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Abstract 

This paper proposed a dominant feature selection scheme to enable the high performance prognostics of machine health. Statistical features 
were extracted from decomposed sub-modes by wavelet transform. Fisher ratio was employed to evaluate the extracted feature vectors, and 
dynamic searching strategy-based genetic algorithm was used to select the optimal feature subsets on the basis of maximizing the fitness 
function. Then dominant features with minimum mean square errors were used to predict the performance of machine health. Experimental
results on predicting the lifetime of an unbalance vibration rotor system demonstrated that the proposed method can achieve better prognosis 
performance with less predicting errors. 
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1. Introduction 

Rotary mechanical facilities are widespread in almost 
every aspect of industries. Machine health degradation or 
unexpected failures may impact product quality, lead to 
significant economic losses, and even cause potential safety 
hazard. Prognostics are regarded as significant and promising 
tools for achieving benefits of reducing the equipment 
downtime, maintenance cost, and safety accidents [1] by 
utilizing on-line information from machine health monitoring 
and the off-line priori knowledge originated from expert 
system. 

Intelligent prognostic system has attracted much attention 
in the fields of condition-based maintenance during the past 
decades. Statistical methods such as auto regressive moving 
average model and support vector machine have been 
employed for machine health assessment and residual useful 
life (RUL) prediction [2]. A combination technique of 
relevance vector machine-based data driven-approach and 
exponential regression-based model has been developed to 

estimate the RUL of ball bearings and analysis vibration-
based degradation data [3]. A robust online prognostic system 
is developed by integrating collaborative physics-of-failure 
modelling, reliability engineering, damage accumulation 
modelling [4]. Knowledge discovery techniques-based 
prognostic model is presented for the accurate assessment of 
the probability of flight-critical hardware failure [5].  

Generally, prognostic system consists of signal processing, 
feature selection, performance evaluation, etc. Sensor 
information of the current machine condition is used to extract 
meaningful features, however, a rich set of signal processing 
techniques such as spectrum analysis, probabilistic 
approaches, and time-series analysis are employed to generate 
feature candidates, which result in the challenging task of 
identifying dominant features from high dimensionality 
feature space. Irrelevant or noisy features may increase 
complexity of the prognostic model, degrade the evaluation 
performance and reduce the learning speed. Moreover, it is 
difficult to determine key components that decomposed by 
time-frequency methods such as wavelet analysis (WT) or 
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empirical mode decomposition. Some literatures only selected 
several decomposed sub-modes or empirically extracted fault 
features [6].  

Research has been carried out into feature selection (FS) 
techniques over the past several decades [7-9]. The search for 
the optimal subset is essentially an NP-hard problem, 
especially in a high-dimension feature space. Obtaining of the 
optimal solution cannot be guaranteed without performing an 
exhaustive search in the solution space, and this technique is 
impractical for large scale features because of the 
unaffordable time cost [10]. The genetic algorithm, a form of 
inductive learning strategy, has great advantage for efficient 
feature selection, which provides near-optimal solutions in 
complex and nonlinear search spaces with time efficiency [7, 
8]. However, the traditional genetic algorithm (GA) with 
fixed length chromosomes and stationary searching space of 
gene bases cannot be directly employed to find the optimal 
feature sub-sets. Moreover, to achieve the global optimum 
result, interactive relationships between features within the 
same chromosome need to be developed [11]. 

In this paper, a dominant feature selection scheme for 
rotary machinery health prognostics is developed based on an 
innovative variable-range genetic algorithm (VRGA), which 
employs a dynamic searching strategy by varying the length 
of chromosomes and changing in real-time the range of the 
feature candidates. Statistical features are extracted from sub-
modes decomposed by WT and dominant features are 
optimized through the developed VRGA model. Then the 
selected dominant features are employed to predict the 
lifetime of a rotary mechanical system.

