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The concept of an association scheme is one of those mathematical
concepts which were utilized as technical tools in various different
mathematical areas for a long time before becoming the subject
of a theory in their own right. The significance of symmetric
schemes, for instance, in the design of (statistical) experiments
was recognized as early as the first half of the last century. Coding
theory has been associated with commutative schemes for more
than three decades, and polynomial schemes have provided the
language in which major topics in algebraic graph theory are
communicated for about twenty years. The notion of a scheme
itself, however - a notion which, if considered in its full generality,
generalizes not only the notion of a group but also the notion of a
Moore geometry and that of a building in the sense of Jacques Tits
- has been considered as the subject of an abstract theory in itself
only relatively recently.

It is the purpose of this article to reflect on the lines of
development, the Entwicklungslinien, along which abstract scheme
theory has been developed so far and along which scheme theory
might be developed in the future. The emphasis will be not so
much on completeness as on an attempt to show exemplarily
how naturally and organically the structure theory of association
schemes arises from certain aspects in group theory.

© 2008 Elsevier Ltd. All rights reserved.

1. The origin of schemes in group theory

Let G be a group, let H be a subgroup of G, and set

G/H == {xH | x € G}.!

For each element g in G, we define g to be the set of all pairs (yH, zH) withy € Gand z € yHgH.

E-mail address: zieschang@utb.edu.

1 Recall that, for each element x in G, xH stands for the set of all products xh with h € H. The set xH is called a (left) coset of

HinG.
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Let e and f be elements in G such that e N f is not empty. Then there exist elements y and
z in G such that (yH,zH) € e and (yH,zH) e fM. It follows that y~'z € HeH N HfH. Thus, as
the double cosets of H form a partition of G, HeH = HfH. From this one obtains e = f". Thus, as
(yH, zH) € (y~'2)" for any two elements y and z in G, the set

G/H ={g" |g € G}
is a partition of G/H x G/H.

Note also that 1" is the identity on G/H and that (g~ ") is the inverse relation of g/, that is the
relation which contains (yH, zH) if and only if (zH, yH) < g". We shall refer to the above three
observations at a later stage of this section.

It is clear that the group G acts transitively on G/H by multiplication from the left hand side with
inverses. Note also that, for any four elements a, y, z, and g in G, one has (yH, zH) € g/ if and only
if (a~'yH, a~'zH) e g". Thus, the action of G on the cartesian product G/H x G/H induced by the
above-mentioned action of G on G/H preserves the relations on G/H which we collected in G/H.

We shall see that the orbits of G on the cartesian product G/H x G/H are exactly the elements
of G/H. In other words, we shall see that, for any five elements v, w, ¥, z, and g in G satisfying
(vH, wH) € gMand (yH, zH) € g", there existsan elementain Gwitha~'vH = yH and a~'wH = zH.

Since the action of G on G/H is transitive and preserves the relations in G/H, we may assume that
vH = H and yH = H. Then we have w € HgH and z € HgH. It follows that HwH = HzH. Thus, there
exists an element a in H such that w € azH. From a € H we obtain a~'vH = yH. (Recall that v € H
andy € H.) From w € azH we obtain a~'wH = zH.

As a consequence of this last observation we obtain that the partition G/H of G/H x G/H satisfies
the following regularity condition which, and this is the key point here, expresses itself without the
action of G on G/H.

Let v, w, y, z, and g be elements in G such that (vH, wH) € g and (yH, zH) € g/. Then, given
elements e and f in G, the number of cosets xH of H in G satisfying (vH, xH) € e/ and (xH, wH) e f!
is the same as the number of cosets xH of H in G satisfying (yH, xH) € e’ and (xH, zH) € fH.

It is this regularity condition which one puts together with the previously mentioned three
observations to define schemes. Here is the definition.

Let X be a set, and let 1 denote the set of all pairs (x, x) with x € X. For each subset r of the cartesian
product X x X, we define r* to be the set of all pairs (y, z) with (z, y) € r. Whenever x stands for an
element in X and r for a subset of X x X, we define xr to be the set of all elements y in X such that
(x,y) er.

Let S be a partition of X x X such that 1 € S. Assume that, for each elementsin S, s* € S. The set S
is called an association scheme or simply a scheme on X if, for any three elements p, g, and r in S, there
exists a cardinal number a,q- such that, for any two elements y in X and z in yr, |yp N zq*| = apq. The
cardinal numbers ay, are called the structure constants of S.

Referring to this definition the above considerations can now be put together by saying that, for
any group G and a given subgroup H of G, the set G/H is a scheme on G/H.

2. Schurian schemes and the rise of recognition theorems

Is there a condition which characterizes the schemes arising from a group G and a subgroup of G
in the above-described sense within the class of all schemes? To answer this question as generally as
possible we define what it means for schemes to be isomorphic.

Let X and X’ be sets, let S be a scheme on X, and let S’ be a scheme on X'. A bijective map ¢ from X
to X' is called an isomorphism from S to S’ if there exists a bijective map o from S to S’ such that

(xs)¢p S (x¢)(s0)

for any two elements x in X and s in 5.2 The map o is called the bijection associated with ¢.

2 Note that the definition of an isomorphism does not change if one requires (xs)¢ = (x¢)(so ) rather than (xs)¢ C (x¢)(so)
for any two elements x in X and s in S. Equivalent to our definition is, of course, the requirement that (y¢, z¢) € so for any
three elements y, z in X and s in S with (y, z) € s.
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Two schemes S and S’ are called isomorphic if there exists an isomorphism from S to S'. If two
schemes S and S’ are isomorphic, one indicates that (as usual) by S = §'.

A scheme is called schurian if it is isomorphic to G/H for some group G and some subgroup H of G.

The question which we asked at the beginning of this section can now be restated in the following
way. Is there any condition which characterizes the schurian schemes within the class of all schemes?

It seems that there is no genuine, no purely scheme theoretic condition which characterizes the
schurian schemes within the class of all schemes. However, there is such a condition in terms of
automorphisms of schemes, and we shall now look at this condition. Let us first explain what we
mean by an automorphism of a scheme.

Anisomorphism ¢ from a scheme to itself is called an automorphism if the bijection associated with
¢ is the identity.?

It follows immediately from the definition of an automorphism that the set of all automorphisms
of a scheme S is a group with respect to composition. This group is called the automorphism group of
S and will be denoted by Aut(S).

In the previous section, we saw that the automorphism group of a schurian scheme S on a set X
possesses, for any five elements y, y' in X, s in S, z in ys, and z’ in y's, an element g such that yg = y/
and zg = z'. Let us now prove that this condition is, in fact, also sufficient for a scheme to be schurian.

Theorem A. A scheme S on a set X is schurian if and only if, for any five elementsy,y’ inX,sinS, z inys,
and z' iny's, S possesses an automorphism g such that yg =y’ and zg = z'.

Proof. Let S be a scheme. We set G := Aut(S), we fix an element w in X, and we define H to be the
set of all elements g in G satisfying wg = w. We shall see that S = G/H.

Let x be an element in X, and let g and g’ be elements in G such that xg = w and xg’ = w. Then
wg~'g’ = w.Thus,g~'g’ € H, and that means that gH = g’H. Thus, setting

x¢ :=gH

for any two elements x in X and g in G with xg = w, ¢ is a map from X to G/H.

Let s be an element in S, and let y and z be elements in X such that z € ys. Let e be an element in G
such that y¢ = eH, and let f be an element in G such that z¢p = fH.

Lety’ and z’ be elements in X such thatz’ € y's. Let ¢’ be an element in G such that y'¢ = ¢’H, and
let f’ be an element in G such that z/¢ = f'H. We claim that (e"1f)" = (¢/~1f)H.

From y¢ = eH we obtain

ye = w.
Similarly, we obtain
ye =w, z7f =w, Zf =w

fromy'¢p = €H,z¢ = fH,and z’¢p = f'H.
Since z € ysand z’ € y's, G possesses an automorphism g such that yg =y’ and zg = z'.

From ye = w we obtainy = we~!. Fromyg = y' and y¢’ = w we obtain w = yge'. Thus,
w = we~'ge’. Thus, e~'ge’ € H. Thus, there exists an element h in H such that e~'ge’ = h. It follows
thatg = ehe’~ 1.

From zf = w we obtain z = wf~!. From zg = z’ and z/f’ = w we obtain w = zgf’. Thus,

w = wf'gf’ . Thus, f~'gf’ € H.
From f~'gf’ € H and g = ehe’~! we obtain f~'ehe’"!f’ e H. Thus, e~'f’ € He 'fH. Thus,
He™'fH = He/~'f'H. It follows that

(e 'H = 'MH.

Let s be an element in S, and let y and z be elements in X such that z € ys. Let e be an element in G
such that y¢ = eH, and let f be an element in G such that z¢ = fH. Then we define so = (e~ 'f)!.

