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In this paper we extend our recent work on axial monogenic functions in R™*!
to functions which are monogenic in bi-axially symmetric domains of R?*?. We
show that an integral transform of a wide class of holomorphic functions of a single
complex variable gives monogenic functions of this type. It is demonstrated that
these integral transforms are related to plane wave monogenic functions. A bi-axial
monogenic exponential function is defined using the exponential function of a
complex variable and bounds are obtained on its modulus. Bi-axially symmetric
monogenic generating functions are used to define generalisations of Gegenbauer
polynomials and Hermite polynomials. Finally, bi-axial power functions are
constructed using the above integral transform. © 1994 Academic Press, Inc.

1. INTRODUCTION

We have considered previously [1, 2] functions defined over (m+ 1)-
dimensional space taking values in a complex Clifford algebra /. The
generating vectors of the Cliffford algebra o/ are {e;/=1,2,..,m}
satisfying the defining relations

ee;+ee,=—20,e,, jl=1.,m, (1.1)

where e, is the unit element of the algebra. We denote

x=xpeo+ X, X=) xe, (1.2)
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and it corresponds to a point in R”* . There exist corresponding cylindri-
cal coordinates {x,, p, @} eRx R, x S" ! defined by

x’ m 1/2
,x——-xoeo—kpa*);c?)zé‘pzﬁ;p:|5c’l=|:z x,z] ) (1.3)
=1
We can write the Clifford algebra
M={Za,,e,,;a,,e(€}, (1.4)
A

where

€= €48, €y (1.5)

and A= {a, a,, .., ¢} is an ordered subset of {1,2, .., m}.
The function f defined on an open set 2 of R™*! is said to be left
monogenic when

(0:4+0,)/=0, Vxe®, (1.6)

where 0,=37_ e;(0/0x;). Sommen [1] considered the sub-class of these
functions which have the form

Sulxy=[Ax(xo, p)+ €, Bi(xo, p)] Pi(@),  k=0,1,2,.., (L7)

where the P (X) are inner spherical functions of order %, i.e., the P,’s satisfy
(1.6) and P,(A %)= A*P,(%) for scalar A. They have symmetry about the
x,-axis and are called axial monogenic functions. In our recent work [2]
we showed how such functions can be constructed from holomorphic
functions as given by the following result.

THEOREM 1. Let f be an holomorphic function of complex variable Z on
the line segment {Z=x,+ipt; —1<1<1} for all x=x.e,+pé, in a
domain 2 of R™+!, Then

I'(k +mj2)
(k+m/2—1/2) I'(1/2)

fk(X)Er

le (1= 2y +m2=32 f(xo 4 ipt)(1 — i€, ) dt P(%)  (1.8)

is an axial monogenic function of degree k for all xe 2. ||

Axially symmetric generalizations of the exponential and power func-
tions were defined by taking f(Z) to be of these forms and their properties
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were investigated. Hermite polynomials and Gegenbauer polynomials were
also generalized using a generating function method used previously by
Sommen [1], giving polynomials equivalent to those obtained by Cnops
[3] when considering self-adjoint operators on Hilbert modules.
Monogenic functions in more general bi-axially symmetric domains have
been introduced by Sommen [4] and are related to pseudo-analytic func-
tions [5]. The approach is to consider the splitting R”=R”+ R? and to
denote a general element ¥ of R by X=X, +%,=p,&,+ p,&,, where
o =1%, p»=|%X,], and ¥, eR” X,eR? Inner spherical monogenics
P, ,(X,, X,) have been introduced in [5]. They are polynomials which are
homogeneous of degrees &k in ¥, and / in ¥, and which satisfy

6A;|Pk_,=aisz‘,=0, (1.9)
where
I F P+q P
0. =) e,—; 0, = e —. (1.10)
l 1:21 fox, : 1=§+1 "ox,

One may then define monogenic functions of the form
S (D)=TAx (p1, p2) + D Br i(p1s p2) + D2 Ci i (py,s p2)
+ @G, Dy (15 p2)] Py 1(D133), (1.11)

with A, ,, etc., scalar functions, and they are called bi-axial monogenic
functions of degree (k, /). It is easy to show [5] that f, ; is monogenic if
and only if

0 k 0 I+q-—17
A PN LIRS P

opy P op» P2

0 k+p—l:| l: 0 1]
—t——|D, ,—| ———]4,,=0, (1.13)

I:apl P1 - dp2 P2 !

