TRANSFORMATION OF LOGIC PROGRAMS: FOUNDATIONS AND TECHNIQUES

ALBERTO PETTOROSSI AND MAURIZIO PROIETTI

We present an overview of some techniques which have been proposed for the transformation of logic programs. We consider the so-called "rules + strategies" approach, and we address the following two issues: the correctness of some basic transformation rules w.r.t. a given semantics and the use of strategies for guiding the application of the rules and improving efficiency. We will also show through some examples the use and the power of the transformational approach, and we will briefly illustrate its relationship to other methodologies for program development.

1. INTRODUCTION

Program transformation is a very important methodology for software development. The basic idea consists in dividing the program development activity into a sequence of small, easy steps. The programmer starts with a problem specification written in some formal language. This specification is then manipulated and transformed into an executable program which in turn in transformed, maybe in several steps, with the objective of increasing efficiency. Subsequent program manipulations, such as compilation and code optimization, can also be viewed as an application of some ad hoc transformation techniques.

The basic ideas of the program transformation methodology were introduced in the early 1970s for validating various techniques, such as those which remove recursion in favor of iteration [33,141]. However, the formalization of program transformation was done some years later [27] and its extensive use is strongly related to the development of functional and logic languages, because in those languages we can perform program manipulations using simple tools, such as equational reasoning and logical deduction [29,71].
In this paper we will focus our attention on the transformation of logic programs into equivalent, more efficient programs. We will not consider in detail the problem of transforming specifications written in richer logical languages into executable logic programs. This problem is often addressed within the area of program synthesis [46], although in the case of logic programming the borderline between "synthesis" and "transformation" is very thin. We will also not consider those techniques which improve program performances by transforming logic programs into lower level languages by translating the programs into WAM code and then optimizing that code.

We will mainly be concerned with the so-called unfold/fold program transformations based on the "rules + strategies" approach. This approach consists in starting from an initial program, say P_0, and then applying one or more elementary transformation rules. Thus, we get a sequence P_0, \ldots, P_n of programs. We want the final program P_n to have the same meaning as the initial one, and this objective can be formalized by the equation $\text{Sem}(P_0) = \text{Sem}(P_n)$ for some given semantics function Sem. This is normally achieved by considering transformation rules which are semantics preserving, that is, for any given programs P and Q, $\text{Sem}(P) = \text{Sem}(Q)$ holds if Q can be derived from P by a single application of one of the rules.

We usually want P_n to be more efficient than P_0. This efficiency improvement is not ensured by an undisciplined use of the transformation rules. This is the reason why we need to introduce some transformation strategies, that is, metarules which prescribe suitable sequences of applications of transformation rules.

In logic programming there are many notions of efficiency which have been used. They are related either to the size of the proofs or to the machine model. For each strategy we will briefly explain the sense in which the program efficiency is improved, and we refer the reader to the original papers for more detailed information.

In Section 2, we introduce, in an informal way, the unfold/fold transformation rules for logic programs and, in Section 3, we review some correctness results for these rules w.r.t. various semantics functions.

In Section 4, we consider some basic strategies for program transformation and we show, through some examples, how they can be used to improve efficiency. We also give an overview of many related techniques.

In Section 5, we briefly present partial evaluation and program specialization.

In Section 6, we finally analyze the relationship between program transformation and some other methodologies for program development, such as program analysis and synthesis.

2. A PRELIMINARY EXAMPLE

The "rules + strategies" approach to program transformation was first introduced in Burstall and Darlington [27] for functional programs considered as sets of recursive equations. This approach is based on the use of two elementary transformation rules: unfolding and folding.

The unfolding rule consists in replacing, in the right hand side of a given equation, an instance of the left hand side of an equation, say E_1, by the corresponding instance of the right hand side of E_1. The application of the
unfolding rule can be viewed as a symbolic computation step. It corresponds to the replacement rule used in Kleene ([80], Chapter XI) for the computation of recursive functions.

The folding rule consists in replacing, in the right hand side of a given equation, an instance of the right hand side of an equation, say E_2, by the corresponding instance of the left hand side of E_2. Folding can be viewed as the inverse of unfolding, in the sense that if we perform an unfolding step followed by a folding step, we get back the initial equation. Vice versa, unfolding can be viewed as the inverse of folding.

To the reader who is not familiar with transformation methodology, the usefulness of inverting a symbolic computation step to improve program efficiency might look somewhat obscure. However, as we will see in Section 4, the folding rule allows us to modify the recursive structure of programs and, by doing so, we will often be able to achieve substantial efficiency improvements.

Every transformation process is meaningful only if we specify what is kept unchanged during the transformation itself. In the case of functional programs, the unfolding and folding rules preserve the least fixpoint semantics in the following sense: the program P_n derived from a given initial program P_0 after some unfolding and folding steps computes a function which is less defined than or equal to the one computed by P_0 [82].