2. Wavelet transform 

The continuous wavelet transform (CWT) of time series
( )x t in defined as a dot product of signal ( )x t and the wavelet 

basis function [12], 

,
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where, ,a b is the wavelet basis, parameters a and b are used 
to scale and translate the mother wavelet function ( )t , and

( , )cwt a b is the coefficient of continuous wavelet transform. 
During the process of calculating wavelet coefficients in 

CWT, the scale parameter a and translation factor b  are 
continuously changing, which may result in intractable 
computations and generate an awful lot of data [13]. Discrete 
wavelet transform (DWT) provides an efficient solution by 
employing discrete scaling and translation factors (i.e., 2 ja ,

2 jb k ), then, the wavelet transform of signal ( )x t can be 
expressed as, 
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The operation of DWT can be realized on the basis of 
multi-resolution analysis by employing a half band low-pass 
filter ( )h k and a half band high-pass filter ( )g k , which are 
derived from the mother wavelet function ( )t and the 
corresponding scaling function ( )t [14, 15]. The original 
signal is decomposed into a set of approximations and 
detailed components, 
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The original signal ( )x t is decomposed as,  
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where, j is the decomposition level, k is the discrete time, ,j ka
represents the low-frequency approximations of the original 
signal, and ,j kd  corresponds to the higher frequencies. 

Table 1. Feature and nomenclature. 

No. Feature name Notation 

1 Mean value FM

2 Maximum point FMax

3 Minimum value FMin

4 Standard deviation FSD

5 Peak-peak value FPp

6 Kurtosis FKR

7 Pulse index FP

8 Waveform factor FWF

9 Energy of each IMF FE

10 The 5th central moment F5

11 Shannon entropy FEP

Statistical features shown in Table 1 are extracted from 
each decomposed level. Shannon entropy is calculated from 
all sub-bands. Intuitively, it is difficult to estimate which 
features are sensitive to describe characteristics of the 
investigated signal, as various factors result in the mechanical 
failure. Here, 11 features which are widely used are employed 
and there is no need for the laborious tasks of signal filtering, 
framing, windowing, and so on [16, 17].  

3. The proposed feature selection scheme 

The present paper develops a feature selection scheme by 
employing a novel two-dimensional searching genetic 
algorithm. Flow chart of the proposed machine health 
prognostic scheme is shown in Figure 1. The investigated 
signal is decomposed into sub-modes by the WT method after 
signal pre-processing. Then the developed dynamic searching 
algorithm is used to find the optimized feature subset of the 
extracted statistical features, and dominant features are 
selected with minimum mean square error. Finally, time series 
predicting model is used to evaluate the current performance 
of machine health. 

3.1. Design of the structure of chromosomes 

In order to search through the space of the set of feature 
space and encode all feature candidates within one 
chromosome, a feature representation solution is developed. 
Given a set of N-dimensional feature pool, an M-dimensional 
feature subset ( M N ) is initialized, as shown in Figure 2. 
Each feature candidate in one of the total P-chromosomes has 
a precision n. There are three relationships in this solution: (1) 
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all feature candidates must differ from each other within the 
same chromosome, (2) dimensionality of the feature subset 
grows with the number of iterations, and (3) the range of 
feature candidates from #1 to #M decreases in each 
chromosome.  

Fig. 1. Flow chart of the proposed machine health prognostic system. 

Fig. 2. Chromosome structure design. 

3.2. Defining the fitness function 

The chromosomes are transformed into real values and 
evaluated by the fitness function. The Fisher criterion is a 
method widely used in statistics and machine learning to find 
the linear combination of features which best separates two or 
more classes of datasets [18], which is defined as follows, 

1
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Where, i is the mean vector, i is the variance matrix of 
class i , n is the total number of faults, and , 1,2,3...,i j n .

Fisher criterion finds the linear combination of features by 
maximizing the ratio, which indicates that different stages 
have the maximum within-class distance and minimum 
between-class value. Then the corresponding feature subset is 
regarded as the optimal one. 

3.3. The GA optimization process 

The process of GA optimization [19] is to maximize the 
Fisher ratio of different training sample. First, for the 
selection operation, all chromosomes are ranked on the basis 
of the corresponding fitness values, and elite chromosomes 
are selected as parent chromosomes according to the pre-set 
selection rate, which are participate in producing offspring for 
the next generation. Then different parent chromosomes 
change genes to create new chromosomes through the single-
point crossover process. Finally, the mutation process is 
carried out, a small portion of individuals randomly change 
one or more bits to create child chromosomes. 

4. Time series prediction 

In our application, the unbalance vibration is in proportion 
to the eccentric mass, which is simulated by gradually 
increasing standard weights to the wheel. The selected 
dominant features are used to predict machine health based on 
the time series forecasting method. Sensor information that 
represents the current condition of machine health is used to 
extracted statistical features.  