0 k -1 d I+q-—17
[__+_i_1’___] Bk',+[——L Cor=0,  (114)

apl P1 5P2 p2
[i_i]ck‘,_[i_i B.,=0.  (L15)

op; py op; P2

Taking monogenic functions of the form (1.11) means that we are basi-
cally working with functions of two real variables p,, p,, just as in the case
of a holomorphic function of a complex variable Z= X+ iY. In Section 2
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we demonstrate how the two classes of functions are intimately related by
showing how it is possible to transform a function f of complex variable Z
into a bi-axial monogenic function of the form (1.11), thus generalising the
result given by Theorem (1.1). Another class of monogenic functions which
can be obtained from f(Z) are the plane wave monogenics,

F(Z;u, V)= [+ 7] f({X, i) +i{X, D), (1.16)

where de 877", §e897", and (X, ) =7 ,ux; (% 0>=2717  vx,.
Here S7~ ! and S? ! are the unit spheres in R? and RY, respectively.

The monogenicity of F(X; i, ©) follows from the Cauchy—Riemann equa-
tions satisfied by the real and imaginary parts of f(Z). It is demonstrated
in Section 2 that the bi-axial monogenic functions we constructed may also
be obtained by integrating F(X; i, ©) with respect to (i, ¥) over suitable
domains.

In Section 3 we construct the bi-axial exponential function &%7(%)
corresponding to taking f(Z)=e” and then obtain an upper bound on its
modulus. A topic discussed by Sommen [1] was the generalisation of
Hermite polynomials H,(Z) to polynomials H,, ,(X) using an axial
monogenic generating function such that {H,, ,P.;k,neN} form an
orthogonal basis for L,{R™;exp(—p?/2)}. These polynomials were also
considered in [2] and a similar method was used to construct generalisa-
tions of Gegenbauer polynomials, C'*) (%) such that

ok

X X
{ein (reim) 7 (em)omem)

form a basis for L,{R™; (1 + p?)~lx*+m2+k+121} In Section 4 we repeat
the process by starting from a bi-axial monogenic generating function. We
find that the polynomials we obtain are very closely related to those above
and are orthogonal on R”.

Finally, in Section 5 we consider the bi-axial monogenic power functions
starting from f(Z)= Z* for real a. Because of the singularity that f(Z) then
has at Z =0 when « is non-integer, we have to modify our definition of the
corresponding integral transform by deforming the contour of integration.
We then find expressions for these bi-axial monogenic power functions in
terms of hypergeometric functions ,F,[a,, a;;b,; Z].

2. A BiaxiaL MoONOGENIC TRANSFORM OF HOLOMORPHIC FUNCTIONS

Our method for constructing bi-axial monogenic functions from
holomorphic functions is contained in the following result.
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THEOREM 2. Let f be a scalar valued holomorphic function of complex
variable Z on the rectangle {Z=p,t+ip,s; —1<s,t<1} for all X=
p1@, + p, @, in a domain & of R?* 9. Then

1 1
Saa®)=CE1 [ [ florttipas)(1 =) =3 (1 g2y vt

x {1 4@, t+id,s+ i, dyst} di ds Py (%, %) 2.1)

is a bi-axial monogenic function of degree (k, 1) for all Xe D, where C{] is
a scalar normalisation constant to be defined later.

