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A novel numerical scheme is presented for solving the problem of two dimensional Stokes 
flows with free boundaries whose evolution is driven by surface tension. The formulation 
is based on a complex variable formulation of Stokes flow and use of conformal mapping 
to track the free boundaries. The method is motivated by applications to modelling the 
fabrication process for microstructured optical fibres (MOFs), also known as “holey fibres”, 
and is therefore tailored for the computation of multiple interacting free boundaries. We 
give evidence of the efficacy of the method and discuss its performance.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The topic of this paper is two dimensional free surface Stokes flow driven by surface tension on its boundaries. While, 
at first sight, the two dimensionality of the problem might appear to render it of little practical or physical significance, it 
turns out that it plays a crucial role in a wide variety of low Reynolds number flow situations in the glass industry where 
thin threads, fibres and capillaries are fabricated by means of a drawing technique involving slender viscous fluid threads. 
Under a natural asymptotic approximation based on that slenderness, the two dimensional free surface Stokes flow problem 
considered here arises naturally in the mathematical models, often “decoupled” to a large extent from a very different 
physics occurring in the transverse, or axial, “pulling” direction. It is therefore a problem worthy of detailed investigation.

Actually, much theoretical and numerical work has been done on this free boundary problem over the past several 
decades, much of it motivated by the study of so-called “viscous sintering”. In this process, a granular material is heated 
causing adjacent particles to coalesce under the effects of surface tension. Most studies have focused on so-called “unit 
problems”, as a first step in developing “a phenomenological theory for macroscopic systems” [18]. And although the 
surface-tension-driven Stokes flow problem is a highly nonlinear free boundary problem, even in two dimensions, it is 
remarkable that several exact solutions to it are known for special planar geometries [11,26,31,7,4,5]. For general initial 
conditions, however, and especially for general multiply connected domains, numerical methods must be used. The exis-
tence of non-trivial exact solutions (even for multiply connected geometries [4]) is, nevertheless, a significant advantage in 
providing non-trivial quantitative tests for numerical schemes.

Without exception, the derivation of exact solutions to this problem relies on a complex variable reformulation of the 
problem and use of the powerful results of analytic function theory, including conformal mappings, to provide closed-form 
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descriptions of the time-evolving interfaces. The nature of all the known exact solutions is that the functional form of an 
initial conformal mapping is preserved under evolution; this implies that it is necessary only to track the evolution of a 
finite set of time-evolving parameters appearing in these mappings in order to determine the free surface evolution. Given 
the central role played by complex analysis in the exact solution schemes, it seemed to us to be appropriate to explore the 
formulation of numerical schemes based on that same mathematical approach. This is the topic of the present paper.

The first numerical studies of surface tension driven Stokes flows made use of finite element methods [27,13,14]. How-
ever, because inertia is neglected in Stokes flow, it is only necessary to track the evolution of the free boundary and 
boundary integral methods have become the preferred approach. Kuiken [18] was one of the earliest expositors of these 
methods; an array of related numerical studies soon followed [1,34,33,22–24], including for multiply connected domains 
having more than one boundary [32,25]. A drawback of many of these methods was that regions of high curvature in the in-
terface can cause difficulties. Kuiken acknowledged that “initial shapes showing more extreme curvature gradients. . . cannot 
be dealt with by the boundary-element method in its present form” [18]. Van de Vorst and Mattheij [33] noted that the 
problem is ill-conditioned when the contact surfaces of the particles are small, requiring a special algorithm for redistribut-
ing nodes along the boundary. A significant advantage of describing free interfaces using conformal mappings is that they 
can be ideally suited to high curvature regions. Indeed, several of the known exact solutions [11,5] describe the surface 
tension driven “smoothing” of near-touching circular discs which typically involve isolated regions of very high curvature.

Stokes flow problems have already been addressed using complex variables. Greengard, Kropinski, and Mayo [9] have 
described a boundary integral method based on a complex variable formulation and have formulated it to tackle regions 
of arbitrary connectivity. In contrast to the free-boundary problem we consider, these authors focused on problems where 
the velocity is specified on fixed boundaries. A boundary integral method for the free-boundary problem was introduced 
by Kropinski [17] and improved by Ojala and Tornberg [21]. Chakravarthy and Chiu [3] used a boundary integral method 
to address the same problem that has motivated us (see §2) – the fabrication of so-called microstructured optical fibres (or 
MOFs) – and they also allow for free boundaries and multiply connected regions. These studies make use of the Sherman–
Lauricella integral representation of the solution of the biharmonic equation that is perhaps more familiar in the study of 
plane elasticity [20]. The previous work which is closest in spirit to ours is the numerical approach to studying surfactant 
effects in two dimensional free surface Stokes flow due to Siegel [28,29] which focused on simply connected fluid domains. 
Those methods also make use of a complex variable formulation combined with a conformal mapping description of the 
boundary. Our approach is its natural generalization to more complicated, multiply connected domain types.

Complex variable methods may initially appear restrictive in that they can only be used for two dimensional problems. 
However, a significant advantage becomes clear when one considers the curvature term in the dynamic boundary condition 
(equation (2) to follow). Computing the curvature requires two spatial derivatives, with respect to arclength, of a bound-
ary parametrization (d2z/ds2, in complex notation, where s is arclength). However, it will be seen below that a complex 
formulation of the dynamic boundary condition (6) can be integrated once with respect to s, resulting in an equation that 
involves only first arclength derivatives (i.e., dz/ds). Thus, because complex variable methods are based on the tangent to 
the boundary rather than its curvature, they lead to equations that can in theory be solved more accurately and with less 
severe time stepping constraints when high curvature regions of a boundary are present. The difficulties associated with the 
curvature have been noted before by other researchers, beginning with Hou, Lowengrub, and Shelley [12], who introduced 
a formulation to remove the stiffness associated with this term for the problems of free surfaces in Hele-Shaw and invis-
cid flow. The complex variable representation used here has the advantage that the second derivative is eliminated by an 
integration that arises naturally, without requiring special attention to this problem.

