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Abstract In order to establish a functional role for late
embryogenesis abundant (LEA) proteins in response to stress
conditions in Caenorhabditis elegans, we silenced the expression
of an LEA (Ce-lea-1) gene and determined the survival of worms
under stress conditions. Ce-lea-1 transcription was induced
during dehydration of C. elegans dauer juveniles. Following
partial silencing of Ce-lea-1 transcription, we demonstrated a
specific and significant reduction in worm survival during
induction of desiccation, osmotic and heat stress. Together,
these results establish a functional role for Ce-lea-1 in stress
survival of C. elegans and suggest that Ce-lea-1 may function as
a component that is common to the responses to the examined
stress conditions.

© 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

The removal of water from cells, the survival of cells in an
air-dried state, and the rewetting of air-dried cells impose
considerable physiological constraints. Nematodes are among
the most successful organisms in withstanding desiccation and
viable specimens have been recovered from dry desert soils [1].
Only little is known about the behavioral, biochemical and
molecular events in nematodes that lead to the physiological
responses to dehydration stress conditions. Research in Ca-
enorhabditis elegans offers a unique opportunity to understand
the dehydration response better. More specifically, little is
known of the mechanisms that enable C. elegans dauer juve-
niles (DJs) to survive exposure to dehydration, apart from
their high desiccation tolerance, as recorded by Ohba and
Ishibashi [2]. Dauer juveniles, which have evolved in several
nematode families, are a relatively stress-resistant juvenile
stage that is adapted to remain in the environment without
feeding while searching for a new food source [3,4]. The genetic
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pathway of dauer formation has been extensively studied, es-
pecially in the nematode C. elegans (recently reviewed in [5,6]).

Late embryogenesis abundant (LEA) proteins are thought
to be prominent in the stress response in various organisms
including plants, algae, yeasts and bacteria. They are hy-
drophilic and accumulate in higher plants under conditions
of extreme desiccation, during the last stage of seed forma-
tion, and during periods of water deficit in vegetative organs
[7-20]. The biological role of LEA proteins was demon-
strated in the bacterium Deinococcus radiodurans, in which
disruption of the LEA76 locus resulted in reduction in the
viability of desiccated cultures, which suggests that it is a
critical component of a cell’s overall strategy to tolerate ex-
treme dryness [7]. In addition, a functional role for LEA
proteins in Chlorella vulgaris was demonstrated when they
were found to protect a freeze-labile enzyme against freeze
inactivation [13].

LEA group 3 members are characterized by a motif of 11
amino acids that is predicted to form an amphipathic a-helix
that is probably involved in structural interactions [21]. They
are thought to be mainly involved in counteracting the irre-
versible damaging effects of increased ionic strength in the
cytosol during desiccation, perhaps through the binding of
both anions and cations to the helical region of the protein [8].
Ried and Walker-Simmons [9] demonstrated that the levels of
LEA group 3 proteins correlated well with tissue dehydration
tolerance. Distinctive roles in the protection of cells against
cellular dehydration were demonstrated for proteins of LEA
groups 2 (Le4) and 3 (HVAI1) from tomato and barley, re-
spectively, by means of a yeast heterologous expression system
[12]. Moreover, under soil water deficit conditions, transgenic
wheat that expressed the LEA group 3 barley HVAI gene had
significantly greater mass and weight than the control, which
further supports its role in the dehydration response [10].

In nematodes, several pieces of evidence suggest that LEA
family members are involved in the desiccation response.
Among the stress-related genes found to be highly expressed
during dehydration of the entomopathogenic nematode Ste-
inernema feltiae, 1S-6 is an LEA group 3 protein [22]. In
addition, the level of LEA-like protein desc47 was increased 10-
fold during dehydration of S. feltiae 1S-6 [23]. In the free-living
nematode Aphelenchus avenae, LEA group 3 AavLEAI tran-
scription was upregulated following exposure to 90% relative
humidity (RH) [24], and investigation of its structure demon-
strated limited oligomerization, and configuration changes of
AavLEA1 on drying [25].
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In the present research, we conducted functional studies to
determine the role of expression of an LEA group 3 gene (Ce-
lea-1) in C. elegans DJ survival under stress. The induction of
Ce-lea-1 expression and the reduction in worm survival during
desiccation suggested a role for Ce-lea-1 in dehydration sur-
vival of C. elegans DJs. In addition, the reduced survival rates
of worms under osmotic and heat stresses, following Ce-lea-1
silencing, suggested that Ce-lea-1 may be a critical component
of the worm’s strategy to tolerate the dehydration associated
with osmotic- and heat-stress conditions.