Proof. Taking the normalisation constant to be understood for the time
being, the function defined in (2.1) has the representation (1.11) with

1Al
Ak,l(PlaP2)=Pl1(P12_|‘ 1f 1f(th+iP23)(l—tz)k+(p73)/2

x (1 —s2)/*@=32 g gt (2.2)

1 1
Buiprpa)=piot [ [ Slprttipss) (1 =)o

x (1 — s2)/* @302 gs gy (2.3)

1 1
Cuilpi, p)=p%ph | lf Spittipys)is(l =gyt

x (1 — s2)1+@=372 g dy (2.4)

1 1
Diilprp)=ptph [ [ flput+ipys)ist(l— e tnoa

x (1 —s?) =32 ds dr. (2.5)

It 1s straightforward to show using direct substitution and integration by
parts that these quantities satisfy (1.12) to (1.15) so long as f(p, 1+ ip,s)
is differentiable for all values of p,t+ ip,s corresponding to ¥ in £ and
—1<1t s<1. The function f,,(X¥) is then monogenic for (¥) in this
domain. ||

In our previous study of axial monogenic functions [2] we showed that
the integral transform (1.8) is obtained by integrating a plane wave
monogenic over the unit sphere S”~! in R™ Here we demonstrate the
corresponding result for the integral transform (2.1).
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Let g(Z) have necessary differentiability properties and integrate the
corresponding plane wave monogenic [# + 7] g({X, @) + i{X, U')) over the
unit spheres S~ ! in R” and $7! in R¢ after multiplication from the right
by P, (i, ¥). This defines the integral transform

g®=] [ @) g0+ iR T))
x Py (i, 0)d? i d'p. (2.6)

Now P, ,(d, v) are spherical harmonics of degree k in i and degree / in ¢
while #P, (i, ¥) is a spherical harmonic of degree k + 1 and /, respectively.
Similarly, ¥P, (i, ¥) is a spherical harmonic of degree k in # and /+1
in §. The Funk—Hecke theorem [6] may be applied to the RHS of (2.6) to

give
R 1 1 .
gk,[(x):wp-lwq—l-[ ] J lg(p,t+ ip,5)

X[Pryr, ()P () By +iP, () Py () D]
x(1—12)#=32(1 —s)e =32 g ds P, (D, &5), (2.7)
where t = (i, @, ), s= (¥, d,), and w, ;, w, , are the areas of the unit

spheres in R”, RY respectively. The P, ,(¢) are Legendre polynomials in
p-dimensions and are given by the Rodrigues formula,

N [M(p—1)2 , d*
Pk,p(t)=<_§) r[[kip(p_){)/]zzl (1_[2)(3—p)/25_k_(1_t2)k+(p—3)/2. (28)

Substituting from (2.8) in (2.7) and integrating by parts, one arrives at

gk,/()-c.)=wpf lwqlep,qu,lil(_)k+,

1 1
xpiph [ [ 8T it +ipas)(1 = )R (1 gty

X {1+ id,s} dtds Pp (&), D), (2.9)
where
N, =(—1/2)T(p—12)/T[k+ (p—1)/2]. (2.10)

We can similarly transform the function (1 + i#0) g({X,, i) +i{(X,,0))
which is also a plane wave monogenic. Carrying through the same
reasoning we find
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G, i(%) EJSH LH (1 + D) g(<R,, @) +i{ Ry, D) Pe(il, ) d?~ ‘i d7~ 17

o k
=w, 0, (N, N, (=)

q—1
1 1
xphpb [ [ g% 014 ipas)(1 = 2yer oI
—1v—1
X (1= 52+ @32 {1 4 i@ @Bys1} di ds Py (&1, B). (2.11)
Adding (2.9) to (2.11) we obtain a bi-axial monogenic function of the form
(2.1) with f(Z)=g**(Z). We have demonstrated therefore that the

integral transform (2.1) may be obtained by averaging a monogenic plane
wave.

3. Bi-Ax1AL MONOGENIC EXPONENTIAL FUNCTION

As in the axial monogenic case, we now define a bi-axial monogenic
exponential function &% ¢ by substituting f(Z)=e” in (2.1):

gﬁ’_?(ﬂn P2) Plc,[(CDla @;)
1 1
EC£.7pll(p12J. j ep|1+ipzs(l__12)k+(pu3)/2(1_s2)1+(q—3)/2
' ~-1Y—1
X {1+ @t +id,s + i, B,y st} dt ds Py (B, B5). (3.1)
The integrals over s and ¢ in (3.1) may be separated. Using the standard

integral representations for Bessel functions and modified Bessel functions
given by