Conformal mapping may appear to offer no practical benefit over boundary integral methods. However, it does con-
veniently solve some problems that plague these methods. In systems where compressible bubbles arise, even in two 
dimensional flows, the standard boundary integral formulations of Stokes flow suffer from certain mathematical problems 
such as the appearance of hypersingular integrals in the standard formulation [23] (see also [24]). In addition, for bound-
aries with regions of high curvature, boundary integral methods must take special steps to ensure that the boundary points 
remain properly distributed. For instance, this motivated Kropinski [17] to develop a technique for choosing the tangential 
velocity that ensures the points remain equally spaced. Conformal mapping circumvents both of these complications.

In this paper, we therefore describe a novel numerical approach to the Stokes flow free boundary problem based on 
the very concepts of complex analysis and conformal mapping on which the exact solution structure is based. It can be 
used to compute solutions for initial conditions for which exact solutions are not known. It appears to circumvent many 
of the numerical difficulties, just described above, associated with alternative schemes, such as the standard boundary 
integral formulations of Stokes flow for compressible bubbles. A second reason for our work is that the exact solutions 
for compressible bubbles given by [4] lie at the heart of the so-called “elliptical pore model” recently presented in [2]
and devised for the purposes of modelling the fabrication process for optical fibres without the need for full numerical 
simulations. Indeed the numerical scheme of this paper was devised for the purposes of testing our recent modelling work 
on the drawing of microstructured optical fibres [2]. A brief outline of this application is described next.

2. Application to microstructured optical fibres

Microstructured optical fibres, or MOFs, are a relatively new breed of optical fibres where light is guided by the geometry 
of an array of channels, or “holes”, running along the length of the fibre and whose geometry affects the light transmission 
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Fig. 1. The numerical method computes the evolution of the conformal map from a multiply connected circular region in a parametric ζ plane (left) to a 
typical fluid region in the z plane (right). The map z(ζ, t), as well as the centers δm(t) and radii qm(t) of the circles in the preimage domain, change as the 
shape of the fluid region evolves in time and must be determined.

properties in ways that can be adapted by appropriately tailoring the geometry of those channels [15]. The modelling ap-
proach adopted by the authors in [30] rests on two key observations. For slender fibres, the three-dimensional fibre drawing 
problem splits into two simpler problems, a one-dimensional problem in the axial direction (the “stretching” problem) and 
a two-dimensional problem in the cross-plane (the “sintering” problem) [6]; it is the latter problem that forms the focus 
of the present article. As noted in [6], the cross-plane problem in fibre drawing turns out to be simply the “classical two-
dimensional Stokes flow free-boundary problem” driven by surface tension, with unit surface tension, area, and viscosity, 
evolving with respect to a “reduced time” variable τ . This motivated our efforts to devise a fast, easy-to-implement method 
for solving this problem numerically for arbitrary multiply connected cross-plane geometries. The structured cross section 
in microstructured fibres requires a method capable of dealing quickly and effectively with multiply connected regions with 
free boundaries. Recently, a so-called “elliptical pore model” has been introduced [2] aimed at accurately approximating the 
solution to the two dimensional surface-tension-driven Stokes flow problem in the case where the region is a circular disc 
with a finite number of well separated elliptical holes. It is for the purposes of testing this approximate model against full 
numerical simulations that the method of this paper was devised.

3. Complex variable formulation

Consider slow viscous flow in a time-evolving fluid region D(t) governed by the Stokes equations,

−∇p + μ∇2�u = 0

∇ · �u = 0,
(1)

where �u(x, y, t) is the fluid velocity, p(x, y, t) is the pressure, and μ is the viscosity, uniform in the fluid region. It is 
required to solve for the evolution in time t of the fluid region D(t). On the right in Fig. 1 a typical (quadruply connected) 
fluid region is shown; in addition to the outer boundary it has three internal closed boundaries. On the m-th free boundary, 
surface tension acts and an external pressure pm is imposed so the dynamic and kinematic boundary conditions are given, 
respectively, by

−pni + 2μεi jn j = −γ κni − pmni, (2)

d�x
dt

· �n = �u · �n. (3)

Each boundary can be described by a closed curve �x(s, t) where the arclength s is used as the natural parameter. εi j(x, y, t)
is the rate-of-strain tensor, ni(s, t) the unit normal, κ(s, t) the curvature, and γ the surface tension coefficient. For fibre 
drawing, the cross-plane problem is to be solved with μ = γ = 1. For other applications, the constants μ and γ can be 
eliminated from the equations and boundary conditions by scaling lengths by some characteristic length L, pressures by 
γ /L, and time by μL/γ . This allows the problem to be solved in complete generality with μ and γ set to 1, which we do 
here.

For two dimensional incompressible Stokes flow it is possible to describe the flow in terms of a stream function ψ(x, y, t)
satisfying the biharmonic equation [19,31],

∇4ψ = 0. (4)
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Introducing the complex variable z = x + iy, the general solution to (4) can be written [19]

ψ = �[z f (z, t) + g(z, t)],
where f and g are two functions that are analytic in the fluid. They also depend on time because D(t) is evolving in time, 
but they are determined instantaneously by the current shape of the fluid domain (the flow is “quasi-steady”). The fluid 
velocity, pressure, vorticity, and rate-of-strain tensor are given in terms of f and g by [19,4]

u + iv = − f (z, t) + z f ′(z, t) + g′(z, t)

p − iω = 4 f ′(z, t)

ε11 + iε12 = z f ′′(z, t) + g′′(z, t).