We can formalize the relationship between the functional programs P_0 and P_n by introducing a semantics function Sem whose codomain is the set of partial functions ordered by inclusion. In this formalization we have that $\text{Sem}(P_0) \supseteq \text{Sem}(P_n)$. Thus, in order to preserve the computed function, we need to ensure also that $\text{Sem}(P_0) \subseteq \text{Sem}(P_n)$, which implies that the derived program P_n terminates at least as often as the initial program P_0.

Notice that one could have that $\text{Sem}(P_0) \supseteq \text{Sem}(P_n)$ holds and $\text{Sem}(P_0) \subseteq \text{Sem}(P_n)$ does not hold. Let us consider, for instance, the program $\{f(0) = 0, f(n + 1) = f(n)\}$, which computes the constant function 0 for $n \geq 0$. If we fold the second equation using itself, then we get the program $\{f(0) = 0, f(n + 1) = f(n + 1)\}$ whose least fixpoint is the function, call it g, such that $g(0) = 0$ and $g(n)$ is undefined for $n > 0$.

The unfold/fold transformation approach was first adapted to logic programs by Tamaki and Sato [130]. In that paper it was assumed that an unfolding step is a (symbolic) SLD-resolution step and folding is the inverse of unfolding. The notion of inverse, like in the functional case, has to be understood in the sense that an unfolding step followed by the corresponding folding step (and vice versa) gives us back the initial program.

If, from a program P_0, we derive by unfold/fold transformations a program P_1, then the least Herbrand model [49] of P_1 is contained in the least Herbrand model of P_0. In this sense we say that the unfold/fold transformations preserve soundness. In general they do not preserve completeness, that is, the least Herbrand model of P_0 may not be contained in the least Herbrand model of P_1. In order to preserve completeness, one has to comply with some extra conditions [130].

The discussion on the various semantics which are preserved by unfold/fold transformations will be the objective of the next section.

Let us now consider a preliminary example where we will see the unfold/fold rules for transforming logic programs in action. In this example we will also see the use of one extra transformation rule, called the definition rule, and the use of a
transformation strategy, called *tupling*. We stress the point that we need strategies for driving the application of the transformation rules and improving efficiency, because, since folding is the inverse of unfolding, we may end up with a final program which is equal to the initial program.

Let us consider the following logic program P_0 for computing the average value A of the elements of a list L:

1. $\text{average}(L, A) \leftarrow \text{length}(L, N), \text{sumlist}(L, S), \text{div}(S, N, A)$
2. $\text{length}([], 0) \leftarrow$
3. $\text{length}([H|T], s(N)) \leftarrow \text{length}(T, N)$
4. $\text{sumlist}([], 0) \leftarrow$
5. $\text{sumlist}([H|T], S1) \leftarrow \text{sumlist}(T, S), \text{sum}(H, S, S1)$

where $\text{div}(S, N, A)$ holds iff $A = S/N$ and $\text{sum}(H, S, S1)$ holds iff $S1 = H + S$.

Both $\text{length}(L, N)$ and $\text{sumlist}(L, S)$ visit the same list L, and we can avoid this double visit by applying the tupling strategy which suggests the introduction of the following clause for the new predicate newp:

6. $\text{newp}(L, N, S) \leftarrow \text{length}(L, N), \text{sumlist}(L, S)$.

By adding clause 6 to P_0, we get a new program P_1 which is equivalent to P_0 w.r.t. all predicates occurring in the initial program P_0, in the sense that each ground atom $q(\ldots)$, where q is a predicate occurring in P_0, belongs to the least Herbrand model of P_0 iff $q(\ldots)$ belongs to the least Herbrand model of P_1.

In order to avoid the double occurrence of the list L in the body of clause 1, we now fold it by using clause 6, that is, we replace "length(L, N), sumlist(L, S)," which is an instance of the body of clause 6, with the corresponding instance "newp(L, N, S)" of the head of clause 6. Thus, we get:

1f. $\text{average}(L, A) \leftarrow \text{newp}(L, N, S), \text{div}(S, N, A)$.

This folding step is the inverse of unfolding newp in the body of clause 1f. However, if we use the program made out of clauses 1f, 2, 3, 4, 5, and 6, we do not avoid the double visit of the list L, because newp is still defined in terms of the individual predicates length and sumlist. A gain in efficiency is possible if we derive a recursive definition of newp in terms of newp itself.

This recursive definition can be obtained as follows. We first unfold clause 6 w.r.t. $\text{length}(L, N)$, that is, we derive the following two resolvents of clause 6 using clauses 2 and 3, respectively:

7. $\text{newp}([], 0, S) \leftarrow \text{sumlist}([], S)$
8. $\text{newp}([H|T], s(N), S) \leftarrow \text{length}(T, N), \text{sumlist}([H|T], S)$.