2. Materials and methods

2.1. Nematode culture and induction of dauer juveniles in F1 generation

Fifty wild-type Caenorhabditis elegans N2 (var. Bristol) fourth-stage
juveniles (L4) were placed onto NGM plates containing | mM IPTG
and 50 pg/ml of ampicillin (Amp), seeded with bacterial colonies
containing a L4440 feeding vector without an insert, and were incu-
bated for 72 h at 17 °C. This treatment of the worms is referred to
below as “control”. The worms were then washed and transferred onto
new sets of similar plates for 24 h at 25 °C, to lay their eggs. For in-
duction of DJs in the F1 generation, the egg-laying plates were washed
with M9 buffer and incubated for 6 days at 25 °C, with agitation. The
worm population was then filtered through a 20-um sieve to remove
dead and adult nematodes. Microscopic examination of a sample of
the DJ population verified their percentage in the population before
the worms were taken for desiccation bioassays and RNA extraction.

2.2. Induction of desiccation, osmotic and heat stresses

C. elegans DJs were dehydrated as described by Solomon et al. [26]:
they were exposed to 97% RH at 23 °C, in a sealed desiccator with 60
ml of saturated K,SOy, for 8 or 24 h. Non-dehydrated worms were
stored in M9 buffer at 23 °C. Survival scores were calculated from
populations of 80-100 juveniles for each replication of the experi-
ments. All data from the three repeats for a certain time point were
pooled and the mean and standard deviation of DJ survival were
calculated for the pooled data. Significance was determined by the
Student-Newman—Keuls test (o = 0.05; P < 0.0001).

Osmotic stress was induced as described by Lamitina et al. [27], with
modifications. The F1 generation of Ce-lea-I RNA interference
(RNAI)-treated and control worms was exposed, at the L4 larval stage,
to several concentrations of sucrose (305, 400, 484 and 652 mM) on
NGM plates at 25 °C for 24 h. The survival rates were determined
following 24 h of recovery in M9 buffer at 25 °C. Survival scores were
calculated from populations of 100-120 juveniles for each replication
of the experiments. All data from the three repeats for each sucrose
concentration were pooled and the mean and standard deviation of DJ
survival were calculated for the pooled data. Significance was deter-
mined by T test (P < 0.05).

Heat stress was induced according to Lithgow et al. [28], by exposure
of the F1 generation of Ce-lea-1 RNAi-treated and control worms, at
the first-larval stage (L1), to 35 °C for 3, 6 or 8§ h, on NGM plates.
Heat-stressed cultures were returned to 22 °C to allow recovery and the
worms were scored for survivals. Survival scores were calculated from
populations of 80-100 juveniles for each replication of the experi-
ments. All data from the three repeats were pooled and means and
standard deviations of DJ survival were calculated for the pooled data.
T Test was applied to determine significance (P < 0.0001).

2.3. RNA extraction

Total RNA was isolated from RNAi-treated and control C. elegans
that had been dehydrated for 8 or 24 h, and also from the non-dehy-
drated worms, by using the RNeasy Mini Kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s instructions. The RNA was
treated with RNase-Free DNase Set (Qiagen).

2.4. RNAi by feeding

Gene fragments for double-stranded RNA (dsRNA)-mediated in-
terference were amplified by PCR from cDNA extracted from a mixed
C. elegans population. The specific primers for Ce-lea-1 were 5'-
GGACAAGAAGCTTCCGACAG-3' and 5-CATCTCCGTGTTTC-
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TGAGCA-3, those for Ce-unc-120 (Accession No. NM_059895) were
5" TCAACTGGTCTATTGCCAAATGG-3" and 5-TGTGGAGAA-
CAGTGGAGCCATTG-3' and those for Ce-lin-53 (Accession No.
NM_060151) were 5-ATTCATCGGCTCATTC- TTGG-3' and 5'-
TCAACGACTGACTCGTGACC-3'. Amplified fragments were se-
quenced and cloned into pGEM-T vector (Promega, Madison, WI),
digested by EcoRI and Sacll (Fermentas, Foster City, CA) and recloned
into L4440 feeding vector [29]. The resulting plasmids were transformed
into the HT,;5(DE3) RNase Ill-deficient Escherichia coli strain. Bac-
terial colonies containing L4440 were selected by PCR for those that
were cloned with the gene fragments, and single colonies were picked
and grown for 8§-18 h in LB medium with 100 pg/ml of Amp. For
control, bacterial colonies containing a L4440 vector without an insert
were grown as described above. The bacterial cultures were seeded onto
NGM plates with 1 mM IPTG [30] and 50 pg/ml of Amp. The seeded
plates were allowed to dry at room temperature and dsRNA expression
of the cloned gene was induced overnight at room temperature [30].
Three (for Ce-lin-53) and 50 (for Ce-lin-53, Ce-lea-1 and Ce-unc-120)
L4-stage juveniles were placed onto NGM plates containing seeded
bacteria that expressed either dsRNA for each gene or, as a control,
L4440 feeding vector without the insert. The plates were incubated at 17
C for 72 h, after which they were washed and transferred onto new sets
of similar plates at 25 °C for 24 h, for egg laying. Induction of DJs in the
F1 generation was performed as described above.