3 Note that the automorphisms of a scheme S on a set X are exactly the permutations « of X which satisfy (xs)a C (xa)s for
any two elements x in X and sin S.
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The above reasoning shows that this definition of so is independent of the choice of e and f. Thus,
o is amap from S to G/H.

That ¢ is an isomorphism from S to G/H (with associated bijection o) follows right from the
definition of ¢. 0O

Considering the development which group theory has undergone during the second half of the
last century it seems to be a reasonable task to systematically search for scheme theoretic conditions
which are sufficient for a scheme to be schurian. Theorem A provides a natural key to such an
enterprise.

The search for conditions which are sufficient for a scheme to be schurian leads naturally to the
following more specific question. Given a scheme theoretic property o which is sufficient for a scheme
to be schurian, can we specify a group theoretic condition y such that a group G satisfies y if and only
if it possesses a subgroup H such that G/H satisfies o ?

A theorem which, in this sense, associates a group theoretic condition with a given scheme
theoretic condition has been called a recognition theorem in [22]. This is because the initially given
scheme theoretic condition o recognizes the group theoretic condition y. One may also say that o
identifies or characterizes the groups which satisfy y. One obtains a characterization of the groups
satisfying y in terms which cannot be expressed solely in group theoretic terms.

It is the purpose of Part A of this article to review some of the currently existing recognition
theorems.

3. Thin schemes and the rise of structure theorems

A scheme is called thin if it is isomorphic to G/{1} for some group G. Recalling the definition of
schurian schemes one sees that thin schemes are schurian.

In Section 2, we mentioned that no scheme theoretic condition is known which characterizes the
schurian schemes within the class of all schemes. For thin schemes the situation is different. Setting
ng := dag+q for each scheme element s and calling this cardinal number the valency of s, one has the
following.

Theorem B,. A scheme is thin if and only if all of its elements have valency 1.

The proof of this theorem is straightforward and follows the lines of the proof of Theorem A.
The same is true for the following theorem which shows that our notion of a scheme isomorphism
generalizes that of a group isomorphism.

Theorem B,. Let G and G’ be groups, let H be the identity subgroup of G, and let H' be the identity
subgroup of G'. Then G = G’ ifand only if G/H = G'J/H'.

Theorem B, allows us to view the class of all groups as a distinguished class of schemes, namely
as the class of the thin schemes. It is tempting to consider this observation as a justification for far-
reaching and ambitious conjectures. One would like to know to what extent basic group theoretic
definitions and results can be generalized to scheme theory in such a way that the thin versions of the
scheme theoretic generalizations correspond to the group theoretic originals that one starts with.

In fact, scheme theory allows quite a few steps in this direction, and it is the purpose of Part B of
this article to present a collection of structure theorems of schemes which generalize group theoretic
structure theorems.

4. Preliminaries

In this section, the letter X stands for a set, the letter S for a scheme on X.

For each nonempty subset R of S, we define n to be the sum of the cardinalities n, withr € R. The
cardinality ny is called the valency of R.

Note that ng = |X|. Moreover, for each element s in S, one has |s| = nsns. If S has finite valency, the
latter observation yields ng« = n, for each element s in S. Occasionally, we shall refer to this equation
without further mention.
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Here are the most fundamental equations which structure constants of schemes have to satisfy.*

Lemma 4.1. Let p and q be elements of S, and assume that n, and ny are finite. Then the following hold.
(i) We have

E Apsqg = Np.

seS

(ii) We have

E pgsTs = NpTg.

ses

(iii) For each element s in S, we have aysqng = Agstplp.

For any two nonempty subsets P and Q of S, we define PQ to be the set of all elements s in S such
that there exist elements p in P and q in Q with a,¢s 7# 0. The set PQ is called the complex product of
P and Q.

It is easy to see that complex multiplication is associative and generalizes complex multiplication
in group theory.

For each nonempty subset R of S, we define R* to be the set of all elements r* withr € R.

Note that (PQ)* = Q*P* for any two nonempty subsets P and Q of S. Note also that, for any two
nonempty subsets P and Q of S, 1 € P*Q if and only if P N Q is not empty.

The following lemma provides a link between complex products and valencies.

Lemma 4.2. Let P and Q be nonempty subsets of S, and assume that np and nq are finite. Then the
following hold.

(i) We have ng < npq.
(ii) We have nq = npq if and only if Q = P*PQ.

For any two elements p and q of S, we write pq instead of {p}{q}.

Lemma 4.3. Let p and q be elements of S, and assume that n, and ny are finite. Then |p*q| is less than or
equal to the greatest common divisor of n, and ng.

A nonempty subset R of S is called closed if R*R C R. Closed subsets generalize subgroups.

Similarly to subgroups, closed subsets contain 1 as an element. One also verifies easily that
intersections of closed subsets of S are closed and that the valency of a closed subset of S divides
ns if ns is finite. This latter observation is the scheme theoretic generalization of Lagrange’s Theorem
for finite groups.

The proof of the following lemma can be translated word by word from the corresponding proof
in group theory.

Lemma 4.4. Let T and U be closed subsets of S. Then TU is closed if and only if TU = UT.

Given an element s of S and a nonempty subset R of S we write Rs instead of R{s} and sR instead of
{s]R.

Let T and U be closed subsets of S, and assume that T C U. The closed subset T is called normal in
U if Tu = uT for each element u in U. (It is easy to see that Tu C uT is equivalent to Tu = uT if U has
finite valency.)

A closed subset T of S is called simple if {1} and T are the only normal closed subsets of T.

For each closed subset T of S, Ng(T) stands for the normalizer of T in S, that is the set of all elements
sin S which satisfy Ts = sT. Thus, like in group theory, a closed subset T of S is normal in S if and only
if Ng(T) = S.

4 Fora proof of Lemma 4.1 we refer the reader to [22, Lemma 1.1.3]. The proofs of the remaining lemmata in this section are
given in [22, Lemma 1.4.4], [22, Lemma 1.5.2], [22, Lemma 2.1.1], [22, Lemma 2.2.1], [22, Lemma 2.3.3], [23, (1.7)(i)], and [22,
Theorem 4.1.3(iii)], respectively.
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Note that TU = UT for any two closed subsets T and U of S with U C Ns(T). Thus, by Lemma 4.4,
TU is closed for any two such closed subsets of S.
The following scheme theoretic version of Dedekind’s ‘Modularity Laws’ will be useful in Section 9.

Lemma 4.5. Let P and Q be nonempty subsets of S, and let T be a closed subset of S. Then we have the
following.

(AIfFPCT,TNPQ =P(TNQ).
(i) fQ ST, TNPQ = (T NP)Q.

Here is a link between closed subsets and valencies.

Lemma 4.6. Let s be an elementin S, and let T and U be closed subsets of S. Assume that s, T, and U have
finite valency. Then ngyy divides nynsny.

For each subset R of S, we define (R) to be the intersection of all closed subsets T of S satisfying
R C T.The set (R) is called the span of R in S, and we say that R spans or generates (R).

Since intersections of closed subsets are closed, spans of subsets of S are closed subsets of S.

We mentioned earlier that complex multiplication is associative. Thus, given a nonempty subset R
of S and a positive integer n, we may inductively define R".

The following characterization of spans is fundamental and appears in one form or another in every
algebraic theory.

Lemma 4.7. Let R be a subset of S. Then (R) is equal to the union of the sets (R* U R)" where n is a
non-negative integer.

In contrast to group theory, schemes of finite valency allow us to define a quotient structure for any
closed subset, not only for normal closed subsets. Let us look at the definition of quotient schemes.

Assume ns to be finite, and let T be a closed subset of S. For each element x in X, we define xT to
be the union of all sets xt with t € T. We define

X/T = {xT | x € X}.

For each element s in S, we define s” to be the set of all pairs (yT, zT) withy € X and z € yTsT. It is
not difficult to see that

S)T ={s" |seS}

is a scheme on X /T; cf. [22, Theorem 4.1.3(i)]. This scheme is called the quotient scheme of S over T.
As for the valencies of the elements in S /T we have the following.

Lemma 4.8. Assume that S has finite valency, let T be a closed subset of S, and let s be an element in S.
Then we have ngnr = nrr.

Assume that S has finite valency, let T be a closed subset of S, and let s be an element in S. Then,
by Lemma 4.8, ngrnr = nrer. From Lemma 4.6 we also know that nyer divides nyngny. Thus, ngr divides
ngnr. We shall refer to this observation in Sections 9 and 10.

A. Recognition Theorems

There are several different ways to express what it means for a scheme to be thin. The closer one stays
to one or another of these conditions, the better the chances are of finding a condition which leads to
schurian schemes.

In this part of our article, we shall look at three different conditions which can be considered to be
close to the condition of being thin.