T
MO =5y 1/2)r(1/2)L (1 —52)" =12 ¢i#5 g (3.2)
and
_ (p/2)" ! 2y —1/2 pt
IV(p)—F(v+1/2)F(1/2) B (1=~ "2 er dt, (3.3)

and defining the normalization constant by

Ik +p/2) T'(1+q/2)
nl Tk +(p—1)/21T'li+(g—D/2T

P9 —
Ck,I -
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we find that
41, ) =27 PO ket py2) T+ 4/2) )3

X[esppo (P Tiv g 1(P2) + L o P1) T g2 - 1(P2) By

=1, +p/271(91) J/+q/2(l)2) 0P —Ik+p/2(P1) it ar2(p2) @D, ]
(3.5)

This is our definition of the bi-axial exponential function and it combines
two bi-axial exponential functions defined by one of us previously [7]. We
have chosen the normalisation constant C%{ as in (3.4) so that

EVNpy, p2)xpiph (3.6)

when p,, p, = 0. We keep this definition of C#{ for the remainder of this
work.
The norm of the Clifford number a=3Y , a e, is defined by

lal = [(aa)o| "2, (3.7)

where (b), is the scalar part of b and

a=Y até, (3.8)

A
with
éA__'eaz/“'eml(—)[' (39)

We now obtain an upper bound to |£49(p,, p,)| for all p,, p,>0. From
the definition (3.7) and the expression (3.5) for the bi-axial exponential
function,

16 54(p 15 p2)I
=22kt Dpra—dp2=rp2=a(k 4 p/2)? I'(l + q/2)*

X {Ik+p/2— 1{P1)2+Ik+p/z(P1)2}{J/+q/2—1(»02)2+J/+q/2(Pz)2}-
(3.10)

In our previous work [2] we derived the bound

p3 A+ q/2—1)2)
' 2r(l+q/2) F2l+g—1)

J1+q/2-71(P2)2+J/+q/z(P2)2< (3.11)



SPECIAL BI-AXIAL MONOGENIC FUNCTIONS 197

We can obtain similar bounds for the modified Bessel functions from
relation [8],

) 2 rn/2
(p) f 1,,(2p cos 6) db. (3.12)

Yo

Therefore,

Ik+p/2~l(pl)2+Ik+p/2(p])2
_2(2k +p—1)
Py

_ 22k+p—1) f"ﬂr (p,cos 8)
TR r2k+p—1/2)p o V4 cos 0

xe—ZlmcosB(l—[2)2"""’"’3/2 dt de, (3]3)

n/2
J. I+, 1(2p, cos B)/cos 6 db
4]

2k+p—1

where we have used the representation (3.3) for the modified Bessel
function. Bounding e ~2*¥1°*? by ¢?1, the integrals may be expressed in
terms of beta functions, giving

P3P 2k +p/2—1/2) €
7Tk +p/2) T2k +p—1)

Ik+p/2-l(p1)2+1k+p/2(p1)2< (3.14)

Substituting the bounds (3.11), (3.14) in (3.10) and using the duplication
formula for gamma functions,

16%1(p1, P2l <e”pipy,  p1, P2 20, (3.15)

which is the required bound for the bi-axial exponential function.

4. B1-axiaL HERMITE AND GEGENBAUER POLYNOMIALS

Before considering the existence of the generalization of Hermite and
Gegenbauer polynomials to the bi-axial case, we consider integral power
bi-axial monogenics obtained by substituting f(Z)=2/, j=0,1,2, .., in
(2.1). The discussion of non-integer powers involves some modification of
the integral transform in (2.1) and is delayed until the next section.