(5)

Here, primes indicate derivatives with respect to z.
It can be verified that the fluid stress on a boundary, −pni + 2εi jn j , is given by

2i

(
∂ H

∂z

dz

ds
+ ∂ H

∂z

dz

ds

)
where we define

H(z, z, t) ≡ f (z, t) + z f ′(z, t) + g′(z, t).

The fluid stress on the left hand side of (2) is therefore recognized to be a total derivative with respect to arclength s. 
Likewise, in complex notation, the curvature and pressure terms on the right hand side of (2) are d2z/ds2 and ipmdz/ds, 
respectively, and these are also total s derivatives. (2) can therefore be integrated along each boundary, resulting in an 
equation involving only first derivatives with respect to s. This feature reduces any time-stepping constraints and mollifies 
any stiffness associated with regions of high curvature in the fluid interfaces. With some minor manipulation, the dynamic 
(2) and kinematic (3) boundary conditions on boundary m become

f (z, t) + z f ′(z, t) + g′(z, t) − Am(t) = − i

2

dz

ds
+ 1

2
pmz, (6)

�
{

dz

dt
i
dz

ds

}
= �

{(
− f (z, t) + z f ′(z, t) + g′(z, t)

)
i
dz

ds

}
. (7)

The functions Am(t) arise from integration of each boundary condition with respect to arclength and must be found as part 
of the solution. It should be noted that the left hand side of the dynamic boundary condition is simply H(z, z, t) − Am(t).

The total force on an enclosed bubble is the integral, with respect to s, of 2idH/ds around that boundary. But from (6)
it is clear that H is single-valued around each bubble so there is no net force on any of the enclosed bubbles. As a result, 
f (z, t) and g′(z, t) are single-valued functions in the fluid region.

4. Conformal mapping approach

To track the evolution of the fluid boundaries, we introduce a time-dependent conformal mapping z(ζ, t) from a canon-
ical circular region in the complex ζ -plane to the evolving fluid region as illustrated in Fig. 1. Note that we will use z to 
denote both the physical variable and the conformal mapping function, but this should not cause confusion. The Riemann 
mapping theorem [8] guarantees that the shape of any bounded region with M − 1 arbitrarily shaped holes can be repre-
sented as the image under such a conformal map of the interior of the disk |ζ − δ1(t)| = q1(t) with M − 1 circular holes 
|ζ − δm(t)| = qm(t) (m = 2, . . . , M). Because a conformal map to a given region only exists for a specific configuration of 
circles, their centers δm(t) ∈ C and radii qm(t) ∈ R evolve in time. The evolution of these so-called conformal moduli must 
be found as part of the solution. For definiteness, we take δ1(t) = 0 and q1(t) = 1. A discussion of the remaining degrees of 
freedom in this conformal mapping description is given in (§8).

With such a map defined, we can introduce

F (ζ, t) ≡ f (z(ζ, t), t), G(ζ, t) ≡ g′(z(ζ, t), t). (8)

In terms of these the dynamic and kinematic boundary conditions (6), (7) in the ζ plane are

F (ζ, t) + z(ζ, t)

z′(ζ, t)
F ′(ζ, t) + G(ζ, t) − Am(t) = − i

2

dz

ds
+ 1

2
pmz(ζ, t), (9)

where z′(ζ, t) denotes ∂z/∂ζ , and

�
{

dz

dt
i
dz

ds

}
= 1

2
+ �

{(
−2F (ζ, t) + 1

2
pmz(ζ, t) + Am(t)

)
i
dz

ds

}
, (10)
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where the unit tangent vector, in terms of the conformal mapping, is

dz

ds
=

⎧⎪⎪⎨
⎪⎪⎩

i(ζ − δm)z′(ζ, t)

qm|z′(ζ, t)| , m = 1,

− i(ζ − δm)z′(ζ, t)

qm|z′(ζ, t)| , m ≥ 2,

(11)

with the sign chosen to keep the fluid region to the left as each boundary component is traversed. Note that (6) has been 
used to simplify the right hand side of (10).

At each instant F (ζ, t) and G(ζ, t) and {Am(t)} satisfying (9) can be found. In turn, these enter the kinematic condition 
(10) to determine the evolution of the fluid. As the fluid region evolves, both the map z(ζ, t) and the radii qm(t) and 
locations δm(t) of the circles in the preimage domain change. In our implementation, these are updated using a fourth order 
Runge–Kutta time-stepping scheme applied to (10).

Our method requires an initial map z(ζ, 0) and initial preimage domain parameters qm(0) and δm(0). For problems where 
the initial configuration is specified but no map is given, a preimage domain and a mapping from that domain must first 
be found. Constructing conformal mappings is an area of active research and an extensive history and multifarious methods 
are available to compute mappings to arbitrary regions. Here we have made use of a generalized Fornberg-type method for 
conformal mapping of multiply connected domains recently revised by Kropf [16].

