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Abstract Artificial neural network (ANN) model was developed and tested for estimating soil

phosphorus (P) in Kouhin watershed area (1000 ha), Qazvin province, Iran using terrain analysis.

Based on the soil distribution correlation, vegetation growth pattern across the topographically

heterogeneous landscape, the topographic and vegetation attributes were used in addition to pedo-

logic information for the development of ANN model in area for estimating of soil phosphorus.

Totally, 85 samples were collected and tested for phosphorus contents and corresponding attributes

were estimated by the digital elevation model (DEM). In order to develop the pedo-transfer func-

tions, data linearity was checked, correlated and 80% was used for modeling and ANN was tested

using 20% of collected data. Results indicate that 68% of the variation in soil phosphorus could be

explained by elevation and Band 1 data and significant correlation was observed between input vari-

ables and phosphorus contents. There was a significant correlation between soil P and terrain attri-

butes which can be used to derive the pedo-transfer function for soil P estimation to manage

nutrient deficiency. Results showed that P values can be calculated more accurately with the

ANN-based pedo-transfer function with the input topographic variables along with the Band 1.
� 2015 Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.V. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Soil phosphorus plays a key role in soil fertility along with
other environmental factors; however, long-term soil fertility

also depends upon forming practices and fertilizer application.
Efforts to predict and assess the spatial distribution of soil P
have been done (Wang et al., 2009; Liu et al., 2013; Rubæk

et al., 2013; Roger et al., 2014). The estimation of soil
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phosphorus using conventional methods needs extensive labor,
is time consuming and also lacks spatial exhaustiveness.
Therefore, it is necessary to develop and use alternative and

potential methods for soil phosphorous estimation. Modeling
of soil-landscape relationships has been used successfully at
various scales to estimate soil properties using terrain attribute

analysis (Omran, 2012a). Soil phosphorus at landscape level
could be better to predict secondary variables using primary
variables which are easy to measure and the inverse of these

could be correlated with primary variables (McBratney et al.,
2003). Applying auxiliary data that have a good correlation
with soil properties might be a better option for accurate soil
mapping and estimation of physic-chemical properties

(Mckenzie and Ryan, 1999; Moran and Bui, 2002).
Efficiency of terrain attribute depends on several factors i.e.,
landform complexity, the strength of the digital elevation

model resolution and data quality (Wilson and Gallant,
2000). Appropriate sampling, detailed analysis associated aux-
iliary variables and application of selected methods prove to be

helpful for the estimation of soil properties (McBratney et al.,
2003). These methods need a small sample size and therefore,
labor, time and are cost effective (McBratney et al., 2003).

Various statistical models have been used for the investigation
of relationships among spatial distribution of soil attributes
and landscape attributes. Predictive mapping techniques i.e.,
geostatistics, fuzzy logic, linear and multiple regression, regres-

sion trees and neural networks have been successfully used for
soil mapping (Scull et al., 2005; Arun and Katiyar, 2013).

The ANN is a computational structure, inspired by the

study of biological neural processing (Thurston, 2002). A neu-
ral network consists of a number of interconnected elements
known as neurons and two important elements of neural net-

works are the types of neural interconnection arrangement
and algorithm type used to set the strength of relations.
These algorithms are used to model the complex interaction

of the environmental systems and interactions without com-
puting the explicit formulation of the relationships that might
exist among variables (Omran, 2012b). Neural networks have
been successfully applied for the estimation of several

difficult-to-measure soil characteristics (Merdun et al., 2006;
Landeras et al., 2008). One of the advantages of using
ANNs versus conventional models is that it does not require

determining a specific function to express the relationship
between input and output variables and can be achieved by
the train analysis (Schaap and Bouten, 1996).

The ANN method is proffered to estimate difficult-to-
measure soil characteristics due to their ease and inexpensive-
ness. The most commonly investigated model in the soil char-
acteristic estimation is multivariate regression analysis

(McBratney et al., 2002). However, the developed model for
one region may not provide a good estimation for other areas
(Wagner et al., 2001). Therefore, the present work is an

attempt to develop a neural network model to estimate its fea-
sibility to measure soil phosphorus from the Kouhin area,
Qazvin province, Iran.