We therefore obtain the definition

RET(py1s p2) P (B4, 655)
1 1
=C£:7p’fp§j j (plt+ip2s)j(1_t2)k+(p*3)‘/2(1_s2)1+(q73J,'2
—1Y

x {1+ By 1+ idys + i, Byt )} di ds Py (B, @,). (4.1)
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We need the behavior as p, — 0 of the powers
FLG+ )21 Ttk +p/2) pi* o5
ra2)rtk+(p+n21 7

T(jj2+1) Itk +p/2) %107 'p)
ra2)rte+(p+j+ 021

REL,(p1s p2) j=024, - (42)

Jj=135 ., (43)

which follows straightforwardly from the representation (4.1).
We now define bi-axial Hermite polynomials H, ., ,(¥,) by requiring
that

on

— _ 52 & — X - —-
f(x)Ee P2 Z Hn;k‘l;p,q(xl);l—?Pk,l(xhx2) (4'4)

n=90

is monogenic and has the behaviour as p, — 0 of the form
SR me 2P, (3, %,) = phphe 1P, (@), By). (45)

An alternative expression for f(X) is obtained by expanding by RHS of
(4.5) in powers of p, and then replacing these powers by the monogenic
power functions R{% (p,, p,). We then find

—1/2y I'(1/2) 'tk + p/2
f(f)—Z( /2) I(1)2) I'(k + p/2 + )

‘/:Or(j+ OIG+ 1/2)F(k+p/2)R 2j(pl’p2)Pk‘1(a‘31’a32)a (4.6)

and it is straightforward to check using (4.2) that f(X) has the correct
limiting behaviour as p, — 0.

Since the RHS of (4.5) has a unique monogenic extension to domains
where p,#0 [9], the expressions (4.4), (4.6) for f(X) are equivalent. The
generalised Hermite polynomials are then obtained by picking out the
coefficients of powers of p, on the RHS of (4.6) using (4.1) for the
R 45,(p(, pa). The coefficient of p3 Py (X, X;) for n=2r, r=0,1,2, .., is
then

_ rU+g2)(—)
F(1/2) T+ (p— D21 T+ (= 1)/2]

xi (—12Y Ik+p2+ j) T 2j+ 1) p¥ =¥
S TGAD) IQr+ 1) 12 =2r+ 1) I(j + 1/2)

J)

_

[y R (L @YD (14 i, G yst) dit s
1 H

(4.7)
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The integrals may be expressed as beta functions and the contribution from
the @, @, term is zero. Setting L = j —r and using the duplication formula
for gamma functions, it is easy to show that this coefficient
I'(l+q2) Mk+p/2+7r)
= ok 24rk+p/2; —p3/2
TG+ D) Tk +p2) T+ a2+ r) DK TP KSR =p1/2)
_ Ti+q2)Mk+pl2+r)
2I(r+ 1) Nk +p/2)yI(I+q/2+7r)

evﬂ%/%p(—r; k+p/2;p31/2), (48)

where ®(a; b; Z) are confluent hypergeometric functions. Comparing this
coefficient with that of p3 P, ,(X,, ¥,) in (4.4), we finally arrive at the result

_(=2) (k+p/2),(172),
(1+4q/2),
r=0,1,2,.. (4.9)

HZr;k.l;p,q(fl) d)(—r’k+p/2’pf/2)’

Similarly, it may be shown that
oy (=2) (k+p/2+1),(1/2),,,
H kg =
2r+1,k./,p.q(x|) (U+q2+1),.,
XX, D(—r;k+p/2+1;p3/2), r=0,1,2,.. (4.10)

It should be noted that the /, g dependence of these polynomials occurs
only in the coefficients outside the hypergeometric functions. In fact,
these generalised Hermite polynomials are just constant multiples of the
H, ,«(%) obtained previously in the axial case [2] and more precisely,

. (=) (1/2)

HZr;k,I;p,q(xl)='_(ﬁq_/2—)—£H2r,p,k(5€1)s r=09 la 2a waoy (411)

and

(=) (1/2), .
(I+4/2), s

The generalised bi-axial Gegenbauer polynomials are similarly obtained
by requiring

Hy, . l;k,l;p_q(f1)= H,y,, 1,p,k(551)a r=0,1,2,.. (4.12)

o 1 J2
%)= (1 2y—[x+k+I+(p+qg)2—1]
fE)=(1+p}) T ()

j=0

X . L.
XC;;;,q;k,/[HW] XLP (X1, X5) (4.13)
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to be monogenic and have the behaviour as p, — 0 of the form