Theorem By says that the thin schemes are exactly the schemes in which all elements have valency
1. This observation suggests investigating schemes in which all valencies are still relatively small.
Mitsugu Hirasaka and Mikhail Muzychuk looked at schemes of finite valency all elements of which
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have valency at most 2; cf.[10,12,13]. In Section 5, we shall focus on a specific class of these schemes,
a class which turns out to consist of schurian schemes.

Given a scheme S one defines Oy (S) to be the set of all elements in S which have valency 1. The set
0y (S) is called the thin radical of S. Theorem By says that a scheme S is thin if and only if Oy (S) = S.

Let S be a scheme of finite valency. One defines 0” (S) to be the span of the union of all subsets s*s
with s € S. The closed subset 07 (S) of S is called the thin residue of S.°> From Lemma 4.1(ii) one obtains
easily that, for each element sin S, ny = 1 is equivalent to s*s = {1}. Thus, according to Theorem B; a
scheme S of finite valency is thin if and only if 07 (S) = {1}.

We so have seen that both equations, Oy (S) = S and 0% (S) = {1}, express the fact that a scheme
S of finite valency is thin. A natural relaxation of the fact that S is thin is, therefore, the condition
0 (S) C 0,(S). We shall look more closely at this condition in Section 6.

The third condition which we shall discuss in this part of our article deals with schemes in which
‘many’ structure constants are equal to 1. The condition deals with schemes generated by involutions.
In contrast to the first two conditions, this condition is not restricted to schemes of finite valency. It
brings buildings into the game and will be considered in Section 7.

5. Schemes and Glauberman involutions

In this section, all schemes are assumed to have finite valency. We shall look at schemes (of finite
valency) all elements of which have valency at most 2. Since our focus is on recognition theorems, we
do not follow the above-mentioned path of Hirasaka and Muzychuk. We start, however, with a lemma
which is the key also to their investigation and which is implicit in [12, Lemma 3.1].

Lemma 5.1. Let S be a scheme, and let s be an element in S with n; = 2. Then s*s \ {1} possesses a
symmetric element r withn, < 2 and {1, r} = s*s.

Proof. Assuming n; = 2 we must have 2 < |s*s|. On the other hand, n; = 2 also yields |s*s| < 2;
cf. Lemma 4.3. Thus, |s*s| = 2.

Since 1 € s*s, we obtain from |s*s| = 2 that s*s \ {1} possesses an element r such that s*s = {1, r}.

From {1, r} = s*s and (s*s)* = s*s we obtainr* =r.

Applying Lemma 4.1(ii) to s* and s in place of p and g, we obtain from s*s = {1, r} that
Ugrs1 + Asxse Ny = NgxNg. ThUS, @S Agrg1 = Ngr = 2,0, < 2. O

From Lemma 5.1 one obtains ngs € {2, 3} for each scheme element s of valency 2. The elements s
satisfying ns+; = 2 are the ones which prevent schemes (in which all elements have valency 1 or 2)
from being schurian. In fact, there exists a famous non-schurian scheme of valency 28 which has four
elements of valency 1 and twelve elements of valency 2. In the following, we shall denote this scheme
by HM176(28).

All elements s of valency 2 of HM75(28) satisfy ng+; = 2. We shall see in the next section that
HM7¢(28) is also responsible for the necessity of additional conditions which one needs to impose in
order to obtain schurity from the condition 07 (S) € 0, (S).

The following result is [ 16, (4.1)]. Its proof consists of the concrete construction of automorphisms,
and that will enable us to apply Theorem A. It refers to Lemma 5.1 and depends at various instances
decisively on the hypothesis ngs 7% 2.

Proposition 5.2. Let S be a scheme, and assume that, for each element s in S, ng < 2 and ng # 2. Then
S is schurian.

Proposition 5.2 establishes a sufficient condition for a scheme S to be schurian. According to our
remarks in Section 2 this raises the question of what the corresponding recognition theorem says. In
order to answer this question we determine the one-point stabilizer of the automorphism group of S;
cf. [16, (4.2)] and [16, (4.3)].

5 The closed subset 0” (S) owes its name to the fact that it is the uniquely determined smallest closed subset T of S such that
S/T is thin.
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Lemma 5.3. Let X be a set, let S be a scheme on X, and assume that ng < 2 for each element s in S. Set
G = Aut(S), fix an element x in X, and define H to be the set of all elements g in G satisfying xg = x. Then
the following hold.

(i) If S is not thin, 2 < [H|.
(i) If 0 (S) does not have valency 2, |H| < 2.

Let S be a non-thin scheme such that n; < 2 and ngs; # 2 for each element s in S. Then, by
Lemma 5.3, |H| = 2. Let us see what G/H looks like if G is a group and H a subgroup of order 2 of
G.

Lemma 5.4. Let G be a group, and let H be a subgroup of order 2 of G. Then the following hold.

(i) Foreach element g in G, we have ngn < 2.
(ii) For each element g in G, we have ngn = 2 if and only if g € G \ C¢(H).
(iii) Let g be an element in G, and assume that ngn = 2. Then ny«e1 7 2 if and only if HHE # HEH.

The first statement of Lemma 5.4 follows immediately from Lemma 4.8. Its second statement is
straightforward, and its third statement is an application of Lemma 5.1.

The group theoretic condition given in Lemma 5.4(iii) is well known and arises in a famous context
in group theory.

Let G be a group, and let I be an involution of G. If G has finite order, the local condition that [I# # 8]
for each element g in G\ C¢(I) can be expressed globally, referring to the uniquely determined maximal
normal subgroup O(G) of odd order of G. This fact, namely that condition (b) of the following theorem
is a consequence of condition (a), is George Glauberman'’s Z*-Theorem; cf. 3, Theorem 1]. Its proof is
considered to be a highlight of modular representation theory of finite groups.

Theorem 5.5. Let G be a finite group, and let H be a subgroup of order 2 of G. Then the following conditions
are equivalent.

(a) For each element g in G\ Cg(H), HH® # HéH.
(b) We have G = [0(G), H]Cg(H).

Let G be a simple group satisfying condition (b) in Theorem 5.5. Then H = G or [0(G), H] = G.
In the second case, O(G) = G, and that means that G has odd order, contradicting the fact that H has
even order. Thus, G must have order 2 if it satisfies condition (b) of Theorem 5.5.

Theorem 5.5 allows us to state Proposition 5.2 in a more precise way. The proof of the following
theorem was given firstin [ 16, (5.1)]. We include it here since it shows by example how scheme theory
and group theory work together.

Theorem 5.6. Let S be a non-thin scheme. Assume that, for each element s in S, ny < 2 and ngs # 2.
Then there exists a finite group G and a subgroup H of G such that |H| = 2, G = [0(G), H]|C;(H), and
S = G/H.

Proof. SetG := Aut(S), fix an element x in X, and define H to be the set of all elements g in G satisfying
xg = x. Then, by Lemma 5.3, |H| = 2. Thus, there exists an element h in G \ {1} such that {1, h} = H.
Let g be an element in G \ C¢(h). According to Theorem 5.5 we shall be done if we succeed in
showing that hh® # h&h.
Let us denote by s the uniquely determined element in S satisfying xg € xs. Then

xgh € xsh C xhs = xs,

and so {xg, xgh} C xs.

Assume that xgh = xg. Then xghg~! = x. Thus, ghg~' € H.Thus,as {1,h} = H,ghg™! = h. It
follows that g € C¢(h), contradicting the choice of g. Thus, we must have xgh # xg.

From {xg, xgh} C xs and xgh # xg we obtain {xg, xgh} = xs. (Recall that n; < 2.) In particular,

xgs* U xghs™ = xss™*.
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Since xg € xs,x € xsg~! € xg~'s. Thus, xg~! € xs*, so
xh® = xg~'hg € xs*hg C xhgs* = xgs*.

On the other hand, we obtain from xg € xs also that x € xgs*. Thus, as x # xh®,
{x, xh®} = xgs™*.

From this we obtain
{x, xh®h} = xghs™.

Thus, as xgs*Uxghs* = xss*, {x, xh8, xh®h} = xss*. Thus, as we are assuming that ng+ # 2, we conclude
that xh® = xh&h. In particular, hh® # h8h. O

Let S be a scheme of finite valency, and assume that O, (0? (S)) has odd valency. Then we have
ng+ 7 2 for each element s in S. Thus, the conclusion of Theorem 5.6 remains valid if we assume that
all elements of S have valency at most 2 and the valency of 07 (S) is odd.

Here is the converse of Theorem 5.6. It is an immediate consequence of Lemma 5.4 and Theorem 5.5.
Together with Theorem 5.6 it is a recognition theorem. Its proof is straightforward and was given in
[16,(5.2)].

Theorem 5.7. Let G be a finite group, and let H be a subgroup of G such that |[H| = 2 and G =
[0(G), H]Ce(H). Then G/H has finite valency and, for each element g in G, one has ngn < 2 and
NgHysgh 7 2.