2. Materials and methods

2.1. Site description

The hilly area in the northwestern province of Qazvin (Kouhin
region), Iran was selected for this study (Fig. 1). Height
amplitude varies from 1300 to 1600 m above the sea level with
1–6% slope. This belt covers about 1000 hectares, situated
between latitude of 36� 200 to 36� 230 north and longitude of

49� 340 to 49� 380 east. The climate of the selected area is
semi-arid in nature. The soil temperature and moisture regime
are mesic and xeric, respectively (Newhall and Berdanier,

1996). Soils have been developed on the surface of alluvial
deposits of marl and brown to gray limestone parent materials
and are covered by a plateau from the east to west direction.

The soil has been classified as Entisols and Inceptisols (Soil
Survey Staff, 2013) and is used for rainfed farming. During
1993–2006, the average annual rainfall and average annual
temperature were recorded to be 327 mm and 11.2 �C, respec-
tively (Iran Meteorological Organization).

2.2. Field sampling and laboratory analysis

Grid mapping method was used for sampling by dividing the
zone to be mapped into small patches of similar size
(300 * 300 m). This leads to making observations (profiles or

auger) at the nodes of a regular net. Few samples were taken
from off-grid to present different physiographic positions. A
total of 85 soil samples (20 cm depth) were collected.

Geographical location of sampling points was recorded by glo-
bal positioning system (GPS). The collected soil samples were
air dried, crushed and sieved using a 2 mm sieve size and sub-
sequently subjected to analysis. Soil properties such as particle

size distribution (Gee and Bauder, 1986), organic carbon (OC)
content (Black, 1982), cation exchange capacity (CEC) (Bower
et al., 1952) and available phosphorus (Olsen and Khasawneh,

1980) were measured (Table 1).

2.3. Acquisition and derivation of environmental covariates

2.3.1. Topographic attributes

The terrain attributes i.e., slope value, aspect, elevation, hill-

shade, plan curvature, flow direction and flow accumulation
were extracted from a digital elevation model (DEM) with a
resolution of 10 m (Fig. 2) (Wilson and Gallant, 2000). After
extracting DEM features using geographic coordinate sam-

pling points, the corresponding values of each parameter at
each sampling point were extracted and by applying cross
operation the numerical values were obtained for selected

points (Arun, 2013). The slope (in degree) represents the max-
imum rate of change of elevation among cell and related
parameters.

2.3.2. Vegetation attribute

Geometric corrections of images were performed using digital
elevation model and ortho procedures while using landsat-8

satellite image (2013). The satellite images were processed by
spectral ratio, principal component analysis and Tasseled
Cap transformation. Digital and visual image classifications

were conducted in integrated manner and values of Bands 1,
2 and 3 at each sampling point and were extracted using PCI
Geomatica software. The NDVI was used to quantify the veg-
etation at each pixel. The NDVI is a greenness index that is

related to the proportion of photosynthetically absorbed radi-
ation and reflects the chlorophyll activity in plants. Within a
remote sensing pixel, an increase in NDVI value signifies an

increase in green vegetation. Therefore, NDVI was derived



Fig. 1 Location of soil samples in the study area.

Table 1 Data summary statistics of soil and terrain parameters.

Variable Unit Mean Max Min Skewness Kurtosis C.V. (%)

Available P* mg/kg 1.01 1.38 0.65 0.30 �1.38 48.32

Clay % 40.70 59.00 25.00 �0.18 �0.82 22.59

Silt % 26.30 44.00 16.00 0.60 0.66 21.70

Sand % 32.00 57.00 10.00 0.43 0.33 34.95

OC % 0.68 1.33 0.13 0.39 �0.69 42.64

Slope** % 3.07 5.80 0.91 0.45 1.05 52.93

CEC Cmol+ kg�1 23.08 29.43 17.03 0.13 �0.38 12.35

Elevation Meter 1404.50 1543.33 1311.40 0.69 0.32 3.80

Plan curvature Deg/m �0.01 0.26 �0.21 0.59 2.36 63.16

Band 1 – 122.77 151.00 77.00 �0.44 �0.68 16.23

Band 2 – 99.02 142.00 54.00 �0.58 �0.66 22.71

Band 3 – 109.34 144.00 65.00 0.59 �0.87 20.96

NDVI – 0.11 0.28 0.02 0.69 0.85 33.90

* Logarithm transformation.
** Square root transformation.
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using Landsat-8 on February 2013 at a spatial resolution of
30 m · 30 m.

Values of NDVI range from �1 to +1 with vegetated areas

typically having values greater than zero being considered. The
NDVI can be considered as an indirect indicator of the
amount of biomass added to the soil, which may be related
to the OC soil content. Changes in NDVI also correspond to

changes in the vegetation health, thus intimating at the avail-
ability of water to the plant and in turn to the the bulk density,
pore size/structure evolution and the soil hydraulic properties.