Let , Rm
m kf donates an m dimensional feature vector of 

the k stage of machine health, which is employed to forecast 
the performance of the current condition. The standard 
prediction function takes the form as [17], 
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Where, i is the prediction coefficient that is trained by the 
historical data, kd is the desired performance of machine 
health.

Using the proposed feature selection method, p dominant 
features are selected. The corresponding feature vector and 
prediction coefficient are expressed as, 
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Then, the performance of stage k can be calculated as, 

,
T
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For n times forecasting, the prediction error is computed 
as,

2

,
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                 (10) 

where, kD is the real performance of the k stage. 

5. Experiments and discussion 

The experiment is conducted on a rotor degradation 
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system shown as Figure 3. The test-bed consists of a three-
phase induction motor (left), two eddy current sensors (centre), 
a rotor and control electronics. There are sixteen screw holes 
uniformly distributed on the face of the mass wheel in order to 
add standard weights. Performance degradation of the test rig 
is simulated by gradually increasing the number of standard 
weights. The rotating speed is 2400rpm and vibration signals 
are probed with sampling frequency 1,000 Hz. Each stage of 
the experiments has 40 experiment samples, 24 samples are 
randomly selected to train fault diagnosis model, and the rest 
are used for model testing. 

Fig. 3. Rotor degradation system. 

Parameters of the wavelet transform are carefully selected, 
and statistical features discussed in Section 2 are calculated 
from all the decomposed sub-bands. Statistical features of the 
wavelet sub-modes are shown as Figure 4, the vibration signal 
is decomposed into 6 levels using db4 wavelet. It should be 
note that the previous 10 features listed in Table 1 are 
calculated from each of the 7 sub-modes, while Shannon 
entropy is extracted based on all 7 sub-modes. Thus, a feature 
vector with 71 dimensionality of each sample is obtained. 

Fig. 4. Statistical feature of WT sub-modes. 

The proposed method selects the optimal feature subsets 
with dimensionality increasing from 1 to 71, and sends them 
to the time series forecasting model. Parameters of the 
employed GA are carefully selected, with 400 iterations and 
50 individuals. The precision of each variable is 20, the 
generation gap is 0.9, recombination rate is 0.7, probability of 
mutation is 0.7, and the roulette strategy is employed. As 
shown in Figure 5, with generations increasing, the Fisher 
ratio tends to be constant, while this ratio is decreasing with 
the feature dimensionality growing. Distribution of the 
optimized feature vector with 18 dominant features is shown 
in Table 2, where, the symbol + denoted features that are 
selected. It can be seen that these dominant features are 
mainly distributed in the 3rd, 4th and 5th detail sub-bands that 
are decomposed by WT. 

Fig. 5. Training of the VRGA model. 

Table 2. Dominant features distribution. 

Sub-
mode

FM FMax FMin FSD FPp FKR FP FWF FE F5 FEp

A6            

D6            

D5  + +     +
D4  + + + + + + + +
D3  + + + +       

D2     +       

D1   +      +

The optimized feature subsets with feature dimensionality 
ranging from 1 to 71 are used to predict the lifetime of the 
machine health. Figure 6 shows the comparison of prediction 
results with 8 features, 18 features and all features. The 
prediction performance is evaluated by mean square error 
(MSE), mean relative error (MRE), and mean absolute error 
(MAE). As shown in Table 3, the prediction performance 
receives the minimum error when the feature dimensionality 
is 18, while the maximum error occurs with only 8 features. 
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Table 3. Prediction performance evaluation. 

Feature 
dimensionality 

MSE MRE MAE 

8 0.2627 0.9758 0.9733 
18 0.0738 0.1592 0.0719 
30 0.1051 0.1805 0.1273 
45 0.1169 0.2104 0.2150 
60 0.1259 0.4119 0.5652 
71 0.1509 0.4925 0.6762 

Fig. 6. Machine health prognostics 

6. Conclusion 

This paper developed a dynamic searching strategy-based 
genetic algorithm for machine health prognostics. Results on 
analysing performance degradation of an unbalance vibration 
rotor system demonstrated that the proposed method can 
effectively predict the current condition of machine health. 
Meanwhile, the optimized feature subsets indicated that the 
3rd, 4th and 5th detail sub-bands decomposed by WT contain 
meaningful information for mechanical prognostics. Future 
research will mainly focus on identifying intrinsic manifolds 
from machine health motoring information, which may assist 
better understanding of the variation for health condition. 
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