As a consequence of Theorem 5.6 one obtains the following.

Corollary 5.8. Let S be a scheme of finite valency, and assume that, for each element sin S, ny < 2 and
nges # 2. Then S = 07 ()0, (S), and 0” (S) has odd valency.

There are more results in this direction. Remarkable among them is a theorem of Hirasaka and
Muzychuk which says that schemes of valency 4p, p a prime different from 7, are schurian if all of
their elements have valency at most 2; cf. [12, Theorem 5.2]. The hypothesis p # 7 is, of course,
needed because of HM17¢(28).

6. Schemes and the generalized Fitting subgroup

In the previous section, we saw that having elements of valency 1 or 2 only is not sufficient for
a scheme to be schurian. The scheme HM;75(28) is not schurian although all of its elements have
valency 1 or 2. It is the same scheme which shows that the condition 0? (S) € 04 (S) is not sufficient
for a scheme S to be schurian. In fact, the thin residue of HM174(28) is equal to its thin radical and is
an elementary abelian group of order 4.

All schemes in this section are assumed to have finite valency. We shall look at conditions which
guarantee that schemes S (of finite valency) satisfying 0? (S) € 04 (S) are schurian.

Let s be an element of a scheme S. From Lemma 4.3 we know that |st| = 1 for each element t in
0y (S). We define

Ts .= {t € 05(S) | st = {s}}.

Since spq = sq = {s} for any two elements p and q in T, T is closed. Moreover, one has T, = {1}
for each element s in Oy (S).

It turns out that the closed subsets T; with s € S rule over the structure of schemes S that satisfy
07(S) € 0y(S). In fact, assuming 0” (S) € 0,(S) one obtains T, = s*s for each element s in S.
Moreover, one obtains that, for each element s in S, T, is a normal closed subset of 0" (S) and has
valency (order) n,.5 (All this is, for instance, contained in [22, Lemma 6.7.1].) This indicates that the
structure of S depends heavily on the (group theoretic) structure of 07 (S).

As a preliminary result in this direction one has the following theorem; cf. [15, Theorem B].

6 Recall that a closed subset T of S is called normal in S if Ts = sT for each element s in .
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Theorem 6.1. Let S be a scheme with 0” (S) € 04 (S), and assume that the set {s*s | s € S} is linearly
ordered with respect to set theoretic inclusion. Then S is schurian.

In the following, we try to get away from the restrictive hypothesis of Theorem 6.1. We shall deal
with schemes S in which 07 (S) is the direct product of two thin simple closed subsets (two simple
groups) which we call C and D.” The scheme HM;76(28) forces us also to assume that C and D are not
isomorphic. We assume that they have different order.

Note that 0” (S) has exactly four normal closed subsets, namely {1}, C, D, and 07 (S). Recall also
that, for each element s in S, T; is a normal closed subset of 0” (S). Thus, we must have

T,=C, T,=D, or T,=0"()

for each element sin S \ 0y (S).
Define U to be the set of all elements s in S with Ty = {1} or T, = C. Similarly, let V denote the set
of all elements sin S with T; = {1} or Ty = D.
It is not too difficult to show that U and V are closed. Also, one has U C Ns(D) and V C Ng(C).
Referring to the above notion we can show the following.

Lemma 6.2. Let y be an element in X, let s be an element in V, and let z and z' be elements in ys. Then S
possesses an automorphism ¢ such that x¢ = x for each element x in X \ zU and z¢p = Z'.

With the help of Lemma 6.2 one can go one step further.

Lemma 6.3. Assume that Oy (S) # U and that Oy (S) # V. Let y be an element in X, let s be an element
inS\ (UU V), and let z and z' be elements in ys. Then S possesses an automorphism ¢ such that y¢ =y
andz¢ = 7.

Lemma 6.2 and Lemma 6.3 tell us that, for any two elements x in X and s in S, the stabilizer of x
in the automorphism group of S acts transitively on xs. This is half of schurity. For the other half we
are lucky. That a scheme S satisfying 0% (S) C 0y (S) has a transitive automorphism group if 0% (S) is
a product of two simple groups of different order follows immediately from a more general result of
Hirasaka; cf. [11, Theorem 1.2]. Thus, we have the following.

Proposition 6.4. Let S be a scheme in which 0” (S) is the direct product of two thin simple closed subsets
of different order. Then S is schurian.

Proposition 6.4 is similar to Proposition 5.2. Both results provide a sufficient condition for a scheme
of finite valency to be schurian. Again we want to know what the schurian schemes satisfying the
hypothesis of Proposition 6.4 look like. In order to see this, we have to translate the conditions of
Proposition 6.4 into group theory.

Let G be a finite group, and let H be a subgroup of G. It is easy to see that

05 (G/H) = N¢(H)/H
and
0”(G/H) = (H® | g € G)JH.

Thus, one has 0% (G/H) C 04 (G/H) if and only if (H¢ | g € G) € N¢(H).
Referring to this observation, it is not difficult to prove the following theorem.

Theorem 6.5. Let S be a scheme in which 0” (S) is the direct product of two thin simple closed subsets of
different order. Then there exist a finite group G, normal subgroups M, and M, of G, and maximal normal
subgroups Hy of My and H, of M, satisfying the following conditions.

(i) If My is commutative, M, is elementary abelian and H, contains no normal subgroup of G different
from {1}. The same is true for M,.

7 Recall that S is called simple if {1} and T are the only normal closed subsets of S.
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(ii) If M, is not commutative, M, is a minimal normal subgroup of G. The same is true for M,.
(iii) We have Hy 4 G, H, 4 G, and S = G//H1H,.

The following theorem, together with Theorem 6.5, is one of our recognition theorems.

Theorem 6.6. Let G be a finite group, let My and M, be normal subgroups of G such that M; "M, = {1},
let Hy be a maximal normal subgroup of My, let H, be a maximal normal subgroup of M,, and assume
that Hy £ G and H, # G. Then OV (G/H,H;) = My/H; x M, /H,.

Theorem 6.6 says, in particular, that finite groups with two different components (quasisimple
subnormal subgroups) give rise to schemes satisfying the hypothesis of Proposition 6.4. It would be
interesting to see whether, generally, the generalized Fitting subgroup of a finite group plays a major
role in the investigation of schemes with thin thin residue.

It seems to be an interesting question which finite groups G guarantee that schemes S with
07 (S) = G are schurian. The scheme HM7(28) shows that the elementary abelian group of order 4
does not have this property. From Theorem 6.1 one obtains that simple groups do have this property.
Direct products of two simple non-abelian groups of different order do have this property, too;
cf. Proposition 6.4.

7. Involutions, the exchange condition, and buildings

In this section, we present a recognition theorem which is not restricted to schemes of finite
valency. It deals with involutions. Involutions in scheme theory generalize the group theoretic notion
of an involution.

A scheme element s is called an involution if |({s})| = 2. Note that involutions are necessarily
symmetric.

Let us fix a nonempty set of involutions of a scheme S and call it L.

Since involutions are symmetric, we obtain from Lemma 4.7 that (L) is the union of the sets L" with
n a non-negative integer. Thus, for each element s in (L), one obtains a non-negative integer n with
s € L". The smallest such integer is called the L-length of s and will be denoted by ¢; (s). If there is no
danger of ambiguity (as is the case at the moment), we shall speak simply of the length of an element
in (L) rather than of the L-length and write £ instead of ¢;.

Let p and q be elements in (L). It follows right from the definition of £ that

£(r) = £(p) + £(q)

for each element r in pq. For each element q in (L), we define S;(q) to be the set of all elements p in
(L) such that pq possesses an element r with £(r) = £(p) + £(q).
Here are the two main definitions.

(i) The set L is called constrained if |pq| = 1 for any two elements q in (L) and p in S1(q).
(ii) We say that L satisfies the exchange condition if, for any three elements h, k in L and s in S;(k),
h € S1(s) implies hs = sk or hs C Sy (k).

A constrained set of involutions is called a Coxeter set if it satisfies the exchange condition. An
association scheme is called Coxeter scheme (of rank n) if it is the span of a Coxeter set (of cardinality n).

The definition of a Coxeter scheme has two interesting features. Firstly, thin Coxeter schemes are
the same thing as Coxeter groups. Secondly, Coxeter schemes are the same thing as buildings. Indeed,
we have the following.

Theorem 7.1. There is a natural and well-understood bijective map between the class of all buildings and
the class of all Coxeter schemes.

To give a rough idea about the bijective map in this theorem we mention that this bijective map
relates buildings of type A, (projective planes) to Coxeter schemes defined by Coxeter sets {h, k}
satisfying hkh = khk.
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The fact that thin Coxeter schemes and Coxeter groups are the same thing raises the question of
which of the elementary facts about Coxeter groups can be generalized to Coxeter schemes.