2.5. Real-time RT-PCR

Total RNA samples (2 pg), extracted from dehydrated or non-de-
hydrated C. elegans, RNAI treated or controls, were reverse-transcribed
(RT) [22]. Real-time RT-PCR was performed with the gPCR Master-
mix for Sybr Green (Eurogentec, Seraing, Belgium) according to the
manufacturer’s instructions, with modifications as described by Gal et
al. [22]. The target gene expression level in dehydrated worms was
compared with that of the non-dehydrated worms. Means and standard
deviations of gene expression were calculated from three replications of
the experiment. To minimize mRNA quantification errors and genomic
DNA contamination biases, and to correct for inter-sample variations,
we used 18SrRNAs of C. elegans as an internal control, and the relative
expression ratio was based on the expression of a target gene relative to
that of 18SrRNA. Primers used for detection of Ce-lea-1 (Accession No.
AF016513) transcripts were 5'-TGCTTCGGAAAGTGCAGAGTC-3'
and 5-CAACAGAAGCAGCTCCCTCG-3, and those for 18STRNA
(Accession No. X03680) were 5-ACCGCTATGTGTCTCCTGGTG-
3’ and 5-CGAAACCGAACCACGATCAT-3. Significance was de-
termined with 7 test (P < 0.05).

2.6. Determination of uncoordinated movement and embryonic lethality
phenotypes of RNAi-treated worms

For scoring of uncoordinated (or paralyzed) phenotypes, F1 of
RNAIi-Ce-unc-120 treated and control populations were grown to
adulthood on NGM plates, and scored for uncoordinated (or
paralyzed) phenotypes [30]. To determine the lethality of the RNAi-
Ce-lin-53 treatment to the F1 nematodes, RNAi-treated and control
L4s were placed on NGM plates and incubated for 24 and 48 h at 25
°C for egg laying. The plates were then scored for hatched larvae [30].

3. Results

3.1. Survival and induction of Ce-lea-1 gene expression in
dehydrated C. elegans

We induced DJ formation in the C. elegans F1 generation
and the appearance of DJs in the population was confirmed by
microscopic examination (not shown); following filtration, DJs
formed 90+ 5% of the F1 population. After 8 and 24 h of
dehydration, 78 +3.4 and 69.7 £ 5.6% (n = 3), respectively, of
the F1 population survived (control, Fig. 1). Despite the dif-
ferences in desiccation conditions, which prevents direct
comparison, these results are in conceptual agreement with
Ohba and Ishibashi’s [2] findings concerning C. elegans DJ
survival under desiccation stress. In addition, the coiling re-
sponse reported by Solomon et al. [26] for S. feltiae 1S-6 in-
fective juveniles (IJs) was not detected for C. elegans DJs. In
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Fig. 1. Survival (%) of C. elegans dauer juveniles, F1 generation of
control, and RNAi-Ce-lea-1- and RNAIi-Ce-unc-120-treated worms
following 8 and 24 h exposure to desiccation stress (97% RH at 23 °C).
Bars represent standard deviations calculated from three repeats of
each experiment.

order to determine the expression pattern of the Ce-lea-1 gene
during desiccation of C. elegans DJs, we determined the stea-
dy-state level of its transcripts. Following 8 and 24 h of C.
elegans DJ dehydration, the steady-state level of Ce-lea-1
transcripts was significantly increased (P < 0.05) by factors of
21.8+0.7 (n=13) and 13.6+0.8 (n = 3), respectively, com-
pared with that in non-dehydrated DJs (control, Fig. 2).