5. Existence and uniqueness

In this section we suppress dependence of all quantities on t . Stokes flow that does not contain any singularities is 
unable to exert a net torque around its boundary. Writing ∂ D to denote the entire (directed) boundary of the fluid region, 
and making use of the single-valuedness of H ,

0 =
∮
∂ D

�r × �F ds = �
∮
∂ D

2i
dH

ds
(−iz)ds = −2�

∮
∂ D

H dz. (12)

As a consequence, solutions to free boundary Stokes flow problems only exist when the forcing also satisfies a condition 
of zero torque. For our problem, driven by surface tension and pressure, the right hand side of (9) always satisfies this 
condition. This can be seen by evaluating the torque on ∂ D ,

�
∮
∂ D

(
− i

2

dz

ds
+ 1

2
pmz

)
dz = 0. (13)

Thus, a solution always exists.
The solutions satisfying the dynamic boundary condition (9) are not unique, however. Additional constraints must be 

imposed to enforce uniqueness on the Goursat representation for the flow. To see this note that the transformations

f (z) = f̃ (z) + B + Q + iRz,

g(z) = g̃(z) + C + Bz − Q z,

Am = Ãm + 2B,

(14)

where B, C, Q ∈ C and R ∈ R are constants, leaves the left hand side of (9) unchanged. Complex constants B and C reflect 
the nonuniqueness of the Goursat representation (they leave the velocity and pressure fields unchanged [19]1); Q and R
reflect the indeterminacy associated with a translation and rotation. For the problem in the ζ plane, this transformation is

F (ζ ) = F̃ (ζ ) + F0 + iRz(ζ ),

G(ζ ) = G̃(ζ ) + G0,

Am = Ãm + F0 + G0,

(15)

where F0 = B + Q and G0 = B − Q are complex constants, for a total of five real degrees of freedom.
As for the kinematic boundary condition (10) it is necessary to take account of the three real degrees of freedom in the 

Riemann mapping theorem and, in particular, to impose conditions that render the conformal mapping function unique. The 
particular choices we make will be discussed later.

1 Langlois uses a different convention for the Goursat functions and gives an additional term in the transformation for f (z). In our notation, this term is 
Az, where A is real. Addition of this term leaves the velocity field unchanged but adds a constant to the pressure.



352 P. Buchak, D.G. Crowdy / Journal of Computational Physics 317 (2016) 347–361
6. Series representation

It is well-known that any function h(ζ ) that is analytic and single-valued in the multiply connected circular domain 
shown in Fig. 1 can be represented as a series of the form

h(ζ ) =
M∑

m=1

∑
n

(
ζ − δm

qm

)n

hm,n, (16)

where the coefficients have the integral expressions

hm,n = 1

2π i

∮
|ζ ′−δm|=qm

qn
m(ζ ′ − δm)−(n+1)h(ζ ′)dζ ′ ≈ 1

K

K−1∑
k=0

e−2π ink/K h(δm + qme2π ik/K ). (17)

Here, n ranges from 0 to ∞ for the outer boundary and from −1 to −∞ for the inner boundaries. This representation fol-
lows directly from Cauchy’s integral formula. The factors of qm have been absorbed into the coefficients to prevent overflow 
for large |n|. It is evident that the coefficients hm,n can be evaluated by a Fast Fourier Transform (FFT) given the values of 
h(ζ ) on the boundaries. In practice, we truncate the series associated with each boundary m at Nm terms, so that n ranges 
from 0 to N1 − 1 for the outer boundary and from −1 to −Nm for inner boundary m.

When, at each instant, z(ζ, t), F (ζ, t), and G(ζ, t) are represented in the form (16), and the dynamic boundary condition 
(9) is expanded in powers of η = (ζ − δm)/qm on each boundary, it becomes a linear system of equations for the coefficients 
of F (ζ, t) and G(ζ, t) and the instantaneous values of {Am(t)}. If the conformal map z(ζ, t) is written as

z(ζ, t) =
M∑

m=1

∑
n

(
ζ − δm(t)

qm(t)

)n

amn(t) (18)

then the kinematic boundary condition (10) becomes a linear system of equations for the time derivatives of the set 
{amn(t), qm(t), δm(t)}.

We have ensured the satisfaction of the boundary conditions (9), (10) by equating powers of η = (ζ − δm)/qm in the 
Laurent series on each boundary m. The products that appear in the boundary conditions are taken coefficient-wise. We 
find that accuracy is improved by using up to twice the number of powers for the products on a boundary as we equate on 
that boundary. Because neither boundary condition has a unique solution, and in addition the dynamic boundary condition 
trivially satisfies equation (12), the matrices for both systems of equations, as stated, would be singular. To prevent this, the 
systems must be modified by the removal of certain equations and unknowns. Provided this is done properly, and provided 
the number of powers equated on each boundary is chosen carefully, a square system of equations results. This is discussed 
in detail in the following two sections.

7. Solving for the instantaneous flow field

In this section we consider finding F (ζ, t), G(ζ, t), and {Am(t)} satisfying (9) at some fixed instant t . The dynamic bound-
ary condition (9) is a linear system of equations for 

∑
m Nm complex coefficients of F (ζ, t), 

∑
m Nm complex coefficients 

of G(ζ, t), and M complex constants Am . If F (ζ, t) and G(ζ, t) contain powers up to η±N on boundary m, it can be seen 
that the left hand side of the dynamic boundary condition will contain powers η−N through ηN . Therefore, on the outer 
boundary, we equate the complex Laurent coefficients for powers −N1 + 1 through N1 − 1, while on inner boundary m, we 
equate the complex Laurent coefficients for powers −Nm through Nm . This complex system is equivalent to a real linear 
system of 4 

∑
m Nm + 2M − 4 equations for the 4 

∑
m Nm + 2M real and imaginary parts of the unknowns. The discrepancy 

between the numbers of rows and columns suggests that there are further constraints that must be taken into account.
The dynamic boundary condition can be thought of as a mapping from a set of flow fields to a set of corresponding 

boundary forces. Usually, there is a one-to-one correspondence between flow fields and boundary forces, but this is not 
true for free boundary problems: different flow fields can produce the same boundary forces, and only some of the possible 
configurations of boundary forces can be produced at all. This means that the dynamic boundary condition must be treated 
with some care.