There are surprisingly many features of Coxeter groups which carry over to Coxeter schemes. For
instance, subsets of Coxeter sets are Coxeter sets. One also has K = L N (K) for each subset K of a
Coxeter set L. More is said in the following lemma.

Lemma 7.2. Let L be a Coxeter set of a scheme S, and let K be a nonempty subset of L. Define S1(K) to
be the intersection of the sets S1(k) with k € K. Then we have S;({K)) = S1(K), (L \ K) € S1({K)), and
S1(K)(K) = (L).

Proofs of the statements of Lemma 7.2 are given in [24, Lemma 3.5, Lemma 3.6, and Lemma 3.7].

Given a Coxeter set L and an element q in (L) we define S_;(q) to be the set of all elements r in (L)
such that there exists an element p in (L) with r € pgand £(r) = £(p) + £(q).

Dually to the first equation of Lemma 7.2 we obtain the following lemma; cf. [24, Lemma 3.4].

Lemma 7.3. Let L be a Coxeter set of a scheme S, and let K be a nonempty subset of L. Define S_1(K) to
be the intersection of the sets S_1 (k) with k € K. Then we have S_1((K)) = S_1(K).

It is probably not an exaggeration to say that the first equation of Lemma 7.2 and the equation in
Lemma 7.3 are the most useful and clarifying results in the basic theory of Coxeter sets.

While the proofs of the above two lemmata are straightforward generalizations of the
corresponding proofs for Coxeter groups, the proof of the following proposition is quite involved.

Proposition 7.4. Let S be a finite Coxeter scheme of rank at least 3, and assume that Oy (S) = {1}. Then
S is schurian.®

Coxeter schemes of rank 2 are not necessarily schurian. A Coxeter scheme of finite valency and of
type A, is schurian if and only if it corresponds to a desarguesian projective plane; cf. [17].

The proof of Proposition 7.4 was first given in [24]. Together with Theorem 7.1 it provides an
alternate proof of Tits’ reduction theorems for buildings of spherical type; cf. [20, Theorem 4.1.2] and
[21, Proposition 11.13]. It aims for an application of Theorem A. In fact, in order to prove Proposition 7.4
one constructs, for any five elements y,y’ in X,sin S, z inys, and z’ in y’s, an automorphism g of S such
that yg = y" and zg = z'. The automorphism g is constructed by extending the map ¢ from {y, z} to
X which sends y to y’ and z to z’ step by step to an automorphism of S.

In order to explain the individual steps in which ¢ is extended it is useful to introduce the notion
of a faithful map.

Let W be a subset of X. Amap x from W to X is called faithful if, for any three elements y, z in W
andsinS,z € ysimplieszx € yxs.

Note that faithful maps are injective and that a surjective faithful map from X to X is an
automorphism of S. Note also that the above-defined map ¢ is a faithful map from {y, z} to X.

The extension of the faithful map ¢ to a faithful map from X to X comes now in three steps. We
define V to be the union of the sets (M) with M C Land |[M| < 2.

(i) Given elements x, y, and z in X each faithful map from {y} U zV extends to a faithful map from
{x,y} UzV to X.
(ii) Let x be a faithful map from yV U {z} to X. Then x extends to a faithful map from yV U zV to X.

These first two steps do not require S to be finite. But finiteness will be used for the third step in which
we need elements of maximal length. In the same way as one shows that finite Coxeter groups possess
a uniquely determined element of maximal length one proves this fact for finite Coxeter schemes. We
call this element m.

(iii) Lety be an element in X, let z be an element in ym. Then each faithful map x from yV U {z} to X
extends to an automorphism of S.

8 We call a scheme finite if it has finitely many elements. Each scheme of finite valency is finite, but the converse does not
hold.
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The above three steps in our proof of Proposition 7.4 are modeled after Tits’ procedure in his
treatment of buildings of spherical type in [20].

Proposition 7.4 is similar to Propositions 6.4 and 5.2. Similar to these two propositions it provides
a sufficient condition for S to be schurian. Again, we would like to know the group theoretic condition
which is characterized by the schemes considered in Proposition 7.4.

This time the answer refers to Tits systems. Let us explain what one means by a Tits system of a
group.

Let G be a group, let H be a subgroup of G, and let ] be a subset of G such that G = (H U J).

Assume that H N (J) is normal in {J). Assume that, for each element jin ], j* € H and

H # HjHjH.
Assume, finally, that
HgHjH C HgjH U HgH

for any two elementsj € J and g in (J). Then (H, J) is called a Tits system for G.
We can now state Proposition 7.4 in a more precise way.

Theorem 7.5. Let S be a finite Coxeter scheme of rank at least 3, and assume that Oy (S) = {1}. Then
there exists a group G with a Tits system (H, J) such that S = G//H.

Theorem 7.5 is a consequence of [22, Theorem 12.3.4]. Its converse is the following theorem, a
result that says that Tits systems give rise to Coxeter sets. It is a consequence of [22, Theorem12.3.5].
Together with Theorem 7.5, Theorem 7.6 is a recognition theorem.

Theorem 7.6. Let G be a group which possesses a Tits system (H,]). Then GJ/H is a scheme with
0y (GJ/H) = {H}, and ] J/H is a Coxeter set which spans G JH.

In Theorem 7.6 one does not automatically obtain that G/H is finite and thatJ /H has at least three
elements.

B. Structure Theorems

In this second part of the article, we shall discuss five themes from group theory which contribute to
a conceptional understanding of the structure of association schemes.

In Section 8, we shall present the Homomorphism Theorem, the two Isomorphism Theorems, and
the Jordan-Holder Theorem for schemes of finite valency. We follow the lines of [18].

Section 9 deals with simplicity and primitivity of schemes. Section 10 presents the generalized
Sylow Theorems as they have been proven in [14]. In Section 11, we present an advanced result on
involutions, and in the last section, we glimpse at representation theory of schemes of finite valency.

8. Subnormal closed subsets

All schemes in this section are assumed to have finite valency.

Let X and X’ be sets, let S be a scheme on X, and let S’ be a scheme on X’. A map ¢ from X to X’ is
called a morphism from S to S’ if there exists a map o from S to S’ such that (xs)¢ < (x¢)(so) for any
two elements x in X and s in S. The map o is called the map associated with ¢.

A morphism ¢ from S to S” will be called a homomorphism if, for any three elements y, z in X and s
in S with z¢p € (y¢)(so), there exist elements v in X and w in vs such that v¢ = y¢ and we = z¢.

Note that a bijective morphism is an isomorphism and that isomorphisms are homomorphisms.

Given a homomorphism ¢ from S we define the kernel of ¢ to be the set of all elements s in S
satisfying s¢ = 1¢. The kernel of a homomorphism ¢ is denoted by ker(¢).

It follows right from the definition of the kernel that kernels are closed. Here is the Homomorphism
Theorem for schemes.
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Theorem 8.1. Let X be a set, and let S be a scheme on X. Let ¢ be a homomorphism from S to a scheme S’
with associated map o, and set T := ker(¢). For each element x in X, set (xT)y := x¢. For each element
sinS, set (s")t := so. Then v is an injective homomorphism from S /T to S’, and T is the map associated
with .

We shall now come to the Isomorphism Theorems for schemes.

Theorem 8.2. Let T and U be closed subsets of a scheme S, and assume that T C U.Then (S/T) /(U JT) =
S/U.

Recall that, for each closed subset T of a scheme S, Ns(T) is our notation for the set of all elements
sin S which satisfy Ts C sT.
The following lemma is a straightforward generalization of a standard group theoretic result.

Lemma 8.3. Let T and U be closed subsets of a scheme S, and assume that T C Ng(U). Then T N U is
normal in T and U is normal in TU.

Let X be a set, let S be a scheme on X, let x be an element in X, and let T be a closed subset of S. It
is obvious that, for each element t in T, (t,7)* = (t*),r. Note also that T,y is a scheme on xT.

Let x be an element in X, and let T be a closed subset of S. We call T, the subscheme of S defined by
xT.

Theorem 8.4. Let X be a set, let S be a scheme on X, let x be an element in X, and let T and U be closed
subsets of S such that T C Ns(U). Then we have (T JT N U)y = (TU JU)x.

Let X be a set, let S be a scheme on X, and let 7 be a set of closed subsets of S such that {1} € T
and S € 7. Let us assume that, for any two elements U and Vin7,U C VorV C U.

For each element T in 7 \ {S}, we define T” to be the intersection of all elements U of 7 \ {T}
which contain T as a subset. (Since S is assumed to have finite valency, we have T” € 7.) The set T
is called a subnormal series of S if, for each element T in 7, T is normal in T” . A maximal subnormal
series of S is called a composition series of S.

Two composition series 7 and U of S are called isomorphic if there exists a bijective map 1 from
T\ {S} to U \ {S} such that, for any two elements xin X and T in 7 \ {S},

(T7 T = (T Ty
The following theorem generalizes a famous group theoretic theorem of Otto Holder to scheme
theory.
Theorem 8.5. Any two composition series of a scheme of finite valency are isomorphic.