SR (14 p}) lerkrtr v a2 =t plp P (@4, &)

o (—’(a+k+ 2+q/2_1)r ) ) i
-2 F(ri/l) PYTROLP (B, Bo). (414)
r=0

Using (4.2) and the fact that as shown in [9] the RHS has a unique
monogenic extension to domains with p, #0,

(=) (e+k+1+p2+4¢/2-1), (k+p/2),
“~ I(r+1)(1/2),

X RE15(p1s p2) Pr (D), @) (4.15)

Substituting from (4.1) and (3.4),

(= )V(x+k+1+p2+q2—1), I'k+p/2+r)(g+1/2)
S M2y e+ 1) I(r+ 1/2) Tk + (p—1)2]1 T+ (¢ — 1)/2]

IngE

J(x)=

y 22 F2r+1) p7" "(ipy)"
I'n+1)I2r—n+1)

n=0

xJ-l Jl g1 — ) P32 (] 2) (a3
—1Y
X {1+ @ t+iD,ys+ i, B,st} dt ds Py (%q, X5). (4.16)

The integrals over the terms proportional to &, and to @&, vanish. The
integrals over the other terms give beta functions and thus may be used
with the duplication formula for gamma functions to prove that the
coefficient of p%, j=0, 1,2, .., on the RHS of (4.16)

(x+k+1+p2+q/2-1),(k+p/2),
I+ DU +4q/2);

xS F(a+k+14+p/2+q/2+j— 1, k+p/2+ j;k+p/2; —p1) Pr (31, %),
(4.17)

where ,F(a, b;c; Z) is the hypergeometric function. But we have the
standard identity

JFia, by e; Z)=(1—2Z) = ,F\(a, c—b: ¢; ZN(Z — 1)). (4.18)
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Using this in (4.17) and comparing with (4.13), it follows that

Cf‘zj:)r’.q;k,l [ﬁz“)’ﬁi]
(=Y (x+k+1+p2+q/2—1),(k+p/2),
(I+4¢/2), I(j+1)
X Fi(a+k+1+p/2+q2+j—1, —j; k+p/2; p1/(1 + p])),
ji=0,1,2, .. (4.19)

Similarly,

x f]
C(ZJL» Lip.g:k.d |:(1 + p%)uz]

(Y (@+k+l+p2+q2-1),, (k+1+p/2)
I+ 00 +4q/2).

- 2
S B A P
><(1+p%)1/2 oF, <fx+k+l+p/2+q/2+1, j,k+1+p/2,]+pf>,

7=0,1,2, .. (4.20)

Since the second parameter of the hypergeometric function on the RHS of
(4.19) and of (420) is a negative integer, it follows that C% . .
C2_’1('J+1;p.q;k.1 are polynomials of order 2j and 2j+ 1, respectively, in
/(14 p1)"2

As in the case of Hermite polynomials, these bi-axial Gegenbauer poly-
nomials are related to those obtained previously in the axial case [2]

which we denoted by C*) ,[%,/(1+ p3)"?]. In fact,

(T+p)"7
(4.22)

n;m,k
X (=) ()2), - X,
C(%) A 1 ’:|= JC(af.+q/2+1 vy 1 , 421
2""-"**"[(1+p%)“ (I+q/2), ¥ TETHE] R
3 — )1 (1)2), , X
C(27)+l:p.q;k.l|: ol ]2( ) (1/ )j+1 Clrraiz+i=12) |:—x’ ],

(+pD"] (+q/2),, —7HE

for j=0,1, 2, ... As expected, the bi-axial polynomials reduce to the axial
polynomials in the case when ¢=1 and /=0 as the latter corresponds to
the axial monogenic case.