We then unfold clauses 7 and 8 w.r.t. $\text{sumlist}([], S)$ and $\text{sumlist}([H|T], S)$, respectively, and we get:

9. $\text{newp}([], 0, 0) \leftarrow$
10. $\text{newp}([H|T], s(N), S1) \leftarrow \text{length}(T, N), \text{sumlist}(T, S), \text{sum}(H, S, S1)$.

We can now fold clause 10 using clause 6 and we get:

10f. $\text{newp}([H|T], s(N), S1) \leftarrow \text{newp}(T, N, S), \text{sum}(H, S, S1)$.

At this point we may assume that the transformation process is completed. In the final program made out of clauses 1f, 9, 10f, 2, 3, 4, and 5, the double visit of
the input list \(L \) is avoided and, thus, the efficiency is improved. The initial and final programs have the same least Herbrand model semantics w.r.t. the predicates average, length, and sumlist.

The crucial step in the above program transformation which improves the program performance is the introduction of clause 6 defining the new predicate newp. In the literature that step is referred to as a *eureka step*, and the predicate newp is also called a *eureka predicate*. It can easily be seen that eureka steps cannot, in general, be mechanically performed, because they require a certain degree of ingenuity. There are, however, very many cases in which the synthesis of eureka predicates can be done in an automatic way and this is the reason why, in practice, the use of program transformation methodology turns out to be very powerful.

In the following sections we will present in detail the various transformation rules and the semantics they preserve, and we will also present the various transformation strategies. In this context we will consider the problem of making eureka steps and we will see that it can often be solved on the basis of syntactical properties of the program to be transformed.

3. UNFOLD/FOLD RULES FOR LOGIC PROGRAMS

We now present some of the most relevant transformation rules which have been considered in the literature, and we discuss the restrictions one should impose on their use depending on the semantics one would like to preserve.

The notion of program we will use in this paper is very similar to the notion of normal programs [89] and it is defined as follows.

We assume that all our programs are written using symbols taken from a fixed language \(L \). The Herbrand universe and the Herbrand base are constructed out of \(L \), independently of the programs. This assumption is mainly motivated by the fact that it is often useful to disallow the Herbrand base to change while transforming programs.

An *atom* is a formula of the form \(p(t_1, \ldots, t_n) \), where \(p \) is a predicate symbol of arity \(n \) taken from \(L \) and \(t_1, \ldots, t_n \) are terms constructed out of variables, constants, and function symbols in \(L \). A *literal* is either a positive literal, that is, an atom, or a negative literal, that is, a formula of the form \(\neg A \), where \(A \) is an atom.

A normal clause is a formula of the form \(H \leftarrow L_1, \ldots, L_n \), where the head \(H \) is an atom and the body \(L_1, \ldots, L_n \) is a (possibly empty) sequence (not a set) of literals not necessarily distinct. In particular, if \(L_1 \neq L_2 \), the clauses \(H \leftarrow L_1, L_2 \) and \(H \leftarrow L_2, L_1 \) are different (even though their semantics may be the same). The head and the body of a normal clause \(C \) are denoted by \(\text{hd}(C) \) and \(\text{bd}(C) \), respectively. Commas will be used to denote the associative concatenation of sequences of literals. Thus, \(H \leftarrow (L_1, \ldots, L_m), (L_{m+1}, \ldots, L_n) \) is equal to \(H \leftarrow L_1, \ldots, L_m, L_{m+1}, \ldots, L_n \).

A normal goal is a formula of the form \(\leftarrow L_1, \ldots, L_n \), where \(L_1, \ldots, L_n \) is a (possibly empty) sequence of literals. If \(n = 1 \) and \(L_1 \) is an atom, then a normal goal is said to be atomic. When no ambiguity arises, we will feel free to identify the notion of goal with that of sequence of literals.

A normal program is a sequence (not a set) of normal clauses.

Normal clauses, normal goals, and normal programs are called definite clauses, definite goals, and definite programs, respectively, if no negative literals occur in
them. The qualifications “normal” and “definite” will often be omitted when they are irrelevant or understood from the context.

Given the programs $P_1 = \langle C_1, \ldots, C_r \rangle$ and $P_2 = \langle D_1, \ldots, D_s \rangle$, the concatenation $\langle C_1, \ldots, C_r, D_1, \ldots, D_s \rangle$ of P_1 and P_2 is denoted by $P_1 \oplus P_2$. When denoting programs we will feel free to omit angle brackets and commas if they are understood from the context.

The set of variables occurring in a term (or literal or sequence of literals or clause) T is denoted by vars(T). We assume that the variables occurring in the clauses can be freely renamed, as is usually done for bound variables in quantified formulas. This is required to avoid clashes of names, like, for instance, when performing SLDNF-resolution steps.

The program transformation process starting from a given initial program P_0 can be viewed as a sequence of programs P_0, \ldots, P_n, called transformation sequence, such that program P_{k+1}, with $0 \leq k \leq n - 1$, is obtained from P_k by the application of a transformation rule, which may depend on P_0, \ldots, P_k.