Theorem 8.5 suggests investigating schemes S in which {1} and S are the only normal closed
subsets. Recall that such schemes were called simple.

9. Primitivity and simplicity

In this section, the letter X stands for a finite set, the letter S for a scheme on X.
Let T and U be closed subsets of S, and assume that T C U. Recall that T is called normal in U if,
for each element u in U, Tu = uT.

Lemma 9.1. Let T and U be closed subsets of S. Assume that T is normalin S. Then TU is closed and TU JU
isnormal in S JU.

Proof. Since T is assumed to be normal in S, TU is closed; cf. Lemma 4.4. Moreover, as T is assumed
to be normal in S, we have TUsU = UsTU for each element s in S. Thus, by [22, Lemma 4.1.5], TU /U is
normalinS/U. O
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Theorem 9.2. Let T, U, and V be closed subsets of S. Assume that TU is closed, that U C V C TU, and
that TNV /T NUisnormalinT /T NU.ThenV JU is normal in TU JU.

Proof. We are assuming that TU is closed. Thus, by Lemma 4.4, TU = UT. Thus,asV C TU,V C UT.
We are assuming that U C V. Thus, by Lemma 4.5(i), UT NV = U(T N V). Thus, as V C UT,

V=UTNV).
From Lemma 4.5(ii) we know that TU NV = (T N V)U. Thus,asV C TU,
V= (TNV)U.

We are assuming that T NV /T N U is normal in T/T N U. According to [22, Lemma 4.1.5] this
means that, for each element t in T,

(TNWVILTNU) STNULTNV).
Thus, for each element t in T,
ViU =UT NWILTNU)U CUTNULHTNV)U = UtV.

We shall now see that, for each element s in TU, VsU C UsV (not only for elements s in T).
Let s be an element in TU. Then there exist elements t in T and v in U such that s € tu. Thus, by [22,
Lemma 1.3.3(i)], t € su*.Froms € tu, t € su*, and u* € U C V we obtain

VsU C VtuU = VtU C UtV C Usu™V = UsV.

Since s has been chosen arbitrarily in TU, this proves that V /U is normal in TU JU; cf. [22, Lemma
415]. O

A closed subset T of S is called a Dedekind set if each closed subset of T is normal in T.
It follows right from the definition of Dedekind sets that closed subsets of Dedekind sets are
Dedekind sets. The following lemma says that quotients of Dedekind set are Dedekind sets.

Lemma 9.3. Let T and U be closed subsets of S such that T C U. Assume that U is a Dedekind set. Then
U /T is a Dedekind set.

Proof. Let V be a closed subset of U such that T C V. Then, as U is assumed to be a Dedekind set, V is
normal in U. Thus, by Lemma 9.1,V /T isnormal in U /T. O

Let T be a closed subset of S, and assume that T # {1}. The set T is called primitive if {1} and T
are the only closed subsets of T. (Recall that T is called simple if {1} and T are the only normal closed
subsets of T.)

It follows right from these definitions that primitive closed subsets are simple. Of course, for
Dedekind sets the converse holds, too. We are interested in other circumstances under which the
converse holds.

Lemma 9.4. Let T and U be closed subsets such that TU is closed. Assume that T /T N U is a Dedekind set.
Then the following hold.

(i) The set TU JU is a Dedekind set.
(ii) If TU JU is simple, TU J U is primitive.

Proof. (i) This follows immediately from Theorem 9.2.
(ii) Assuming TU /U to be simple we obtain from (i) that TU /U is primitive. O

Theorem 9.5. Let T be a closed subset of S. Assume that S possesses a normal closed subset U such that
U Z Tand U/T N U is a Dedekind set. Then, if ST is simple, S /T is primitive.
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Proof. Since U is assumed to be normal in S, TU is closed and TU /T is normal in S /T; cf. Lemma 9.1.
Thus, as S /T is assumed to be simple, we must have TU /T = {17} or TU /T = S//T.

Since we are assuming that U & T, we cannot have TU /T = {17}. Thus, TU/T = ST, and this
implies TU = S.

We are assuming that S/T is simple. Thus, as TU = S, TU /T is simple. Thus, by Lemma 9.4(ii),
TU /T is primitive. Thus, as TU = S, S /T is primitive. O

If group theoretic theorems do not right away generalize to schemes, one may wish to generalize
them first to schurian schemes. Sergei Evdokimov and Ilia Ponomarenko, to whom most of the
remaining results of this section are due, did that with the Odd-Order Theorem, the theorem of Walter
Feit and John Thompson which says that finite groups of odd order are solvable.

The scheme S of finite valency is said to be of odd order if, for each element s in S, |s| is odd.

The following lemma provides a useful characterization of schemes of odd order.

Lemma 9.6. A scheme is of odd order if and only if the identity is its only symmetric element.

Proof. Let X be a finite set, let S be a scheme on X, and assume first that S is of odd order. Let s be a
symmetric element of S. Then we have (z, y) € s for any two elements y and z in X with (y, z) € s.
Thus, as |s| is assumed to be odd, there exist elements y and z in X with (y, z) = (z,y) € s. It follows
that 1 N s is not empty. Thus, s = 1.

Let us now assume that 1 is the only symmetric element of S. Then S possesses a subset R such that
{R*, R} is a partition of S \ {1}. Thus, for each element s in S,

ns = Zasrs =asls+22asrs =1 “FZZasrs-

res reR reR

(The first equation follows from Lemma 4.1(i), the second equation from Lemma 4.1(iii).) O

The following two lemmata will not be needed in the remainder of this section. They shows how
being of odd order is inherited.

Lemma 9.7. Let T be a closed subset of S. Then S is of odd order if and only if T and ST are of odd order.

Proof. Assume first that S is of odd order. Then, by definition, |s| is odd for each element s in S. In
particular, |t| is odd for each element ¢ in T, so T is of odd order.

In order to show that S /T is of odd order, we fix an element in S and call it s. Then, by Lemma 4.8
and Lemma 4.6, ngr divides ngnr. Thus, |sT| = ngr nsr divides ngnyns)r = nsng = |s|, and we are done.

We now assume that T and S /T are of odd order, and we fix an element s in S.

Ifs € S\T,s" # 17. Thus, as S /T is assumed to be of odd order, (s")* # sT; cf. Lemma 9.6. Thus,
as (sT)* = (s)7,s* #s.

Ifs € T\ {1}, one obtains s* # s from the hypothesis that T is of odd order. Thus, 1 is the only
symmetric element in S, so, by Lemma 9.6, S is of odd order. O

Lemma 9.8. Let T and U be closed subsets of S, and assume that S /T and S U are of odd order. Then
S/(T NU) is of odd order.

Proof. Let T and U be closed subsets of S such that S/T and S /U are of odd order. Then none of the
elements in S/T \ {17} orinS/U \ {1V} is symmetric; cf. Lemma 9.6. It follows that Ts*T N TsT =
for each elementsinS \ T and Us*U N UsU = ¢ for each elementsin S \ U.

LetsbeanelementinS\ (TNU).Thens € S\T ors € S\ U. Assume, without loss of generalization,
thats € S\ T. Then

TNUSTNU)YN((TNU)S(TNU) CTs*T NTsT = @.

Thus, none of the elements of S /(T N U) \ {17"V} is symmetric. Thus, by Lemma 9.6, S/(T N U) is of
odd order. O

Recall that the set of all automorphisms of S is a group with respect to composition and denoted
by Aut(S).
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Lemma 9.9. If S is of odd order, Aut(S) has odd order.

Proof. Assume, by way of contradiction, that Aut(S) possesses an element g of order 2. Then there
exists an element x in X such that xg # x.

Let us denote by s the uniquely determined element in S which satisfies xg € xs. Then xg? € xsg =
xgs. However, as g has order 2, xg2 = x. Thus, x € xgs. Thus, as xg € xs, s is symmetric. Thus, by
Lemma 9.6, s = 1. Thus, xg = x, contradiction. O

Lemma 9.10. Assume S to be schurian and simple. Assume that S has a commutative group of
automorphisms acting transitively on X. Then S is primitive.

Proof. Since S is assumed to be schurian, there exists a group G and a subgroup H of G such that
S = G/H.Thus, as S is assumed to be simple, G/H is simple.

By hypothesis, G possesses a commutative subgroup A acting transitively on X. Since A acts
transitively on X, AH = G. Thus, by Lemma 9.4(ii), G/H must be primitive. Thus, as S = G/H, S is
primitive. O

Lemma 9.11. Assume S to be schurian and simple. Assume that Aut(S) has a commutative normal
subgroup A different from {1}. Then S is primitive.

Proof. We set G := Aut(S). Since S is assumed to be schurian, G possesses a closed subset H such that
S = GJH.