2.4. Data pre-processing and development of pedo-transfer
functions

Statistica (version 10.0) and SigmaPlot (version 12.0) statisti-
cal software were used for data processing. Before selection
of input (independent) and output (dependent) variables, data
points were tested through the Kolmogorov–Smirnov test
(Mohammadi, 2002). Outliers were separated and data

normality was confirmed. For non-normal data, required
transformation (logarithm, square root) was used. The
correlation between variables was examined through forward
stepwise regression analysis and most influential parameters

were selected (Dashtaki and Homaei, 2002). As a result,
elevation, slope and Band 1 were used as the input values
for the ANN and soil phosphorus values and were applied

as the output in the development of pedo-transfer function
(Table 2).

Data points were standardized for equalization before the

ANN model training, which prevents excessive shrinking
weights. The data points were converted between 0 and 1 num-
bers since most of the output threshold functions were found



Fig. 2 Some environmental covariates.

Table 2 Pearson correlation coefficients (r) between selected

variables in the study area.

Variable Available P

(mg/kg)

Elevation

(m)

Slope

(%)

Band 1

Available P

(mg/kg)

1 0.673** 0.512** 0.559**

Elevation (m) 1 0.193 0.285

Slope (%) 1 �0.08
Band 1 1

** Significant at 0.01 level.
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within this range. For the conversion of data, the data points

were normalized using the relationship (Eq. (1)):

ynormal ¼ ðyo � �yiÞ=ðymax � yminÞ ð1Þ

where, ymax is the maximum data, ymin is the minimum data, �yi
is the mean value of measured values, and yo presents observed

values.

2.5. Artificial neural networks

Information from the elevation, slope, flow accumulation, and
NDVI grids was interpolated and combined with soil informa-
tion collected from the soil analysis. Different models using
different combinations of soil-topography-vegetation attri-

butes as input were developed to predict soil phosphorus.
Neural classifiers deal with numerous multivariable nonlinear
problems, which is an accurate analytical solution, but difficult

to obtain (Park et al., 2010). The structure of a feed-forward
ANN is shown in Fig. 3. This ANN is a popular neural net-
work which is known as the back propagation algorithm

(Karaca and Ozkaya, 2006). This ANN had k input and one
output parameter. They used this ANN for accurate modeling
of the flow rate and it is reported that the input parameters,
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number of neurons at the hidden and output layer can be
determined from collected data. Moreover, an important step
in developing an ANN model is the training of its weight

matrix. The weights are initialized randomly between suitable
ranges and then, updated using certain training mechanisms
(Pachepsky et al., 1996; Schaap et al., 1998). In the feed-

forward networks, error is minimized by different procedures
namely gradient descent (GD), Levenberg–Marquardt (LM)
and Conjugate Gradient (CG). Back propagation (BP) uses a

gradient descent (GD) technique, which is very stable when a
small learning rate is used, but has slow convergence properties
(Farjam et al., 2014). The term ‘‘Back propagation’’ refers to
the way the error is computed at the output layer of the

ANN, which is propagated into the hidden layer where all
computations are made. Several methods for speeding up BP
have been used including adding a momentum term or using

a variable learning rate. In this study, LM algorithm in the
sense that a momentum term is used to speeding up learning
and stabilizing convergence.

2.6. Performance criteria

The model performance was evaluated using test data points

that were not used in the network training. The parameters
used for the evaluation of model were root mean square error
(RMSE) and coefficient of determination (R2), (Wosten et al.,
2001). MATLAB software (version 7.10) was used for design-

ing and testing of the ANN model. The neural network struc-
ture has no high extrapolation strength and its generalization
capability is considered only in the context of interpolation.

The training data was selected as a representative that main-
tains all possible (maximum and minimum) values.
Therefore, the data points were divided by the randomization

technique. Data points were randomized by Excel software
(window 7) (Amini et al., 2005) and 80% of the data was
selected to train the model and remaining 20% was used to test

the developed model. Selected topographic indicators (terrain
attributes) and remotely sensed data were input for prediction
of the output (Soil P). During the learning process of the ANN
model, learning rate was measured by the network using objec-

tive functions. Finally network with the lowest error rate was
selected (McBratney et al., 2002). For this purpose,
Levenberg–Marquardt training algorithm was used because

of its efficiency and simplicity. In this study, the ANN struc-
tures consisted of one hidden layer, a sigmoid activation func-
tion in the hidden layer and a linear activation function in the

output layer and the LM algorithm was used to train the net-
work developed. To develop a statistically significant model,
the developed network was trained 3 times and the best values
were recorded for each parameter. To avoid ‘‘over-fitting’’, the

RMSE of the CV subset was calculated after adjustment of
weights and biases of data. Then the network adapted weight
and bias were employed for validation of the model in order to

determine the model’s overall performance.