During the process of program transformation, we need to take into account the semantics which is preserved. For the semantics of a normal program we explicitly consider its dependency on the input goal, also called query, and, thus, we define a semantics for a set Programs of normal programs and a set Queries of atomic queries, to be a function $\text{Sem}: \text{Programs} \times \text{Queries} \rightarrow (D, \leq)$, where (D, \leq) is a partially ordered set. For instance, if P is a program in the set Programs of definite programs and Q is a query $\leftarrow A$ in the set Queries of atomic queries, then we may take $\text{Sem}(P, Q)$ to be the set of instances of A which belong to the least Herbrand model of P. In this case the set D is the powerset of the Herbrand base of the language of Programs and the ordering \leq is set inclusion.

We say that two programs P_1 and P_2 are equivalent w.r.t. Sem iff, for all queries Q in Queries, $\text{Sem}(P_1, Q) = \text{Sem}(P_2, Q)$.

We now introduce our formal notion of correctness of a transformation sequence w.r.t. a generic semantics function.

Definition 1 (Correctness of a transformation sequence). Let $\text{Sem}: \text{Programs} \times \text{Queries} \rightarrow (D, \leq)$ be a semantics function. A transformation sequence P_0, \ldots, P_n of programs in Programs is partially correct w.r.t. Sem iff for each query Q in Queries, containing only predicate symbols which occur in P_0, we have that $\text{Sem}(P_n, Q) \leq \text{Sem}(P_0, Q)$. P_0, \ldots, P_n is totally correct w.r.t. Sem iff $\text{Sem}(P_0, Q) = \text{Sem}(P_n, Q)$.

A transformation rule is partially correct (totally correct) w.r.t. Sem iff for any transformation sequence P_0, \ldots, P_k which is partially correct (totally correct) w.r.t. Sem and for any program P_{k+1} obtained from P_k by an application of that rule, we have that the transformation sequence $P_0, \ldots, P_k, P_{k+1}$ is partially correct (totally correct) w.r.t. Sem.

Obviously, if P_0, \ldots, P_k and P_k, \ldots, P_n are partially correct (totally correct) transformation sequences, also their concatenation P_0, \ldots, P_n is partially correct (totally correct). In what follows, by “correctness” we will mean “total correctness.”

In the remaining part of this Section 3 we present the basic transformation rules and their relevant properties. These rules are collectively called unfold/fold rules and they are a straightforward generalization of those presented in Tamaki and Sato [130]. In their presentation we will refer to the transformation sequence
We assume that the variables of the clauses which are involved in each transformation rule are suitably renamed so that they do not have variables in common.

We need the following notions. Given a predicate \(p \) occurring in a program \(P \), the definition of \(p \) in \(P \) is the subsequence of all clauses in \(P \) whose head predicate is \(p \).

A predicate \(p \) depends on a predicate \(q \) in the program \(P \) iff either there exists in \(P \) a clause of the form \(p(\ldots) \leftarrow \text{Body} \), such that \(q \) occurs in Body or there exists in \(P \) a predicate \(r \) such that \(p \) depends on \(r \) in \(P \) and \(r \) depends on \(q \) in \(P \).

3.1 Transformation Rules

R1. Unfolding. Let \(P_k \) be the program \(\langle E_1, \ldots, E_r, C, E_{r+1}, \ldots, E_s \rangle \) and let \(C \) be the clause \(H \leftarrow F, A, G \), where \(A \) is a positive literal and \(F \) and \(G \) are (possibly empty) sequences of literals. Suppose that:

1. \(\langle D_1, \ldots, D_n \rangle \), with \(n > 0 \), is the subsequence of all clauses in a program \(P_j \), with \(0 \leq j \leq k \), such that \(A \) is unifiable with \(\text{hd}(D_i) \), with most general unifiers \(\theta_1, \ldots, \theta_n \), respectively, and
2. \(C_i \) is the clause \((H \leftarrow F, \text{bd}(D_i), G)\theta_i \), for \(i = 1, \ldots, n \).

If we unfold \(C \) w.r.t. \(A \) using \(D_1, \ldots, D_n \) in \(P_j \), we derive the clauses \(C_1, \ldots, C_n \) and we get the new program \(P_{k+1} = \langle E_1, \ldots, E_r, C_1, \ldots, C_n, E_{r+1}, \ldots, E_s \rangle \).

When referring to unfolding steps we will often use a simpler terminology, like, for instance, "to unfold \(C \) w.r.t. \(A \) using \(P_j \)."

The unfolding rule corresponds to the application of SLD-resolution to clause \(C \) with the selection of the positive literal \(A \) and the input clauses \(D_1, \ldots, D_n \).

