result of Corollary 2.5 was obtained by Kippenhahn in [10]. However, its proof is rather intuitive. The proof provided here is more rigorous.

We come back to a general situation. For each irreducible form F_{j}, we consider the linear reduction of variables. If

$$
F_{j}\left(y_{0}, y_{1}, \ldots, y_{m-1}, y_{m}\right)=F_{j}\left(y_{0}+\alpha_{0} y_{m}, y_{1}+\alpha_{1} y_{m}, \ldots, y_{m-1}+\alpha_{m-1} y_{m}, 0\right)
$$

or equivalently

$$
\partial F_{j} / \partial y_{m}=\alpha_{0} \partial F_{j} / \partial y_{0}+\cdots+\alpha_{m-1} \partial F_{j} / \partial y_{m-1}
$$

Then the number of essential variables for F_{j} is less than m. We consider whether there exist non-zero coefficients $\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{m}\right)$ for which

$$
\alpha_{0} \partial F_{j} / \partial y_{0}+\cdots+\alpha_{m} \partial F_{j} / \partial y_{m}=0
$$

Such a reduction example actually appeared in [6]. The dual algebraic object S_{F}^{\wedge} of S_{F} is defined as the union of the dual algebraic varieties $S_{F_{j}}^{\wedge}$. Each algebraic variety

$$
S_{F_{j}}^{\wedge}=\left\{\left[\left(x_{0}, x_{1}, \ldots, x_{m}\right)\right] \in \mathbf{C P}^{m}: G_{j, k}\left(x_{0}, x_{1}, \ldots, x_{m}\right)=0, k=0,1,2, \ldots, \ell_{j}\right\}
$$

is characterized by irreducible form $G_{j, 0}$ and linear forms $G_{j, 1}, \ldots, G_{j, \ell_{j}}$ satisfying

$$
G_{j, k}\left(a_{0}, a_{1}, \ldots, a_{m}\right)=0, \quad k=0,1, \ldots, \ell_{j}
$$

for every tangent hyperplane $a_{0} y_{0}+a_{1} y_{1}+\cdots+a_{m} y_{m}=0$ at a non-singular point of $S_{F_{j}}$.
Theorem 2.6. $\operatorname{Let} F\left(y_{0}, y_{1}, y_{2}, \ldots, y_{m}\right)$ be the polynomial (1). Suppose that $\left(x_{0}, x_{1}, \ldots, x_{m}\right)=\left(1, x_{1}, \ldots\right.$, x_{m}) is a real affine point of S_{F}^{\wedge} for which $x_{1} y_{1}+\cdots+x_{m} y_{m}+1=0$ is a tangent hyperplane of S_{F} at some non-singular real point of S_{F}. Then the point $\left(x_{1}, \ldots, x_{m}\right)$ belongs to the convex hull of $W\left(H_{1}, \ldots, H_{m}\right)$.

Proof. If the point $\left(x_{1}, \ldots, x_{m}\right)$ does not belong to the convex hull of $W\left(H_{1}, \ldots, H_{m}\right)$, by the duality of the closed convex sets, there exists a point $\left(\tilde{y_{1}}, \ldots, \tilde{y_{m}}\right)$ of the closure of the convex set Ω_{0} such that

$$
x_{1} \tilde{y_{1}}+\cdots+x_{m} \tilde{y_{m}}+1<0
$$

Further, the point $\left(y_{1}^{(0)}, \ldots, y_{m}^{(0)}\right)=(0, \ldots, 0) \in \Omega_{0}$ satisfies

$$
x_{1} y_{1}^{(0)}+\cdots+x_{m} y_{m}^{(0)}+1=1 .
$$

By the convexity of the open set Ω_{0}, there exists a point $\left(\hat{y_{1}}, \ldots, \hat{y_{m}}\right)$ in the line segment joining the above two points satisfying

$$
x_{1} \hat{y_{1}}+\cdots+x_{m} \hat{y_{m}}+1=0
$$

The point $\left(\hat{y_{1}}, \ldots, \hat{y_{m}}\right)$ belongs to Ω_{0}, which contradicts Theorem 2.2.

3. Example

If the polynomial F is a non-linear irreducible form and the hypersurface S_{F} has no singular point, then S_{F}^{\wedge} is defined by a single form $G \in \mathbf{C}\left[x_{0}, x_{1}, \ldots, x_{m}\right]$ and its degree is $n(n-1)^{m-1}$ (cf. [4, p. 253]). In this case, the multiplicity of the maximal eigenvalue of the Hermitian matrix $y_{1} H_{1}+y_{2} H_{2}+\cdots+$ $y_{m} H_{m}$ is 1 for every unit vector $\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbf{R}^{m}$. Provided that $n \geqslant 3$, it implies the convexity of the joint numerical range $W\left(H_{1}, H_{2}, \ldots, H_{m}\right)$ by Theorem 5.1 in [6] and the range coincides with the closed domain surrounded by the boundary generating hypersurface $S_{F}^{\wedge}(\mathbf{R})$.