3. Results and discussion

3.1. Data processing and analysis

After data processing and outlier elimination, the data number
reduced to 77 points, which were processed further using the
ANN model. Table 1 shows the statistical summary of the soil
properties used for training and testing of the model. Soil
phosphorus minimum, maximum, mean, standard deviation

(SD), skewness and kurtosis are shown in Table 1. Since skew-
ness was less than 1, so, data were not transformed further.
Relatively wide range of variations was observed in soil prop-

erties. Variation of 25–59% was recorded in clay particles,
whereas OC content varied from 0.13% to 1.33% with an
average value of 0.68. The CV of soil OC was found to be high,

which might be due to the application of fertilizers and resul-
tantly, the soil OC improved. Fard and Harchagani (2009) also
reported a high coefficient variation of soil OC and correlated
it with fertilizer application. The observed difference in soil

properties could influence the phosphorus content because its
sorption and desorption may change under a certain set of
environmental conditions (Stutter, 2015).

High coefficient of variation indicates high spatial variabil-
ity of parameters studied. Coefficient of variation for soil OC,
available phosphorus and slope was high, which reveals high

variability in this specification. On the other hand, elevation
and Band 1 parameter coefficient of variation was low. The
difference between coefficient of variation in the terrain feature

and soil parameters in the study area is attributed to sampling
geometry, physiographic of plateau and slope variations
(Roger et al., 2014).

The effect of topography on the distribution of soil parti-

cles, OC and nutrients is influenced by erosion and deposition.
Table 2 shows Pearson correlation coefficient (r) between
selected variables (terrain attribute and soil P) in the study

area. The results show that the available soil phosphorus with
topographic features derived from digital elevation model have
a good correlation with height (r= 0.673**), slope

(r= 0.512**) and Band 1 (r = 0.559**). Although these corre-
lations are significant, however, due to the variation in topog-
raphy they are not as strong as which could be.
3.2. ANN model for soil P estimation based on terrain attributes

In the present investigation, the most influential parameters
were selected through forward stepwise regression analysis.

The input variables (slope, elevation and Band 1) were used
to develop the ANN model and resultantly, a significant corre-
lation was observed among the input variable and soil phos-

phorus. The model was developed, primarily trained with
training data sets and used for the prediction of error rate
against a number of hidden layer neurons. Trial and error

method was used in order to find out the optimal number of
hidden neurons. Fig. 4 shows the 3D surface plot of soil phos-
phorus versus elevation and Band 1 data. Based on the plot of
input variables and spline function for the prediction of soil

phosphorus the input data for constructing ANN did not
increase.

Increasing the number of input variables may decrease the

accuracy of the estimates because only one parameter may
influence the output due to low value of correlation coefficient
determination and resultantly, the accuracy of the model may

decrease (Amini et al., 2005). After randomizing and splitting
of data set into training and testing data, various ANN struc-
tures of topology 3-k-1, i.e., network was designed. The opti-

mum structures of network were estimated from R2 and
RMSE values and results, thus obtained are shown in Table 3.



Fig. 3 Structure of feed-forward ANN (Tanikic and Despotovic, 2012).
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3.3. Sensitivity analysis

To determine the effect of each input parameter on the soil
phosphorus, sensitivity analysis is reliable and performed to

check the sensitivity. Sensitivity analysis of input
Fig. 4 3D surface plot of soil P vs. elevation and Band
parameters of the network was performed using Statistica

statistical software (version 7.0, 2004) and input parameters
showed considerable effect on the output. The results of
sensitivity analysis of the selected input are shown in

Fig. 5.
1; categorized by slope gradient using spline function.



Table 3 The best performance of ANN model for estimating soil P.

Parameter Topology Training algorithm Activation function Epoch RMSE (%) R2

Soil P 3-6-1 LM* Sigmoid 752 1.65 0.68

* LM= Levenberg–Marquardt.

Fig. 5 The result of sensitivity analysis on input parameters.
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As it is clear from data, the neural network model indicated

highest sensitivity to slope and elevation, respectively. Hence,
it indicates the strong influence of slope on soil phosphorus
variation. As can be seen from Table 1, the high coefficient

of variation was obtained, which indicates high spatial vari-
ability of the study features. Thus, high coefficient of variation
of slope (52%) showed better sensitivity of the data analysis.