(12) states that the net torque exerted on the boundaries must vanish. Writing this integral over the boundaries ζ =
δm + qmη in the ζ plane, and subtracting the quantities Am(t) from the integrand, (12) becomes

0 = �
∑

m

±qm(t)

∮
|η|=1

η−2z′(ζ, t)(H(ζ, ζ , t) − Am(t))dη, (19)

with the positive sign taken on the outer boundary and the negative sign taken on the inner boundaries. (19) is a single 
real condition on H − Am , the left hand side of the dynamic boundary condition (9). It expresses a relationship between 
the coefficients of this quantity, and therefore between the equations of the linear system representing (9). To make the 
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equations independent, one of the equations appearing in the relationship (19) must be eliminated. The details of our 
implementation are given in Appendix A.

Because the solution of the dynamic boundary condition is not unique, five real unknowns must be eliminated, corre-
sponding to the real and imaginary parts of F0 and G0 and R in (15). To fix F0, we set F1,0 = 0. To fix G0, we set G1,0 = 0. 
To fix R , we could set to zero any real or imaginary part of another coefficient of F (ζ, t) in which iz(ζ, t) appears; we 
choose this coefficient by finding the coefficient of iz(ζ, t) with maximum absolute real or imaginary part.

After eliminating one equation and five unknowns, we arrive at a square, invertible system of 4 
∑

m Nm + 2M − 5 real 
equations and unknowns. The case of a circular fluid region affords useful insights into the elimination of equations and 
unknowns and is discussed in Appendix B.

8. Updating the domain shape

Having fixed δ1(t) = 0 and q1(t) = 1, the kinematic boundary condition (10) is a linear system of equations for 
∑

m Nm
complex coefficients dzm,n/dt , M − 1 complex values dδm/dt , and M − 1 real values dqm/dt . On the outer boundary, the 
series for m = 1 for dz/dt contains powers of η up to ηN1−1; it can be seen that the left hand side of the kinematic 
boundary condition contains powers η−(N1−2) through ηN1−2 (the multiplication by zs contributing η−1). Therefore, on the 
outer boundary, we equate the complex Laurent coefficients for powers up to N1 − 2.

On each inner boundary m, the series for m for dz/dt contains powers of η down to η−Nm ; it can be seen that the 
left hand side of the kinematic boundary condition contains powers η−Nm−1 through ηNm+1, the multiplication by zs again 
contributing η−1. Therefore, on inner boundary m, we equate the complex Laurent coefficients for powers up to Nm + 1.

Since the left hand side of the kinematic boundary condition is real, the negative Laurent coefficients on each boundary 
are redundant, as is the imaginary part of the zero coefficient. Therefore, we only use half the equations. For the outer 
boundary, we use the equations for powers 1 through N1 − 2, plus the real part of the equation for the constant coefficient. 
For inner boundary m, we use equations for powers 1 through Nm + 1, plus the real part of the equation for the constant 
coefficient. This makes for a total of 2 

∑
m Nm + 3M − 6 real equations for the 2 

∑
m Nm + 3M − 3 real and imaginary parts 

of the unknowns.
Finally we choose to set dz1,0/dt and �{dz1,1/dt} to zero in order to fix the three real degrees of freedom associated 

with the Riemann mapping theorem. We find that this choice works well for all the examples shown below. This results in 
a linear system that is square and invertible, comprising 2 

∑
m Nm + 3M − 6 real equations and unknowns.

The sizes of the linear systems for the dynamic and kinematic boundary conditions are both determined by 
∑

m Nm , the 
total number of coefficients in the series (18). By making use of FFTs, the entries in these systems can be calculated quickly. 
For simplicity, we solve the systems using Gaussian elimination. In our implementation, therefore, most of the computation 
time is spent on the O ((

∑
m Nm)3) operations per time step required to solve the systems. However, it is possible that 

future implementations may gain a significant improvement in speed by using iterative methods.

9. Perimeters and areas

One advantage of working with a conformal mapping description of the time evolving domain is that subsidiary quan-
tities can be readily computed to high accuracy (since, in essence, we have a formula to collocate as many points as we 
like on the domain boundaries). Many applications (including the application to MOF fabrication) require calculation of the 
perimeters of the boundaries of the fluid region. These can be calculated readily from knowledge of the conformal mapping 
at each time step. Again suppressing dependence on t , the perimeter of the boundary given by the image of |ζ − δm| = qm
can be written as an integral in the ζ plane,

m =
∮ √

dz dz = ±iqm

∮
|ζ−δm|=qm

|z′(ζ )|
ζ − δm

dζ. (20)

Likewise, many applications require calculation of the hole areas. The area inside a boundary is the special case p = 0 of 
the integral

Sm =
∫∫

zp dA = 1

2i

∮
|ζ−δm|=qm

z(ζ )p z(ζ )z′(ζ )dζ, (21)

where Stokes’ theorem has been used to rewrite the integral as a line integral around the boundary. The complex center of 
mass of the fluid region can be obtained by evaluating the integral with p = 1 over all the boundaries and dividing by the 
fluid area.

10. Validation

In the tests and examples that follow, we simulate the evolution of regions of fluid containing compressible bubbles, 
whose pressures we take equal to the external pressure. We thus set all pm to zero (m = 1, . . . , M). All calculations shown 
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Fig. 2. Snapshots of the time evolution of the quadruply connected region described by Eq. (22). 25 coefficients were used for the m = 1 series; 10 
coefficients were used for the m = 2, m = 3, and m = 4 series. A time step of 0.05 was used. The calculation took five seconds.

in this paper are performed using MATLAB on a computer with two 2.40 GHz Intel Pentium CPU’s. Numerical parameters 
(numbers of coefficients and number of time steps) are selected to be reasonably low, and are checked for convergence with 
simulations at higher resolution. The initial configurations in most examples are normalized to have unit area.