Suppose that $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)=\left(1, x_{1}, x_{2}, x_{3}\right)$ is a real affine point of S_{F}^{\wedge} and $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ lies on the hyperplane $y_{1} x_{1}+y_{2} x_{2}+y_{3} x_{3}+y_{0} x_{0}=0$ where $\left(y_{0}, y_{1}, y_{2}, y_{3}\right)$ is a real singular point of S_{F}. It may occur that the point $\left(x_{1}, x_{2}, x_{3}\right)$ does not belong to the convex hull of $W\left(H_{1}, H_{2}, H_{3}\right)$. We provide such an example in the below, which shows an analogous property of Kippenhahn's result does not hold for $m=3$.

Example. Let

$$
H_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & 0
\end{array}\right), \quad H_{2}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \text { and } \quad H_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then the form $F\left(y_{0}, y_{1}, y_{2}, y_{3}\right)(1)$ associated to these Hermitian matrices is given by

$$
F\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=y_{0}^{3}+y_{0}^{2} y_{3}-2 y_{0} y_{1}^{2}-y_{0} y_{2}^{2}-y_{1}^{3}-y_{1}^{2} y_{3}+y_{1} y_{2}^{2}
$$

The cubic surface S_{F} has a biplanar double point at $\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=(0,0,0,1)$ and an ordinary double point at $\left(y_{0}, y_{1}, y_{2}, y_{3}\right)=(1,-1,0,-1 / 2)(c f$. [4]). The boundary of the joint numerical range has a flat portion on the plane

$$
-x_{1}-\frac{1}{2} x_{3}+1=0
$$

and its projection on the $\left(x_{1}, x_{2}\right)$ plane is the elliptical disc bounded by the curve

$$
20 x_{1}^{2}-32 x_{1}+x_{2}^{2}+12=0
$$

However the plane $x_{3}=0$ supports the range $W\left(H_{1}, H_{2}, H_{3}\right)$ and its intersection with the range is not a single point, it is a line segment

$$
\left\{\left(x_{1}, 0,0\right):-1 \leqslant x_{1} \leqslant 1\right\} .
$$

One end point $(1,0,0)$ of the above line belongs also to the flat portion. The equation of the dual surface of the cubic surface S_{F} is given by

$$
\begin{aligned}
G\left(1, x_{1}, x_{2}, x_{3}\right)= & 20 x_{3}^{4}-8 x_{1} x_{3}^{3}-24 x_{3}^{3}+4 x_{1}^{2} x_{3}^{2}+8 x_{2}^{2} x_{3}^{2}+8 x_{1} x_{3}^{2} \\
& +4 x_{3}^{2}-4 x_{1} x_{2}^{2} x_{3}-4 x_{2}^{2} x_{3}+x_{2}^{4}
\end{aligned}
$$

Since $G\left(1, x_{1}, x_{2}, 0\right)=x_{2}^{4}$, the line $x_{2}=0$ on the plane $x_{3}=0$ is contained in the quartic surface $S_{F}^{\wedge}(\mathbf{R})$. Thus this surface contains a point $\left(x_{1}, x_{2}, x_{3}\right)=(2,0,0) \notin W\left(H_{1}, H_{2}, H_{3}\right)$.

References

[1] M.F. Atiyah, R. Bott, L. Gårding, Lacunas for hyperbolic differential operators with constant coefficients I, Acta Math. 124 (1970) 109-189.
[2] Y.-H. Au-Yeung, N.K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc. 89 (1983) 215-218.
[3] P. Binding, Hermitian forms and the fibration of spheres, Proc. Amer. Math. Soc. 94 (1985) 581-584.
[4] J. Bruce, C.T. Wall, On the classification of cubic surfaces, J. London Math. Soc. 19 (1979) 245-256.
[5] M.T. Chien, H. Nakazato, Davis-Wielandt shell and q-numerical range, Linear Algebra Appl. 340 (2002) 15-31.
[6] E. Gutkin, E.A. Jonckheere, M. Karow, Convexity of the joint numerical range: topological and differential geometric viewpoints, Linear Algebra Appl. 376 (2004) 143-171.
[7] F. Hausdorff, Der Wertevorrat einer Bilinearform, Math. Zeit. 3 (1919) 314-316.
[8] R. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[9] T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1982.
[10] R. Kippenhahn, Über den Wertevorrat einer matrix, Math. Nachr. 6 (1951) 193-228, An English translation is available by P.F. Zachlin, M.E. Hochstenbach, On the numerical range of a matrix by Rudolf Kippenhahn (1951 in Bomberg), Linear and Multilinear Algebra 56 (2008) 185-225.
[11] N. Krupnik, I.M. Spitkovsky, Sets of matrices with given joint numerical range, Linear Algebra Appl. 419 (2006) 569-585.
[12] C.K. Li, Y.T. Poon, Convexity of the joint numerical range, SIAM J. Matrix Anal. Appl. 21 (1999) 668-678.
[13] Y.T. Poon, On the convex hull of the multiform numerical range, Linear and Multilinear Algebra 37 (1994) 221-224.
[14] F. Rellich, Perturbation Theory of Eigenvalue Problems, Gordon and Breach Publ., New York, 1969.
[15] O. Toeplitz, Das algebraische Analogon zu einer Satze von Fejée, Math. Zeit. 2 (1918) 187-197.
[16] R.J. Walker, Algebraic Curves, Dover Publications, New York, 1950.