3.4. Model performance evaluation

In order to assess the ANN model performance, test data
points were used to predict soil phosphorus and predicted val-

ues were plotted against observed values. Fig. 6 shows the scat-
ter plot of the observed versus predicted values for the soil
phosphorus model. The plot approximates a straight line,

and an angle close to 45� (one to one line), which indicates
the high accuracy of the ANN model for the estimation of soil
phosphorus. The application of ANN model in predicting soil
phosphorus explained 68% variation. Previously, similar stud-

ies conducted by Pilevar Shahri et al. (2011) and Lakzian et al.
Fig. 6 The scatter plot of the observed versus predicted values
(2013) also indicated the neural network model could justify
80% and 56% of soil OC, respectively, using digital elevation
model derived parameters.

4. Discussions

It is difficult to approximate with state-of-the-art soil-
landscape modeling assessments of environmental layers. The

moderate relationship between soil phosphorus and selected
predictors (variables) in the present investigation (R2 = 0.68)
highlighted some important issues and are discussed. It is well

known that in calcareous soils of Iran that are evolved in arid
and semi-arid regions, a larger part of soil phosphorus is
retained by the reactions of absorption and illuviation of car-

bonate minerals (Musavi and Sepehr, 2013). Chemistry of
phosphorus in soils is very complicated because inorganic
phosphorus reacts with calcium, iron and aluminum and is

converted into phosphates. Additionally, organic phosphorus
can be found with a variety of shapes and resistance to micro-
bial degradation in soil (Soltani et al., 2011). Therefore, the
variation in the amount of OM and the lime in the study area

can make a difference in the amount of available phosphorus
in soils and consequently, the variation coefficient may
increase.

The NDVI information helped to improve model precision.
Land use practices have a major impact on soil OC content.
Results presented could be interpreted that the impact of cur-

rent land use on the distribution of soil OC and soil phospho-
rus are relatively small versus topographic impacts.
Furthermore, land use itself is determined by the topographic
conditions and some of the land use impacts had already been

represented in the topographic derived parameters (Zhao et al.,
2010). Land use may affect the relationship among variables
and previously similar findings have been reported (Jia et al.,

2011; Lemercier et al., 2008; Reijneveld et al., 2010).
Moreover, the use of auxiliary data such as DEM as well as
sub-division of the study area may improve the prediction by
for soil P model (Data were normalized between 0 and 1).
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reducing the overall variability and soil phosphorus relation-
ship with environmental factors could be deduced precisely.
For this, a valuable and inexpensive source of secondary infor-

mation (DEM) is required, which provides explanatory vari-
ables for predicting and developing a model for soil
phosphorus estimation. Topography influences soil properties

due to local re-distribution of water, solar radiation and mate-
rial, etc. (Gessler et al., 2000; Kozar et al., 2002).

The technical sources of uncertainties, as for instance the

accuracy of the DEM and the localization of sampling sites
with the global positioning system (GPS), also limit the model
performance. Lakzian et al. (2013) highlighted that estimation
of soil OC using the neural network model is most sensitive to

the wetness index. Moreover, slope and elevation were the next
priorities in sensitivity analysis. Elevation showed the least sen-
sitivity among input parameters. The results of sensitivity anal-

ysis conducted by Pilevar Shahri et al. (2011), showed the
highest sensitivity to network profile curvature parameters.
Due to non-linear relationship between dependent and pre-

dicted variable (P), ANN model showed good performance.
Therefore, using different trained models and test data sets,
the accuracy of the ANN model in predicting phosphorus

can be improved.

5. Conclusions

The neural network model was developed and its feasibility for
soil phosphorus estimation was checked from rainfed areas
using terrain attributes including elevation, slope, and Band 1
data based on RMSE and R2 values. The results indicate good

accuracy of the model and a 68% variation in data was justi-
fied. The correlation among input and output variables from
terrain attribute analysis confirms the applicability of the

model in predicting soil phosphorus contents. The ANN
model can be soil phosphorus content determination using soil
topographic attributes. Furthermore, to avoid the uncertain-

ties in data due to natural phenomena associated with different
soil properties and uncertainties in the data, hybrid models
such as neuro-fuzzy, which use fuzzy sets, could possibly be

used in processing and fitting the pedo-transfer functions with
more reliability.
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