3.2. Silencing of Ce-lea-1 significantly reduced the survival of
C. elegans during desiccation

In order to define the role of the Ce-lea-1 gene in the des-
iccation tolerance of C. elegans DJs, we determined the effect
of RNAi-mediated silencing of Ce-lea-1 on the desiccation
tolerance of the F1 DJ population. Specifically, DJs were in-
duced as early as F1 in RNAi-treated and control worms, in
order to prevent the reversion to the wild-type phenotype that
occurs in subsequent generations [31]. Only 50 +8 (» = 3) and
17.5£2% (n = 3) of the Ce-lea-1 RNAi-treated F1 DJ popu-
lation survived after exposure to 8 and 24 h, respectively, of
desiccation (Fig. 1). This is a significant reduction in survival
compared with the control (P < 0.0001).

Notably, RNAi-Ce-lea-1-treated worms exhibited the wild-
type phenotype, as evaluated by visual inspection assay, which
is consistent with the findings of Ahringer’s group ([32];
WormBase release WS126, Gene Model KO8H10.1), whose
work did not include stress studies.

To confirm that the observed reductions in the survival of
RNAIi-Ce-lea-1-treated DJs following 8 and 24 h of dehydra-
tion (Fig. 1) were due to silencing of Ce-lea-1 transcription, we
quantitatively determined the steady-state level of Ce-lea-1
transcripts in RNAi-Ce-lea-1-treated worms. In F1 of RNAi-
Ce-lea-1-treated worms Ce-lea-1 transcription was reduced by
a factor of 11.7 £0.2 compared to the control (n = 3).

Following 8 h of dehydration of worms, the ratio between
Ce-lea-1 transcription level in dehydrated to that in non-de-
hydrated worms was only 2.05+ 1.46 (n = 3), i.e., about one-
tenth of the corresponding ratio in control worms. Following

23

N
)]
J

a [ IControl
1 [ 1RNAi-Ce-lea-1 treated
20
a
154
.
1

—_
o
|

b
0
8h

Time (hours)

Fold expression ratio of Ce-lea-1
[6)]
1

24h

Fig. 2. Expression levels of Ce-lea-1 in C. elegans dauer juveniles, F1
generation of control and of RNAi-Ce-lea-1-treated worms, following
8 and 24 h exposure to desiccation stress (97% RH at 23 °C). Ex-
pression ratios were calculated as the ratio between the means of the
steady-state mRNA levels of dehydrated and of non-dehydrated
worms (expression ratio = 2~ (4 dehydrated — A non-dehydrated). A dehydrated
and A non-dehydrated are the differences in threshold cycles for target
and reference). Bars represent standard deviations calculated from
three repeats of each experiment. a, b denote significant differences
between expression values for 8 h of dehydration; a’, b denote sig-
nificant differences between expression values for 24 h of dehydration.

24 h of desiccation, the corresponding ratio for RNAi-treated
worms was only 2.24+2.25 (n = 3), a mean of one-sixth of
that observed for control worms (Fig. 2). These expression
values in the RNAi-Ce-lea-1-treated worms were significantly
lower than those in the controls (P < 0.05).

3.3. Silencing of a Ce-unc-120 had no significant effect on the
survival of C. elegans during desiccation

To demonstrate that the effect of silencing Ce-lea-1 on de-
hydration survival in C. elegans was specific to the LEA gene,
and not a result of silencing of any non-lethal gene, we de-
termined the effect of RNAi-Ce-unc-120 treatment on the
desiccation tolerance of the F1 DJ population. Ce-unc-120
encodes a member of the MADS-box family of transcription
factors; it is necessary for locomotion and muscle development
and for formation of the normal number of muscle bands and
proteins (WormBase release WS126, Gene Model D.1081.2).
Kamath et al. [30] demonstrated that silencing of Ce-unc-120
resulted in uncoordinated and paralyzed phenotype in at least
10% of the progeny. In our present experiments, 28 £ 7%
(n = 3) of the RNAIi-Ce-unc-120-treated F1 adults displayed
the uncoordinated and paralyzed phenotype reported by Ka-
math et al. [30]. It is important that no significant changes
(P < 0.0001), relative to the control, were recorded in the level
of DJ survival during desiccation stress following RNAi-Ce-
unc-120 treatment (values of 77+3% and 73+2% during
desiccation for 8 and 24 h, respectively; n = 3) (Fig. 1).