By hypothesis, G has a commutative normal subgroup A with A # {1}. Since A # {1}, Ais not a
subset of H. Thus, the lemma follows from Theorem 9.5. O

Scheme theoretically, the Feit-Thompson Theorem says that thin simple schemes of odd order are
primitive. Referring to this theorem we can now say a little bit more.

Theorem 9.12. Schurian simple schemes of odd order are primitive.

Proof. Let S be a schurian scheme of odd order, and set G := Aut(S). Then G has odd order;
cf. Lemma 9.9. Thus, by [2], G is solvable. Thus, G has a commutative normal subgroup A different
from {1}. Thus, by Lemma 9.11, S is primitive. O

It seems to be unknown whether or not non-schurian simple schemes of odd order are generally
primitive. No imprimitive simple scheme of odd order is known. It also seems to be an open question
whether primitive schemes of odd order are commutative.

10. Sylow theory

All schemes in this section are assumed to have finite valency.

Let S be a scheme, and let p be a prime number. An element s in S is called p-valenced if ns is a
power of p. A nonempty subset of S is called p-valenced if each of its elements is p-valenced.

Recall that Oy (S) is our notation for the thin radical of S, that is the set of all elements in S which
have valency 1. One obviously has 1 € 0y (S).

It is easy to see that the following lemma generalizes the fact that finite p-groups have nontrivial
centers.

Lemma 10.1. Let p be a prime number, and let T be a closed p-valenced subset of a scheme S. Assume that
p divides ny. Then Oy (T) # {1}.

Proof. By definition, ny is the sum of the integers n, with t € T.Since T is assumed to be p-valenced, n;
is a power of p for each element t in T. Thus, as we are assuming that p divides nr, p divides ng, (r). O
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Again, let p be a prime number. A nonempty p-valenced subset R of a scheme S is called a p-subset
of S if ng is a power of p. A closed p-subset T of a scheme S is called a Sylow p-subset of S if p does not
divide Ngr.

One cannot expect that (like in group theory) each scheme of finite valency possesses p-Sylow
subsets. In fact, for each integer n with 2 < n, there exists a scheme of valency n which has only
two elements, the identity and the non-identity. To find an appropriate condition which guarantees
the existence of Sylow subsets was, therefore, a certain challenge in the development of the structure
theory of schemes of finite valency.

The situation changed when Hirasaka, whose work on schemes of finite valency had already
reflected specific features of the arithmetic of the valencies of schemes, observed that, since thin
schemes are p-valenced for any prime number p, a ‘p-Sylow theorem’ for p-valenced schemes would
be a genuine generalization of Sylow’s group theoretic theorems [19]. His suggestion of searching for
Sylow p-subsets only in p-valenced schemes led to the Sylow theorems for association schemes as
they later were established in [14].

Theorem 10.2. Each p-valenced scheme possesses at least one Sylow p-subset.

Proof. Let S be a minimal counterexample. Then p divides ns. Thus, by Lemma 10.1, p divides ng, s).
Thus, by Cauchy’s Lemma, Oy (S) possesses a closed subset T of valency p. From Lemma 4.6 and
Lemma 4.8 we now obtain that S /T is p-valenced. So, by induction, S /T possesses a Sylow p-subset
U /T.It follows that U is a Sylow p-subset of S, contradiction. O

The key for our next theorem on Sylow subsets is the following analogue of the conjugation
property of Sylow subgroups. We include a proof also of this result since it is one of the most
convincing applications of Lemma 4.2.

Proposition 10.3. Let S be a p-valenced scheme, let T be a closed p-subset of S, and let U be a Sylow
p-subset of S. Then there exists an element s in S such that s*Ts C U.

Proof. Let R be a subset of S which contains exactly one element of each double coset of T and U in S.
Then, as the double cosets of T and U in S form a partition of S, we have

ng = E nny.

reR

Now recall that ny and ny are assumed to be powers of p. Moreover, as S is assumed to be p-
valenced, n, is a power of p for each element r in R. Thus, for each element r in R, npy is a power of p;
cf. Lemma 4.6.

Now recall that ny < npy for each element r in R; cf. Lemma 4.2(i). Thus, as ny is the highest power
of p dividing ns, R possesses an element s such that ny = ngy. From ny = ngy we obtain s*Ts C U;
cf. Lemma 4.2(ii). O

For each p-valenced scheme S, we define Syl,(S) to be the set of all Sylow p-subsets of S.

Theorem 10.4. Let S be a p-valenced scheme, and let T be a Sylow p-subset of S. Then Syl,(S) = {s*Ts |
s€S, ss* C T}

In Theorem 10.2, we saw that each p-valenced scheme possesses at least one Sylow p-subset.
Generalizing this theorem we can now say more about the number of Sylow p-subsets of p-valenced
schemes.

Theorem 10.5. The number of Sylow p-subsets of a p-valenced scheme is congruent to 1 modulo p.

At this point it might be worth mentioning that the theory of table algebras allows a Sylow theory
which is similar to the one which we presented in this section, a Sylow theory which is, of course,
more general than the one for schemes; cf. [1].
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11. Conjugate constrained sets of involutions

Let S be a p-valenced scheme, and let T and U be Sylow p-subsets of S. Then, by Proposition 10.3,
there exists an element s in S such that s*Ts = U. Like in group theory, one might say that the Sylow
p-subsets are ‘conjugate’.

In this section, we shall deal with conjugation of Coxeter sets. Let S be a scheme, and let L be a set
of involutions of S. Assume that L is a Coxeter set, and that (L) is finite. Then (L) possesses a uniquely
determined element of maximal length. (We mentioned this in Section 7. A proof of this fact was given
in [24, Lemma 6.2].) Let us call this element m;.

From [24, Lemma 6.1, Lemma 2.1] one obtains, for each element r in (L), a uniquely determined
element r® in (L) such that

merPr and €,(mp) = €,rP) + €.(r).

From m; € 11 we now obtain 1’ = m,. Thus, we have 1V € r®r and ¢,(1V) = £, D) + €,(r)
for each element r in (L). Thus, as L is assumed to be constrained, we obtain

rOr = {1(L)}

for each element r in (L).

It turns out that these equations, together with the observation that ( is injective (a fact which
was proven in [22, Lemma 12.1.1(i)]), take care of many of the structural results in the theory of finite
Coxeter schemes. We, therefore, isolate these two facts from the initial setup in finite Coxeter schemes
and turn them into the starting point of the following somewhat more abstract considerations.

Let S be ascheme, and let K be a constrained set of involutions. Assume that there exists an injective
map ” from (K) to S such that, for each element q in (K),

q"q ={17}.
We setm := 1°.
The difference between the maps * and # is that domain and codomain of ) are equal, whereas

» does not necessarily send its elements back to its domain. A satisfactory picture of the image of ” is
given in the following theorem, the proof of which is not straightforward.

Theorem 11.1. We have (K)” = m(K).

Since the cosets of a closed subset of S form a partition of S, Theorem 11.1 implies that the image
of # is either equal to its domain or disjoint from its domain.

We shall now deal with the set on which S is a scheme, and we shall denote this set by X.

Let y be an element in X, and let z be an element in ym. It is not too difficult to see that, for each
element r in (K), yr*® N zr contains exactly one element.

We define C,, to be the union of the sets yr*” N zr withr € (K).

Sincez e ymandm = 17,z € y1°. Thus, z € .

Like the proof of Theorem 11.1, the proof of the following theorem is not straightforward.

Theorem 11.2. If K is a Coxeter set, C,, is an apartment of (K).

Apartments have been introduced by Tits as one of the indispensable tools in the theory of
buildings. Scheme theory allows to generalize this notation in the following way. Let T be a closed
subset of a scheme S on X. A subset W of X is called apartment of T if [W N wt| = 1 for any two
elements w € Wandt €T.

We now assume that S possesses a second constrained set of involutions. We call this set H and
assume that there exists an injective map also from (H) to S. This map will be called A, and we assume
that

pp* = {1'}
for each element p in (H). Finally, we assume that 1* = m and that
(Hym = m(K).
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From a group theoretic point of view, this last equation suggests considering (H) and (K) to be
‘conjugate’.
From Theorem 11.1 (together with [22, Lemma 1.3.2(iii)]) one obtains (H)* = (H)m. This yields

(HY* = (K)".

Thus, as # is assumed to be injective, we obtain the following.

Lemma 11.3. For each element p in (H), there exists exactly one element q in (K) such that p* = q°.

Similarly one obtains, of course, for each element q in (K), a uniquely determined element p in (H)
with p* = ¢*.

If H and K satisfy the exchange condition, there is a long list of natural consequences of our setup.®
The following two lemmata might give an impression.

Lemma 11.4. Let p be an element in (H), and let q denote the uniquely determined element in (K) which
satisfies p* = q”. Then we have p** = q**. Moreover, if p is thin, so is q.