409/185/1-14
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5. BI-AXIAL MONOGENIC POWER FUNCTIONS

We now consider the bi-axial monogenic functions corresponding to
f(Z)=Z* with a non-integer. Unfortunately, if we substitute this into the
integral transform (2.1), we see that the integrand has a singuiarity at
s=1t=0 and is therefore not differentiable at this point. To avoid this
problem we consider an alternative definition of the bi-axial monogenic
function f, ,(X) by deforming the contours of integration as was done in the
axial case [2]. Instead of integrating along the straight line from 1= —1 to
1= +1 we integrate over the semi-circle {t=¢ “;0<0<n} and similarly
for s. Then we obtain the definition

S == [ flpre " +ipye #)(1 —e 202 (1 g2y a 02
00
x{1+d,e " +id,e” % +id,de TP} e+ dg db
X Pp (X, Xy). (5.1)
It is straightforward to prove as in Section that this is a bi-axial monogenic

if f(Z) is holomorphic when Z=p,e " +ip,e " for all 0< 0, ¢ <n. Let
us consider the case when f(Z)=Z" and p, < p,. Now

Z=p,cos 8+ p,sing+i(—p,sind+p,cos @) (5.2)

and is real when

cos ¢ =L sin 6. (5.3)
P2

In that case

Z=+p, /1 —sin?0+p, /1—%sin20>0 when p,>p,. (54)
2

Therefore f(Z)=Z" is holomorphic for all 0< 6, ¢ <=, as required.
Substituting this function in (4.1) we have to derive the following
integrals:
1, :j j (pre +ipye #)*(1—e 20)k+r-32
0 Y0
x(l_€—2i¢)l+(473),°2efi(¢+())d¢d0 (55)

12=J. j (plewil)_i__l-pze—fiei)a(l__e—Zi())k+(pf3)/2
0 Yo

X (1=~ 20)/+ =312 o620 gy g (5.6)
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I3=J' f (ple—i6+ip2e—i¢)u(l_e—ZiG)k+(p~3)/2
0 Y0
x(l_e—2i¢)1+(q—3)/2e—ri(2¢+6)d¢d0 (57)
I4=J J. (ple—i()_'_ipzefi:ﬁ)az (1 _e—2i0)k+(p—3)/2
0 Y0
X(l_e—2i¢)l+(q73)/2€ i(2¢+20)d¢d9 (58)
We now obtain expressions for these integrals in terms of hypergeometric
functions demonstrating our method for 7, and just presenting the results

for the other integrals.
The binomial expansion may be used for p, < p, to write

L=p1Y f"re“m’zw[—iew9’9—‘]] fat])
=070 70 gl TG+ INe—j+1)

X (1 _e—2i0)k+(p—3),f‘2 (1 _e—ZI¢)/+|q73)/2 €7i(¢+0)d¢ do (59)

i Do+ 1)(—ip,/py)’

= 1 _ N
Pt L TG+ D Ma—j+1)
XU"ewuﬁjn(l e 2+ (4=3)72 d¢]
0
xl:jneie(j+l’(l_62io)k+[p3)/2 do:l (510)
V]

But from standard tables of integrals [10],

f" e ETI (] _ o= 28I+ =302 gy
0

n
:J‘ e1¢(~a+1+ l/ZAI—Aq/Z)(zl‘)I+(q~3)/2 Sinl+(q—3)/2 ¢ d¢
0

mi eI+ (g —1)/2]

= 5.11

TTG+ 1=2)2] T+ (d—j+2)/2] G0
(r[1+(q— 1)/2] IT1 —1+(j—a—q)/21)

TR xsinzw[(j—a—gq)/2—1] (5.12)

i+ 1-a)/2]

where in the last step we have used the reflection formula for gamma
functions.
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Similarly,

J"e, D] g 2O)k+ (P =302 g
_ T+ (p-1)21 TG+ 1)/2] sin[(j+ 1) 7/2]
PHIC(j2+ k + p/2) '

(5.13)

Substituting in (5.10),
Ii=—p5Na+1)ITI+(qg—1)2) I'lk+(p—1)/2]

<ij2(—p1/Pz)j1"[1—1+(j—a—q)/2] )
§ i xsin[(j—a—21—q)n/2] FL(j+ 1)/21sin[(j+ 1) n/2]
<o TUHDTa—j+ ) I+ 11—a)2] TL(+ 2k +p)/2]
(5.14)

We note that the terms for odd j are zero so that by substituting j=2r,
r=0,1,..,

1y=p3l(a+ 1) T+ (g — 121 TTk+ (p—1)/2]
((—)’“I"(r—l+1——a/2—q/2) )
5 x I(r+1/2) sin[ (o + 2/ + g) /2]
L T+ ) Ia—2r+ ) Ir+ 12— o/2) T(r + k + p/2)

(p1/p2)™.