3.4. Silencing of Ce-lea-1 significantly reduced the survival of
C. elegans during osmotic stress

To determine whether the effect of Ce-lea-1 silencing on C.

elegans survival was specific to dehydration stress or whether it
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may also be observed during osmotic stress, we determined the
effect of RNAi-Ce-lea-1 treatment on the osmotic-stress sur-
vival of the late L4 and young adult stage of C. elegans. When
sucrose was used at a concentration of 484 mM, survival in
RNAIi-Ce-lea-1-treated worms was significantly less than that
in the control (n =3; P < 0.05; Table 1). Nevertheless, ex-
posing worms to concentrations of 305, 400 and 652 mM of
sucrose did not result in significant differences between RNAi-
Ce-lea-1-treated and control worms (n = 3; P < 0.05; Table 1).
It should be noted that the survival rates of the controls that
were recorded in the present study were higher than those re-
ported by Lamitina et al. [27] except with the 652 mM con-
centration. With a 652 mM sucrose solution, there were no
survivors in our present study (Table 1), whereas Lamitina et al.
[27] observed a 21 &+ 3% survival rate. In conclusion, RNAi-Ce-
lea-1 treatment reduced worms survival under the osmotic
stress imposed by the sucrose concentration of 484 mM.

3.5. Silencing of Ce-lea-1 significantly reduced the survival of
C. elegans during heat stress

In order to define whether the effects of Ce-lea-1 gene si-
lencing on desiccation and osmotic tolerance of C. elegans are
specific to the pathway(s) shared by the two stresses, or whe-
ther Ce-lea-1 is involved in heat-stress survival also, we de-
termined the effect of RNAi-mediated silencing of Ce-lea-1 on
the heat survival of the L1 of C. elegans. In agreement with
Lithgow et al. [28] and Solomon et al. [33], 100 £ 0% of the
control L1 survived during 3 h of heat shock, whereas during 8
and 6 h of heat shock 84 +4% (n = 3) and 82+ 5% (n = 3) of
the control L1 survived (Fig. 3). In the RNAIi-Ce-lea-1-treated
population, a significant reduction (n = 3; P < 0.0001) in L1
survival was recorded: 88 4-2%, 70 & 5% and 16 £ 5% survived
during 3, 6 and 8 h, respectively, of heat stress (Fig. 3).

3.6. RNAi treatment on large population resulted in partial
penetrance of the RNAi phenotype

Only partial reductions in Ce-lea-1 transcription and worm
survival were observed for RNAIi-Ce-lea-I-treated worm
populations during induction of desiccation, osmotic and heat
stresses (described above). This may be a general outcome of
RNAI treatment of a relatively large number of worms. Since
Kamath et al. [30] found that RNAi-Ce-/in-53 treatment of a
small worm population (three L4 individuals) results in full
penetrance of embryonic lethality, we determined the efficiency
of RNAIi-Ce-lin-53 treatment on large worm population. Ce-
lin-53 is a member of the abnormal cell LINeage gene class and
a homolog of a retinablastoma-binding protein (WormBase
release WS126, Gene Model K07A1.12). In agreement with the
findings of Kamath et al. [30], in the present study none of the

Table 1

Survival (%) of C. elegans L4 and young adult stages, which are F1
generation of control and of RNAi-Ce-lea-1-treated worms, following
24 h of exposure to sucrose concentrations of 305, 400, 484, and 652
mM

Sucrose concentration (mM)
305 400 484 652

Control 100 4 1% 90.3+4.5% 90.0+£2.6* 040
RNAIi-Ce-lea-1 100+ 1% 86.7+5.8% 78.0+9.5 0+0
treated

n=3.

*The values are significantly different P < 0.05.
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Fig. 3. Survival (%) of C. elegans L1, F1 generation of control and of
RNAIi-Ce-lea-1-treated worms following 3, 6 and 8 h of exposure to
heat-shock stress (35 °C). Bars represent standard deviations calcu-
lated from three repeats of each experiment.

F1 eggs from the batches of three treated worms hatched
(n = 3), whereas an average of 80415 (n = 3) hatched from
batches of three worms in the control. Nevertheless, when
batches of 50 worms were treated with RNAi-Ce-lin-53, an
average of 45415 (n = 3) of the F1 progeny hatched, repre-
senting about 4% of the number that hatched in the control
batch of 50 worms (1050 +212; n = 3).