Fig. 2 shows the evolution of a simple quadruply connected domain (M = 4). The upper left plot shows the image of the 
domain |ζ | ≤ 1, |ζ − 0.6e2π im/3| ≥ 0.2 (m = 2, 3, 4) under the initial map

z(ζ,0) = ζ + 0.25ζ 4 + 0.05ζ 7, (22)

which describes a rotationally symmetric fluid region with three near-circular bubbles. Under surface tension, the outer 
boundary becomes more circular and the holes shrink; after the holes have closed, and the domain has become simply 
connected, the calculation can be continued using the series associated with the outer boundary alone (results not shown). 
The simulation is executed with more coefficients than necessary to describe the initial configuration: 25 coefficients for 
the series associated with the outer boundary and 10 for the series associated with each inner boundary. The results are 
almost identical if no extra coefficients are used (just 8 for the outer boundary and 1 for each inner boundary). Using a 
time step of 0.05, the calculation took about five seconds. The key observation is that for smooth boundaries with non-
pathological shapes (which, by the way, is often the case for MOFs) the method faithfully captures the evolution with very 
few coefficients.

An important quantitative validation of the numerical method is afforded by checking it against a family of known exact 
solutions for the two-dimensional sintering of N ≥ 3 equal circular cylinders in a doubly connected annular arrangement [5]. 
These solutions are multiply connected generalizations of the example given in Kropinski [17] consisting of two cylinders. A 
summary of these solutions is given in Appendix C; they give closed form expressions for the time-evolving conformal map 
allowing us to check that the numerical method accurately retrieves the same results. For a given N ≥ 3 the exact solutions 
depend on just 3 time-evolving parameters ρ(t), a(t) and A(t) satisfying a known set of ordinary differential equations 
(given in the appendix). The fluid domain here is doubly connected so the conformal preimage region is taken to be the 
time-evolving annulus ρ(t) < |ζ | < 1 where ρ(t) must be dynamically determined.

A visual comparison between the numerical method and the exact solution is shown in Fig. 3 for N = 10. For this test, 
a configuration for close-to-touching cylinders characterized by regions of very high curvature and described by parameters 
ρ(0) = 0.8100 and a(0) = 1.088 (these values are taken from [5]) is first evolved using the exact solution in Appendix C
for a time interval of 0.05. This provides us with an initial configuration for our numerical code shown in Fig. 3 (upper left 
plot), characterized by a curvature of about 450 where the cylinders meet. The evolution from this initial configuration was 
then obtained by both the exact solutions and the numerical method over the time interval 0.000 ≤ t ≤ 0.100, using 1000
time steps and, for the numerical method, 500 coefficients for each of the two subseries. Snapshots are shown at two times 
(middle and lower plots). The numerical method captures the evolution faithfully, as is evident visually from the close-up 
plots in Fig. 3.

In Fig. 4, the numerical method is shown to converge to the exact solution as the number of coefficients is increased. 
The convergence is exponential, indicating spectral accuracy. Points on the two solutions’ boundaries differ by an average 
of 10−15 at t = 0.100 when 500 coefficients are used. This is very efficient in the number of unknowns. For comparison, 
for the example with two cylinders, a configuration with comparable curvature, the boundary integral method described by 
Kropinski [17] requires 32768 boundary points to achieve errors of 10−5. (It should be noted, of course, that the number of 
unknowns is not a direct measure of the computation time.)
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Fig. 3. Numerical solution (dashed) for the sintering of N = 10 circular cylinders overlaid with the exact solution from Appendix C (solid) at three different 
times. The configuration shown in the upper left plot was evolved using both the exact solution and the numerical method, giving configurations at two 
later times (middle and lower plots). Right-hand plots show closeups of a region of high curvature. This calculation required 1000 time steps and, for the 
numerical method, 500 coefficients for each subseries.

Fig. 4. Error in numerical solution for the example in Fig. 3 as the number of coefficients is varied. Error is the absolute difference in z(ζ, t) from the exact 
solution (Appendix C) at t = 0.100, averaged over equally spaced points ζ on the boundaries in the preimage plane.

Another validation is provided by a family of asymptotic solutions available for the evolution of the center-line of a thin 
annulus of fluid [10] (also a doubly connected fluid region). These solutions are valid provided the fluid region is sufficiently 
“thin”. We calculated an asymptotic solution from Griffiths & Howell [10] for which a square with rounded corners is the 
final center-line shape (the solutions in [10] are obtained to understand an inverse problem arising in the manufacture of 
thin glass tubing). We then compared the asymptotic solution with the numerical solution computed using 100 coefficients 
for each series for z(ζ, t), F (ζ, t) and G(ζ, t). For our numerical scheme, the method of Kropf [16] was employed to obtain 
the required conformal map to the initial domain. The excellent agreement is evident in Fig. 5. Because our full solution 
requires fairly low computation time, the numerical method is practical for the evolution of a thin annulus, and could be 
used to extend solutions to the non-thin regime.

11. Examples

We now illustrate the use of the numerical method on several realistic examples arising in applications. Fig. 6 shows 
the evolution of a triply connected region initially characterized by thin walls. The relatively sharp corners necessitate a 
large number of coefficients, and a small time step in the early stages of the evolution, but the method works well. As the 
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Fig. 5. Numerical solution (solid) for a thin fluid annulus whose center-line evolves into a square shape, overlaid with the center-line predicted by an 
asymptotic solution from Griffiths & Howell [10] (dashed) at several times. The numerical solution uses 100 coefficients on each boundary and a time step 
of 0.005. The calculation took 16 seconds.