Some early forms of unfolding used in logic programming can be found in Clark and Sickel [29], Hogger [71], and Komorowski [81] in the context of program synthesis and partial evaluation. We do not consider here the unfolding of a clause w.r.t. a negative literal, like the one in Kanamori and Horiuchi [76] and Gardner and Shepherdson [66]. However, that kind of unfolding can be expressed in terms of the goal replacement and clause replacement rules introduced below.

Example 1. Suppose that \(C = p(X) \leftarrow q(t(X)), r(X) \) is a clause in \(P_k \) and the definition of \(q \) in \(P_j \), with \(0 \leq j \leq k \), consists of the following clauses:

\[
\begin{align*}
q(a) & \leftarrow, \\
q(t(b)) & \leftarrow, \\
q(t(a)) & \leftarrow r(a).
\end{align*}
\]

Then, by unfolding \(C \) w.r.t. \(q(t(X)) \) using \(P_j \), we derive the two clauses

\[
\begin{align*}
p(b) & \leftarrow r(b), \\
p(a) & \leftarrow r(a), r(a),
\end{align*}
\]

which are substituted for \(C \) in \(P_k \) to obtain \(P_{k+1} \).
R2. Folding. Let P_k be the program $\langle E_1, \ldots, E_r, C_1, \ldots, C_n, E_{r+1}, \ldots, E_s \rangle$ and let $\langle D_1, \ldots, D_n \rangle$ be a subsequence of clauses in a program P_j, with $0 \leq j \leq k$. Suppose that there exists a positive literal A such that, for $i = 1, \ldots, n$:

1. $\text{hd}(D_i)$ is unifiable with A via a most general unifier θ_i,
2. C_i is the clause $(H \leftarrow F, \text{bd}(D_i), G)\theta_i$, where F and G are sequences of literals, and
3. for any clause D of P_j not in the sequence $\langle D_1, \ldots, D_n \rangle$, $\text{hd}(D)$ is not unifiable with A.

If we fold C_1, \ldots, C_n using D_1, \ldots, D_n in P_j, we derive the clause $H \leftarrow F, A, G$, call it C, and we get the new program $P_{k+1} = \langle E_1, \ldots, E_r, C, E_{r+1}, \ldots, E_s \rangle$.

Our folding rule is similar to the one considered in Maher [92] and it is the inverse of the unfolding rule, in the sense that given a transformation sequence $P_0, \ldots, P_k, P_{k+1}$, where P_{k+1} has been obtained from P_k by unfolding, there exists a transformation sequence $P_0, \ldots, P_k, P_{k+1}, P_k$, where P_k has been obtained from P_{k+1} by folding. Analogously, unfolding can be viewed as the inverse of folding.

We would like to stress the point that the possibility of inverting an unfolding step by a folding step and vice versa depends on the fact that for transforming programs we can use clauses taken from any program of the transformation sequence constructed so far.

Example 2. The clauses

- $C_1: \quad p(t(X)) \leftarrow q(X), r(X)$,
- $C_2: \quad p(u(X)) \leftarrow s(X), r(X)$

can be folded using

- $D_1: \quad a(X, t(X)) \leftarrow q(X)$,
- $D_2: \quad a(X, u(X)) \leftarrow s(X)$,

thereby deriving

- $C: \quad p(Y) \leftarrow a(X, Y), r(X)$.

Notice that by unfolding clause C using D_1 and D_2, we get again clause C_1 and C_2.

The folding rules considered in Tamaki and Sato [130,131] and Kawamura and Kanamori [78] are instances of the above rule. In particular, the folding rule given in Tamaki and Sato [130] for definite programs can be presented in the context of normal programs as follows.

R3. T&S-Folding. Let P_k be the program $\langle E_1, \ldots, E_r, C, E_{r+1}, \ldots, E_s \rangle$ and let D be a clause in the program P_j, with $0 \leq j \leq k$. Suppose also that:

1. C is the clause $H \leftarrow F, \text{bd}(D)\theta, G$, such that F, $\text{bd}(D)\theta$, and G are sequences of literals,
2. θ restricted to the set $\text{vars}(\text{bd}(D)) - \text{vars}(\text{hd}(D))$ is a variable renaming whose image has an empty intersection with the set $\text{vars}(H, F, \text{hd}(D)\theta, G)$, and
3. the predicate symbol of $\text{hd}(D)$ occurs in P_j only once, that is, in the head of the clause D (thus, D is not recursive).
If we \(T\&S\)-fold \(C \) w.r.t. \(\text{bd}(D)\theta \) using \(D \) in \(P_j \), we derive the clause \(H \leftarrow F, \text{bd}(D)\theta, G \), call it \(E \), and we get a new program \(P_{k+1} \) by replacing \(C \) by \(E \) in \(P_k \).

By applying the T&S-folding rule, the derived program \(P_{k+1} \) differs from program \(P_k \) because of the replacement of exactly one clause (that is, \(C \)) by another one (that is, \(E \)).