Lemma 11.5. Let p be an element in (H), and let q denote the uniquely determined element in (K) which
satisfies p* = q°. Assume that H does not contain thin elements. Then we have £ (p) = £x(q). Moreover,
if p€ H, thenq € K and n, = n,.

We now fix elements y in X and z in ym and define apartments as we did earlier. We define A,, to
be the union of the sets yp N zp** with p € (H). By B,, we mean the union of the sets yq** N zq with
q € (K).

Let v be an element inAy,, let w be an element in By,. Let p denote the uniquely determined element
of (H) satisfying v € yp, and let q denote the uniquely determined element of (K) satisfying w € zq.
Then one obtains from Lemma 11.3 and Lemma 11.5 that p* = g¢” ifand only if w € vm.

Theorem 11.6. For each element v in A, there exists exactly one element w in By, such that w € vm.

From Theorem 11.6 one obtains that, for each element w in B,,, there exists exactly one element v
in Ay, such that w € vm. Thus, the relation m establishes a bijective map between A, and B,,.

12. Representations of schemes of finite valency

The extent to which the arithmetic of the structure constants of association schemes rules over
the structure of association schemes is visible not only in the Sylow Theorems for schemes; it is even
more apparent in the representation theory of schemes of finite valency.

Representation theory of association schemes is the oldest part of scheme theory and deals
with schemes of finite valency. It obtained its first substantial contributions from Donald Higman’s
investigations on coherent configurations; cf. [9]. Many papers have been published on the
representation theory of specific classes of association schemes. In particular the literature on
eigenvalues of commutative and, even more specifically, of symmetric association schemes is
overwhelming.

In this final section, we shall not make any attempt to survey representation theory of schemes.
The intention is again to just highlight a few analogies to group theory. The latest achievements in
representation theory of association schemes (of finite valency) are discussed in a wider framework
in Akihide Hanaki’s contribution to this volume; cf. [4].

Let X be a finite set, and let C be a field. For each element x in X, we fix an element ¢, in C. We write

> e

xeX

to denote the map from X to C which sends each element x in X to c.

9 Recall that H and K are assumed to be constrained. Thus, H and K are Coxeter sets if they satisfy the exchange condition.
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The set CX of all maps from X to C is a vector space over C with respect to componentwise addition
and componentwise multiplication with elements of C.

Each element x in X can be identified with the map from X to C which maps x to 1 and each element
different from x to 0. Thus, X can be viewed as a subset of CX. In fact, X is a basis of the vector space
X.

Let S be a scheme on X, and let s be an element in S. Since X is a basis of CX, the endomorphism
ring End¢ (CX) of CX possesses a uniquely defined element oy such that

X0s = Zy

YEXs

for each element x in X.

For each nonempty subset R of S, we define CR to be the set of all finite sums of products co, with
ceCandr e R

Note that, for each nonempty subset R of S, CR is a vector space over C with respect to
componentwise addition and componentwise multiplication with elements of C. The set {0 | r € R}
is a basis of CR.

It follows right from the regularity condition for schemes that

0p0q = E (pgsOs

seS

for any two elements p and q in S. Thus, CS is a subring of End¢ (CX).

Since 1 € S, 07 € CS. Thus, CS is a ring with 1. It is called the adjacency algebra of S over C or the
scheme ring of S over C.1° The field C is called the base field of CS.

Since CS is a subring of End¢(CX), CX is a CS-module. This module is called the standard module
of CS.

Since CS is a ring with 1, the elements of C can be identified with the multiples of . In particular,
C can be viewed as a subfield of Z(CS), the center of CS. This enables us to define a character for each
CS-module which is finitely generated over C.

Recall that the standard module CX of CS is finitely generated over C. The character of CS afforded
by the standard module is called the standard character of CS and denoted by xcx.

The following lemma gives some information about the standard character.

Lemma 12.1. The following statements hold.

(1) We have ch((f]) = Ns.
(ii) For each element sin S \ {1}, we have ycx(os) = 0.

(iii) For any two elements p and q in S, xcx (0p+04) = Spq|p*|.
(iv) For each element sin S, let c; be an element in C. Set

o =Y 6o
seS
Then, for each element sin S, xcx(0g+0) = cgs™|.

The standard module possesses an irreducible submodule which induces a character of CS all values
of which can be computed explicitly. In order to introduce this module we (temporarily) set

j= Z X.
xeX

Note that, for each element sin S,

Jjos = ZZY = Ngx ZX = Ng+j.

xeX yexs xeX

10 | investigations on commutative association schemes scheme rings are usually called Bose-Mesner algebra. Note also that
scheme rings of thin schemes are nothing but group rings.
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Thus, j is a submodule of the CS-module CX.!! It is called the principal module of CS. The character
afforded by the principal module is called the principal character of CS. We denote it by 1¢s.
The above equation tells us that, for each element s in S,
]CS (Gs) = N;.

(Recall that we have ng+ = n; for each element s in S, since S is assumed to have finite valency.)
The key for all computations with characters is the following structure theorem for scheme rings.

Theorem 12.2. Assume that, for each element s in S, the characteristic of C does not divide |s|. Then CS is
semisimple.

If CS is semisimple, we may apply the well-known theorem of Emil Artin and Joseph Wedderburn
on completely reducible rings. Thus, there exists exactly one maximal homogeneous submodule H,
of the CS-module CS such that x = vy, . We set

€y = le'

Let us denote by Irr(CS) the set of all irreducible characters of CS. Then there exists, for each
irreducible character x of CS, a non-negative integer m, such that

Xex = Z myx.
X €lrr(CS)

The integers m, are called the multiplicities of .

Lemma 12.3. Assume that, for each element s in S, the characteristic of C does not divide |s|. Let x be an
irreducible character of CS. Then we have

my X (05)
€ = — E 0.
s ‘o5 s

Lemma 12.3 is the key in the proof of the following theorem. The equations in this theorem are
usually called the orthogonality relations for schemes of finite valency.

Theorem 12.4. Assume that, for each element s in S, the characteristic of C does not divide |s|. Then we
have

¢(o1)

mgy

1 1

— — ¢ (O os) =6
. ZS POV () = 8y
for any two irreducible characters ¢ and v of CS.

The orthogonality relations are the key for quite a few results in group theory. This is due to the fact
that they bring algebraic integers on the left hand side of the equations together with rational numbers
on the right hand side. Since the ring of the integers is integrally closed, this can lead to interesting
divisibility conditions. As is well known, this is the case in Burnside’s proof of the solvability of groups
of order p®q?, but it is also the case in the proof of the theorem of Feit and Graham Higman on finite
polygons or, as we would say, on Coxeter schemes of rank 2 and finite valency.

In the proof of this latter theorem one first computes completely the irreducible characters of CS
like one can completely compute the irreducible characters of a dihedral group. Independently from
this one knows the multiplicities.

So far we have assumed that the characteristic of C does not divide any of the integers |s| with
s € S.Like in group theory the theory changes considerably if one omits this hypothesis. It is the merit
mainly of Akihide Hanaki to have seriously looked at the modular representation theory of schemes
of finite valency. All his considerations are based on the following observation.

1T Recall that Cj denotes the set of all elements ¢j with ¢ € C.
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Proposition 12.5. Let R be an integral domain of characteristic 0, and let p be a prime number. Assume
that p is not a unit in R and that ns is a power of p. Then 1 is the only idempotent element of RS.

From this he obtained the following; cf. [5, Theorem 3.4].

Theorem 12.6. Let R be a complete discrete valuation ring of characteristic 0, and let p be a prime number.
Assume that p is not a unit in R and that ns is a power of p. Then RS is local.

As an application he, jointly with Katsuhiro Uno, obtained the following structural result for
schemes of prime valency.

Lemma 12.7. Let R be a complete discrete valuation ring of characteristic 0, and let p be a prime number.
Assume that p is not a unit in R and that ns = p. Let F denote the field of fractions of R. Then any two
irreducible characters of FS different from 1gs are algebraically conjugate.

On the other hand, from the powerful fact that the Frame number

[1ns

Is| ses

ng ——————=
S 1)2
1—[ mxx()
x €lrr(CS)

is an integer, one obtains the following.

Proposition 12.8. If all nontrivial irreducible characters of a scheme S have the same multiplicity, then
all elements in S \ {1} have the same valency and S is commutative.

Since algebraically conjugate characters have the same multiplicity, the last two results yield the
following; cf. [8].

Theorem 12.9. Let S be a scheme such that ns is a prime number. Then S is commutative.

In two forthcoming papers, one of them jointly with Hirasaka and Uno, Hanaki has investigated
schemes whose valency is the square of a prime number. The best result so far is the following; cf.
[6,7].

Theorem 12.10. Let S be a scheme such that ns is the square of a prime number. Assume that Oy (S) # {1}
or that 0V (S) # S. Then S is commutative.

It seems that no noncommutative scheme of prime square valency is known.
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