Fig. 6. Snapshots of the time evolution of a thin-walled, triply connected region. 50 coefficients were used for each series. A time step of 0.02 was used. 
The calculation took 23 seconds.

surface tension smoothes out high curvature regions under evolution, adaptive time-stepping could be used to optimize the 
calculations.

Since our work is motivated by the need to study the fibre drawing problem for microstructured optical fibres (MOFs), 
Fig. 7 shows results for the evolution of the cross section of a hypothetical MOF initially consisting of six closely-spaced 
triangular channels separated by thin threads of material. The proximity of the channels necessitates a fairly large number 
of coefficients (40 for each series in this example) but the calculation is still efficient. The initial conformal mapping for 
this example was constructed by seeding just the q2

j /(z − δ j)
2 term in each of the series expansions in (18) about each 

channel which gives rise to the near triangular shape of the initial pores. The effect of surface tension is to cause the 
initially close-to-touching channels to shrink while simultaneously circularizing. The channels are close enough to the outer 
boundary in this example for the latter to develop a noncircular shape.

The geometrical microstructure of MOFs often comprises relatively large number of channels (of the order of 5 to 100, 
say). A typical cross-section of such a MOF is shown in Fig. 8 and consists of a hexagonal array of 54 small circular channels. 
Because the channels in the initial configuration are all circular, the initial conformal mapping from a circular preimage 
region is just the identity map z(ζ, 0) = ζ (shown here scaled to have unit area). The simulation here captures a feature 
commonly observed for MOFs of such a geometry: the channels along the inner-most ring tend to become extended along 
the azimuthal direction, while those at the corners of the hexagon on the outer-most ring become extended radially.
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Fig. 7. Snapshots of the time evolution of an example MOF with six triangular channels separated by thin threads. 40 coefficients were used for each series. 
A time step of 0.002 was used. The calculation took about seven minutes.

Fig. 8. Snapshots of the time evolution of an example MOF configuration with 54 initially circular channels. For this calculation, 10 coefficients were used 
for the m = 1 series and 3 coefficients were used for the other series. A time step of 0.01 was used. The calculation took 90 seconds.

It is worth emphasizing that, because our method represents shapes analytically, it is well suited to configurations of 
holes whose shapes possess some degree of rotational symmetry. Boundaries that can only be accurately described by a 
large number of collocation points can often be represented with a few coefficients. (Similarly, although we have not done 
so in our code, if MOFs that possess definite rotational symmetries are of specific interest, the symmetry can be used to 
dramatically reduce the number of unknown conformal mapping coefficients to be resolved by the simulation.) Fig. 9 shows 
a hypothetical MOF consisting of a circular array of channels that are approximately triangular. Similar to the example in 
Fig. 7 the initial configuration is the image of a circular domain under the initial conformal map

z(ζ,0) = ζ −
M∑

m=2

0.015e3i arg(δm)(ζ − δm)−2q2
m, (23)

scaled to have unit area. In alternative numerical schemes such as a boundary integral calculation, the triangles’ sharp 
corners would necessitate a large number of points for proper resolution; in the present method, the initial subseries for 
each triangle requires only two coefficients, although to maintain accuracy, the calculation retained 10 coefficients for each 
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Fig. 9. Snapshots of the time evolution of an example MOF configuration with 38 triangular channels. The initial configuration is described by an explicit 
map (23). For this calculation, 10 coefficients were used for each subseries. A time step of 0.01 was used. The calculation took 176 seconds.

subseries. Even so, the evolution of this multiply connected region with sharp boundaries can be calculated quickly and 
accurately.

12. Discussion

The conformal mapping method described in this paper offers several advantages over competing methods for solving 
the two dimensional surface tension driven Stokes flow problem that we have tried to elucidate here. It is well suited to 
regions with regular arrays of holes which results in the need to track a small number of time-evolving coefficients (Figs. 2, 
7, 8, 9) which makes it ideal for our motivating application – modelling the fabrication process for MOFs. The method can 
easily handle regions characterized by thin walls, although we expect numerical difficulties to arise when the preimages of 
the boundaries become too close in the ζ -plane. Our approach differs from previous methods [9,3] that use complex variable 
formulations in that we do not solve the Sherman–Lauricella integral equation. Moreover, previous treatments based on the 
Sherman–Lauricella integral equation do not generally employ conformal mapping descriptions of the free surfaces as we 
have done here.

If the method here has a possible drawback it is that if a specific initial domain is of particular interest then it is 
necessary to find the initial conformal mapping function z(ζ, 0) to that domain in the form (18). However the subject of 
numerical conformal mapping is well developed and many analytical and numerical resources exist for the construction of 
such maps (we have made use, for example, a Fornberg method for multiply connected domains [16]). We would argue 
that while this initial “set-up” step might appear burdensome (in comparison to, say, boundary integral methods) there are 
several attendant advantages for the evolution problem once that set-up has been made.
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Appendix A. Elimination of redundancy in the dynamic boundary condition

Because the left hand side of the dynamic boundary condition satisfies (19), one of its real equations is redundant, 
and must be eliminated. This appendix gives the details, again suppressing dependence on t . With the expansions on each 
boundary given by

H(ζ, ζ ) − Am =
∞∑

Ĥm,nη
n, η−1z′(ζ ) =

∞∑
χm,pη

p, (A.1)

n=−∞ p=−∞
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(19) gives a condition on the coefficients Ĥm,n ,