It is the case that by applying the T&S-folding rule to clause \(C \) using a clause \(D \) of \(P_j \) and then unfolding the resulting clause using \(D \), we obtain again (a variant of) \(C \). To get this relationship between T&S-folding and unfolding, the presence of condition 2 in R3 is essential, as shown by the following example.

Example 3. Let \(C \) be \(p(X) \leftarrow q(X) \) and let \(D \) be \(r \leftarrow q(Y) \). Suppose that \(D \) is the only clause in \(P_j \) with head \(r \). Clauses \(C \) and \(D \) satisfy conditions 1 and 3 of the T&S-folding rule, but they do not satisfy condition 2 because \(Y \) does not occur in the head of \(r \leftarrow q(Y), \theta = \{Y/X\} \), and \(X \) occurs in the head of \(C \). By unfolding the clause \(p(X) \leftarrow r \) using \(P_j \), we get \(p(X) \leftarrow q(Y) \), which is not a variant of \(C \).

It is not the case, however, that by applying a T&S-folding step to a clause, say \(C_1 \), we can always get back (a variant of) a given clause, say \(C \), even if \(C_1 \) has been obtained from \(C \) by performing an unfolding step using one clause only.

Example 4. Let \(C \) be the clause \(p(X) \leftarrow r(X) \) and let \(D \) be the clause \(r(t(X)) \leftarrow q(X) \). From program \(\langle C, D \rangle \), by unfolding \(C \) using \(D \), we get the clause \(C_1 = p(t(X)) \leftarrow q(X) \). There are only two ways of applying the T&S-folding rule to \(C_1 \). The first way is to use clause \(C_1 \) itself, thereby getting the clause \(p(t(X)) \leftarrow p(t(X)) \). The second way is to use clause \(D \) and if we do so, we get the clause \(p(t(X)) \leftarrow r(t(X)) \). In neither case do we get a variant of \(C \). Obviously, from the program \(\langle C_1, D \rangle \) we can get again the program \(\langle C, D \rangle \) by the general folding rule R2.

R4. **Definition Introduction (or Definition for short).** We may get program \(P_{k+1} \) by concatenating program \(P_k \) with a sequence of clauses \(\langle p(\ldots) \leftarrow \text{Body}_i | i = 1, \ldots, n \rangle \) such that the predicate symbol \(p \) does not occur in \(P_0, \ldots, P_k \).

This definition rule is similar to the one in Maher [92] and it is more general than the definition rule considered in Tamaki and Sato [132], where only one nonrecursive new clause can be introduced (see R15 below).

R5. **Definition Elimination.** We may get program \(P_{k+1} \) be deleting from program \(P_k \) all clauses of the definition of a predicate \(q \) such that \(q \) does not occur in \(P_0 \) and no predicate different from \(q \) depends on \(q \) in \(P_k \).

The definition elimination rule can be viewed as an inverse of the definition introduction rule (modulo the name of the predicate which has been eliminated). It has been presented in Maher [91, 92] and also in Bossi and Cocco [14] where it was called restriction.

R6. **Goal Replacement.** A replacement law is a pair \(S \equiv T \), where \(S \) and \(T \) are sequences of literals. Let \(\{X_1, \ldots, X_n\} \) be the set \(\text{vars}(S) \cap \text{vars}(T) \), and let us
consider the following two clauses:

\[D_S: \quad p(X_1, \ldots, X_n) \leftarrow S, \]
\[D_T: \quad p(X_1, \ldots, X_n) \leftarrow T, \]

where \(p \) is any new predicate symbol. We say that \(S \equiv T \) is valid w.r.t. the semantics \(\text{Sem} \) and program \(P_k \) iff \(\text{Sem}(P_k@\langle D_S \rangle, \leftarrow p(X_1, \ldots, X_n)) = \text{Sem}(P_k@\langle D_T \rangle, \leftarrow p(X_1, \ldots, X_n)) \). Let \(C = H \leftarrow F, S, G \) be a clause in \(P_k \) such that:

1. \(S \equiv T \) is a valid replacement law w.r.t. \(\text{Sem} \) and \(P_k \), and
2. \(\text{vars}(H, F, G) \cap \text{vars}(S) = \text{vars}(H, F, G) \cap \text{vars}(T) = \{X_1, \ldots, X_n\} \).

By replacement of \(S \) in \(C \) using \(S \equiv T \) we derive the clause \(H \leftarrow F, T, G \), call it \(R \), and we get \(P_{k+1} \) by replacing \(C \) by \(R \) in \(P_k \).

The relation \(\equiv \) defined in rule R6 is an equivalence relation.

Our goal replacement rule has been adapted from various versions presented in Tamaki and Sato [132,133], Maher [91–93], Gardner and Shepherdson [66], and Bossi et al. [16]. In order to cover different cases, our presentation of rule R6 is parametric w.r.t. the semantics function \(\text{Sem} \).