(5.15)

Using the reflection and duplication formulae for gamma functions,

(Pir(wr 1) I+ (g—1)/2] F[k+(P—1)/2]>
x sinf(a+ 2/ + ¢) n/2] sin na

= a2*+!

N i I(r+1-1—g/2—9/2) Ir—o/2)[ —p3/p3]"
o C(r+ 1) I(r+k+pj2)

(5.16)

(p§sinnasin[(a+2/+q)n/2] I'a+1) >
x I+ (g—1)2] I'lk+ (p—1)/2]
2**nrk + p/2)

« I(1 =1 — /2 —2/2) [(—/2)
X F {1 —1—q/2—a/2, —a/2; k + p/2; —p?/p3}. (5.17)
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A final use of the reflection and duplication formulae for gamma functions
leads to the result that

— ' 2p2 [ (a+1)/2] ITI+ (g —1)/2] I'Tk + (p — 1)/2] cos na/2

= TU+q/2+a/2) [k + p/2)
X F (1 —1—gq/2—a/2, —a/2; k + p/2; —p}/p3). (5.18)
Similarly,
J _w'p3I(af2 +1) I'TI+(q—1)/2] I'Tk + (p—1)/2] sin /2
2 T(l+q2+a2—12) Nk +p/2+1)
X(p1/p2) oF1(3/2—1—q/2— /2, 1/2—a/2; k+ p/2+ 1; —p3/p?).
(5.19)
i —in'Ppr (a2 + 1) I'[1+ (g —1)/2] I'Tk + (p—1)/2] sin na/2
} I(l+g/2+a/2+1/2) I'(k +p/2)
X F (12~ 1—q/2— /2, 1)2 —2/2; k + p/2; —p}/p3) (5.20)
and

in'2p2Ma/2 + 1)0(/2) I'T1+ (g—1)/2] I'lk + (p— 1)/2] cos na/2
- TU+g2+o02) Ttk+p2+1)

X (py/ps) Fy(1—1—gq/2—a/2, 1 —0/2;k+p/2+ 1; —pi/p3).  (521)
Substituting in (5.1) we find that the bi-axial monogenic obtained from
AZ)=2Z"is

1,

fiZy=a'"2ps I+ (g —1)2) I'Tk+ (p—1)/2]
I'T(x+1)/2] cos nat/2
{[’(1+q/2+a/2)F(k ¥ 7p/2)
s Fi(1 ~ 1= g/2—aj2, —a/2; k +p/2; —p?/p3)
. Io/2 + 1) sin 7or/2
TN U gz re2— 1) Tk+p2+1)
X (p1/p2) (32— 1—q/2— /2, 1/2—~ /2 k+ p/2+ 1; —pi/p3)
. I'(a/2+ 1) sin na/2
T U2 v a2+ 12) Tk + p2)
x o Fy(1/2—1—q/2 —0/2,1/2— /2, k + p/2;— p}/p3)
. I(o/2 + 1)(/2) cos ma/2
O T v a2y Tk P2+ 1)

(pi/p2)

X o F (1 —1—q/2—a/2, 1 —o/2; k+p/2+ 1; —pf/pi)} P (X1, x3)
(5.22)
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Si
m

nce the conditions (1.12) to (1.15) for f; ,(¥) in (5.1) to be a bi-axial
onogenic only couple the scalar with the bivector component and, respec-

tively, the two vector components together, we can change the signs of the
vector terms in (5.2) and obtain new bi-axial monogenic power functions

giX)= — [, — &, 1, — idy 1y + i, &, 1, ] Py (X, X,). (5.23)

These may be combined with the /{*)(Z) to produce bi-axial monogenics
which are proportional to p5 or p5@, as p; — 0. Such combinations would
correspond to the “inner” and “outer” power functions discussed in the
axial case [2].

2.
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