0 = �
∑

m

±qm

∮
|η|=1

η−1

⎛
⎝ ∞∑

p=−∞
χm,pη

p

⎞
⎠

( ∞∑
n=−∞

Ĥm,nη
n

)
dη (A.2)

Only the η−1 terms contribute to the integral, giving a concise form of the condition on the Ĥm,n ,

0 = 2π�
∑

m

∓qm

∑
n

χm,−n Ĥm,n,

or

0 =
∑

m

∓qm

∑
n

(
�{χm,−n}�{Ĥm,n} + �{χm,−n}�{Ĥm,n}

)
. (A.3)

(A.3) gives explicitly the relationship between the real and imaginary parts of the coefficients of the left hand side of (9). 
Each real and imaginary part of a coefficient corresponds to an equation of the linear system for (9). To make the equations 
of this system independent, any equation given in (A.3) can be eliminated. We choose to eliminate the row �{Ĥm,n} or 
�{Ĥm,n} whose coefficient in (A.3) is largest in absolute value.

Appendix B. Solving the dynamic boundary condition for a circle

For a circle, z(ζ ) = Rζ , where R is real. Expanding the dynamic boundary condition (9) in powers of ζ gives

...

ζ 3 : F3 = 0
ζ 2 : F2 = 0
ζ 1 : F1 + F1 = 1

2 + 1
2 p1 R

ζ 0 : F0 + 2F2 + G0 − A1 = 0
ζ−1 : 3F3 + G1 = 0
ζ−2 : 4F4 + G2 = 0

...

(B.1)

The equations for ζ 2 and higher imply F2, F3, . . . = 0. The equations for ζ−1 and lower imply G1, G2, . . . = 0. This leaves 
only the equations for ζ 0 and ζ 1 to relate F0, F1, G0, and A1. To fix the ambiguity in the Goursat representation and the 
translational degree of freedom in the free boundary problem, we can set F0 = 0 and G0 = 0. The ζ 0 equation then implies 
that A1 = 0 (recall that F2 = 0). The single remaining equation is then

F1 + F1 = 1

2
+ 1

2
p1 R, (B.2)

which provides one real constraint on the complex quantity F1. Writing out its real and imaginary parts,

2�{F1} = 1

2
+ 1

2
p1 R, 0 = 0. (B.3)

The trivial second equation reflects the fact that a flow with a free boundary can never exert a net torque. The surface 
tension and pressure do not impose a torque – if they did, the right hand side of the second equation in (B.3) would be 
nonzero, and we would have an unsolvable equation. Because (B.2) has only one nontrivial part, it leaves undetermined the 
imaginary part of F1. However, we still need to set the rotational degree of freedom in the free boundary problem, which 
we can do by imposing the condition �{F1} = 0.

Appendix C. Analytical solution for sintering of circular cylinders

This appendix reviews the analytical solutions for the sintering of N equal circular cylinders [5] used in section 10 to 
test our numerical method. The solutions give the shape of the evolving fluid region D(t) as the image of the time-evolving 
annulus ρ(t) < |ζ | < 1 under the explicit conformal map

z(ζ, t) = A(t) f (ζ, t), f (ζ, t) = ζ
P N(ζρ(t)2/Na(t)−1,ρ(t))

P N(ζa(t)−1,ρ(t))
, (C.1)

with
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A(t) =
[

P̂ N(1,ρ(t))

π P N(ρ(t)2/N ,ρ(t)) f ′(a(t)−1, t)

]1/2

,

where a prime denotes the partial derivative with respect to ζ , f ′(ζ, t) = ∂ f (ζ, t)/∂ζ . N is the number of cylinders; in 
Fig. 3, we set N = 10. The functions P N (ζ, ρ) and P̂ N (ζ, ρ) are defined by

P N(ζ,ρ) ≡ (1 − ζ N)

∞∏
k=1

(1 − ρ2kNζ N)(1 − ρ2kNζ−N), P̂ N(ζ,ρ) ≡ P N(ζ,ρ)/(1 − ζ N). (C.2)

The above equations are reproductions of equations (2.16), (2.18) and (3.2) of [5]. The time-evolving parameters ρ(t) and 
a(t) satisfy the ordinary differential equations [5]:

dρ

dt
= − ρ

4π i

⎛
⎜⎝ ∮

|η|=1

dη

η

1

|z′(η, t)| +
∮

|η|=ρ

dη

η

1

ρ|z′(η, t)|

⎞
⎟⎠

da

dt
= aI(a−1, t),

(C.3)

where, for brevity, we have suppressed the dependence of these parameters on t in our notation. These ordinary differential 
equations are solved numerically using the Runge–Kutta fourth-order method. The function I(ζ, t) is

I(ζ, τ ) = I+(ζ, τ ) − I−(ζ, τ ) + C(τ ),

where

I+(ζ, τ ) = 1

4π i

∮
|η|=1

dη

η

(
1 − 2

ζ

η

P ′
1(ζ/η,ρ)

P1(ζ/η,ρ)

)
1

|z′(η, τ )| ,

I−(ζ, τ ) = 1

4π i

∮
|η|=ρ

dη

η

(
1 − 2

ζ

η

P ′
1(ζ/η,ρ)

P1(ζ/η,ρ)

)[
− 1

ρ|z′(η, τ )| − 2

ρ

dρ

dτ

]
,

C(τ ) = − 1

4π i

∮
|η|=ρ

dη

η

(
− 1

ρ|z′(η, τ )| − 2

ρ

dρ

dτ

)
.

(C.4)

(Note that in these integrands z′ is evaluated at η, not at ζ as indicated in [5].) All integrals around the circles |η| = 1 and 
|η| = ρ are evaluated using the trapezoidal rule.
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