Example 5. Let us consider the following clauses in \(P_k \):

\[C: \quad \text{sublist}(N, X, Y) \leftarrow \text{length}(X, N), \text{append}(V, X, W), \text{append}(W, Z, Y), \]
\[\quad \text{append}([\], L, L) \leftarrow, \]
\[\quad \text{append}([H|T], L, [H|TL]) \leftarrow \text{append}(T, L, TL). \]

Let us assume that, for any definite program \(P \) and atomic query \(\leftarrow A \), \(\text{Sem}(P, \leftarrow A) \) is the set of instances of \(A \) which belong to the least Herbrand model of \(P \). The replacement law “\(\text{append}(V, X, W), \text{append}(W, Z, Y) \equiv \text{append}(X, L, M), \text{append}(K, M, Y) \)” (which expresses a weak form of associativity of append) is valid w.r.t. \(\text{Sem} \) and \(P_k \). Indeed, if we consider the two clauses

\[D_S: \quad p(X, Y) \leftarrow \text{append}(V, X, W), \text{append}(W, Z, Y), \]
\[D_T: \quad p(X, Y) \leftarrow \text{append}(X, L, M), \text{append}(K, M, Y), \]

we have that \(\text{Sem}(P_k@\langle D_S \rangle, \leftarrow p(X, Y)) = \text{Sem}(P_k@\langle D_T \rangle, \leftarrow p(X, Y)) \). Thus, by goal replacement of “\(\text{append}(V, X, W), \text{append}(W, Z, Y) \)” in \(C \), we derive the clause

\[\text{sublist}(N, X, Y) \leftarrow \text{length}(X, N), \text{append}(X, L, M), \text{append}(K, M, Y). \]

The validity of a replacement law is, in general, undecidable. However, if we use totally correct transformation rules only, then for any transformation sequence, we need to prove a replacement law only once. Indeed, if \(S \equiv T \) is valid w.r.t. a semantics \(\text{Sem} \) and program \(P \), then \(S \equiv T \) is valid w.r.t. \(\text{Sem} \) and \(Q \) for every program \(Q \) derived from \(P \) by using totally correct transformation rules.

In order to prove the validity of a replacement law, there are some ad hoc proof methods depending on the specific semantics which is considered (see Section 6). A simple method which is parametric w.r.t. the chosen semantics is based on unfold/fold transformations. It was introduced by Kott for recursive equation
programs [83] and its application to logic programs is described in Boulanger and Bruynooghe [18] and Proietti and Pettorossi [115]. Given the replacement law \(S = T \), we consider the two clauses \(D_S \) and \(D_T \), which are defined from \(S \) and \(T \) as specified above, and we construct two correct transformation sequences \(P\langle D_S \rangle, \ldots, P_z \) and \(P\langle D_T \rangle, \ldots, P_z \), for some final program \(P_z \). Thus, \(\text{Sem}(P\langle D_S \rangle, \leftarrow p(X_1, \ldots, X_n)) = \text{Sem}(P\langle D_T \rangle, \leftarrow p(X_1, \ldots, X_n)) \) and the validity of \(S = T \) w.r.t. \(\text{Sem} \) and \(P \) is proved.

For instance, the validity of the replacement law considered in Example 5 can be proved as shown in the following example.

Example 6. Consider again program \(P_k \) of Example 5 and the clauses

\[
D_S: \quad p(X, Y) \leftarrow \text{append}(V, X, W), \text{append}(W, Z, Y),
\]

\[
D_T: \quad p(X, Y) \leftarrow \text{append}(X, L, M), \text{append}(K, M, Y).
\]

In order to prove that \(\text{Sem}(P_k\langle D_S \rangle, \leftarrow p(X, Y)) = \text{Sem}(P_k\langle D_T \rangle, \leftarrow p(X, Y)) \) we will construct two transformation sequences, the first one starting from \(P_k\langle D_S \rangle \) and the second one starting from \(P_k\langle D_T \rangle \). Their correctness w.r.t. suitable semantics functions will be shown in Section 3.2. As a consequence, the replacement law \(\text{"append}(V, X, W), \text{append}(W, Z, Y) = \text{append}(X, L, M), \text{append}(K, M, Y)\) is valid w.r.t. those semantics functions and program \(P_k \).

The first transformation sequence starting from \(P_k\langle D_S \rangle \) is constructed as follows. We unfold clause \(D_S \) w.r.t. \(\text{append}(V, X, W) \) and we derive the two clauses

\[
D_1: \quad p(X, Y) \leftarrow \text{append}(X, Z, Y),
\]

\[
D_2: \quad p(X, Y) \leftarrow \text{append}(T, X, T1), \text{append}([H|T1], Z, Y).
\]

We now unfold clause \(D_2 \) w.r.t. \(\text{append}([H|T1], Z, Y) \) and we get

\[
D_3: \quad p(X, [H|T2]) \leftarrow \text{append}(T, X, T1), \text{append}(T1, Z, T2).
\]

Then we fold clause \(D_3 \) using clause \(D_S \) and we derive

\[
D_3f: \quad p(X, [H|T2]) \leftarrow p(X, T2).
\]

Thus, from \(P_k\langle D_S \rangle \) we derive the final program of the transformation sequence, which is \(P_k\langle D_1, D_3f \rangle \).