4. Discussion

In the present study, we focused on the role of Ce-lea-1
expression in C. elegans survival during stress induction. Sev-
eral LEA Group 3 proteins were previously demonstrated to
be upregulated during nematodes’ dehydration response [22—
24]. Among them is Sf-lea-1, which is highly expressed in S.

feltiae 1S-6 1Js during dehydration [22]. A close homolog to Sf-

lea-1 in C. elegans is Ce-lea-1 [22]. To examine the role of Ce-
lea-1 gene in the desiccation tolerance of C. elegans, we studied
its expression pattern in worms and the effect of its being si-
lenced on the survival of C. elegans during stress induction.

The steady-state level of Ce-lea-1 transcripts increased dur-
ing dehydration of C. elegans DJs by 8 and 24 h of desiccation.
In addition, the partial silencing of Ce-lea-1 transcription,
which was verified at the level of gene transcription, reduced
DJ survival under desiccation. No significant changes in the
level of DJ survival, compared with that in the controls, were
recorded following RNAi-Ce-unc-120 treatment, thus sug-
gesting that the effect of Ce-lea-1 silencing on C. elegans de-
hydration survival was not a result of silencing of a non-lethal
gene per se; rather, it was a specific effect of the silencing of the
LEA gene. Collectively, these findings suggest the involvement
of Ce-lea-1 in desiccation survival of C. elegans DJs and, es-
pecially, a silencing-based functional role for LEA proteins in
nematode desiccation.

We have demonstrated that silencing of Ce-lea-1 gene tran-
scription also leads to reduced level of survival during osmotic
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stress. The effect of Ce-lea-1 silencing on worm survival was
significant only at the intermediate sucrose concentration, of
those tested. Perhaps, lower concentrations of sucrose did not
significantly induce LEA expression in C. elegans, whereas the
higher sucrose concentration may have imposed stress condi-
tions that were too severe for worm survival.

Several findings in other research studies suggest a com-
monality in response to various stress conditions. Osmotic
stress, similar to dehydration stress, leads to fluctuations of
internal osmolarities in various organisms [14,34-36], and in
human cells the molecular mechanisms of response to desic-
cation and to hyperosmotic stress partially overlap, involving
MAPK activation [37]. Several studies suggested that in yeasts,
bacteria, cyanobacterium and murines, dehydration that oc-
curs during heating or during osmosis appears to have similar
effects, including expression of heat shock proteins and in-
volvement of trehalose [38-42]. In addition, some stress-
induced heat shock proteins are LEA-like [23,43,44]. LEA
proteins are heat stable (reviewed by [45]) and Glazer and
Salame [46] demonstrated that evaporatively and osmotically
desiccated nematodes were able to withstand heat stress.

Our results, which indicate that worm survival decreased
during dehydration, osmotic or heat stresses following LEA
silencing, suggest that Ce-lea-1 is a common component nee-
ded for survival during the examined stresses and further
support the notion of commonality of their molecular mech-
anisms. Conceivably, since LEA proteins are thought to have a
role in the dehydration response [7-20], Ce-lea-I may be a
critical component of the worm’s strategy for tolerating the
water discrepancies associated with dehydration-, osmotic-
and heat-stress conditions.

dsRNA-mediated gene silencing in C. elegans is usually
applied to individual worms, in order to study individual
traits (e.g., proliferation and/or differentiation; recently re-
viewed in [47,48]). In the present study, we examined the
effect of RNAIi on dehydration survival, which is a DJ pop-
ulation trait. One of the major difficulties in the assessment of
the effect of RNAIi treatment on the DJ population arose
from the necessity to examine the F1 generation, since a
subsequent (F2) generation might revert to the wild-type
phenotype [31]. By imposing severe starvation conditions, we
induced the formation of DJs as early as the F1 generation.
Treating a large F1 population with RNAI for gene silencing
resulted in incomplete silencing of Ce-lea-1 expression, and
with only a restricted effect on the phenotype of the popu-
lation, i.e., limited reduction in worm survival during stress
induction and limited appearance of the embryonic lethality
phenotype (for Ce-lea-1 and Ce-lin-53, respectively). How-
ever, treating small batches of worms with RNAi-Ce-lin-53
resulted in a total absence of F1 hatching ([30]; the present
study). These results suggest that RNAIi treatment of large
populations of worms may achieve only a partial effect on the
progeny population.

In conclusion, the present study demonstrated the impor-
tance of Ce-lea-1 expression in the survival of C. elegans under
exposure to dehydration, osmotic or heat stresses. The mech-
anism of stress response is undoubtedly complex: Ce-lea-1 is
just one member of an LEA gene family and other family
members might exhibit similar activity. In addition, other
components are likely to be involved. Further studies should
lead to the comprehensive and detailed understanding of the
molecular mechanisms of stress response.
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