The second transformation sequence starts from \(P_k\langle D_T \rangle \). We first unfold clause \(D_T \) w.r.t. \(\text{append}(K, M, Y) \). We derive two clauses:

\[
D_4: \quad p(X, Y) \leftarrow \text{append}(X, L, Y),
\]

\[
D_5: \quad p(X, [H|U]) \leftarrow \text{append}(X, L, M), \text{append}(T, M, U).
\]

By folding clause \(D_5 \) using clause \(D_T \), we get

\[
D_5f: \quad p(X, [H|U]) \leftarrow p(X, U).
\]

Thus, the final program of this transformation sequence is \(P_k\langle D_4, D_5f \rangle \), which is equal to \(P_k\langle D_1, D_3f \rangle \) up to variable renaming.

We finally present the clause replacement transformation rule. Similarly to the goal replacement rule, we have chosen a presentation which is parametric w.r.t. the semantics function \(\text{Sem} \), so that we can give a uniform account of the different rules considered in the literature [14,66,91–93,112,132]. The applicability condi-
tion of the clause replacement rule is, in general, undecidable. However, in the following Section 3.2 we will show some useful instances of this rule whose applicability condition can be tested in an effective way.

\textbf{R7. Clause Replacement.} From } P_k = \langle E_1, \ldots, E_r, C_1, \ldots, C_n, E_{r+1}, \ldots, E_s \rangle \text{ we get } P_{k+1} = \langle E_1, \ldots, E_r, D_1, \ldots, D_m, E_{r+1}, \ldots, E_s \rangle \text{ if for every query } Q \text{ containing only predicates occurring in } P_k \cup P_{k+1}, \text{ we have that } \text{Sem}(P_k, Q) = \text{Sem}(P_{k+1}, Q).

\section*{3.2 Semantics Preserving Transformations for Definite Programs}

We now consider programs without negative literals in the bodies of their clauses and we discuss the correctness of the transformation rules w.r.t. various semantics functions. We will first review the correctness properties of unfold/fold transformations w.r.t. both the least Herbrand model and the computed answer substitution semantics. We then take into account semantics functions related to program termination, such as the finite failure semantics and the answer substitution semantics computed by the depth-first search strategy of Prolog.

\subsection*{3.2.1. Least Herbrand Model}

In this section we assume that the semantics function is based on the concept of least Herbrand model of a definite program. This function, call it Sem_l, has type Programs \times Queries \rightarrow (D, \leq), where Programs is the set of definite programs, Queries is the set of atomic queries, and \((D, \leq)\) is the powerset of the Herbrand base ordered by set inclusion.

As already mentioned, when considering least Herbrand models of programs, we assume that we are given a fixed language L, so that the Herbrand base does not change during the transformation sequences. In particular, if we introduce a predicate, say p, not occurring in a given program, by applying rule R4, then we assume that p is in L.

Sem_l(P, \leftarrow A) is defined as the set of atoms in the least Herbrand model of P which are instances of A.

Let us now consider the following instances of the goal and clause replacement rules, whose correctness w.r.t. Sem_l can easily be checked.

\textbf{R8. Goal Rearrangement.} We get } P_{k+1} \text{ from } P_k \text{ by replacing the goal } G, H \text{ in a clause of } P_k \text{ by the goal } H, G \text{ using the replacement law } G, H \equiv H, G.

\textbf{R9. Deletion of Duplicate Goals.} We get } P_{k+1} \text{ from } P_k \text{ by replacing the goal } G, G \text{ in a clause of } P_k \text{ by the goal } G \text{ using the replacement law } G, G \equiv G.

From rules R8 and R9 it follows that the body of a clause can be considered as a set of atoms. (Recall that we have already assumed that the comma is associative.)

\textbf{R10. Clause Rearrangement.} We get } P_{k+1} \text{ by replacing the sequence of clauses } \langle C, D \rangle \text{ in } P_k \text{ by } \langle D, C \rangle.

\textbf{R11. Deletion of Subsumed Clauses.} A clause } C \text{ is subsumed by } D \text{ iff there exist a substitution } \theta \text{ and a sequence of atoms } S \text{ such that } \text{hd}(C) = \text{hd}(D)\theta \text{ and }
bd(C) = bd(D)δ, S. We get \(P_{k+1} \) by deleting from \(P_k \) a clause which is subsumed by another clause in \(P_k \).

Obviously, rule R11 allows us to delete duplicate clauses.

R12. Deletion of Clauses with Finitely Failed Body. Let \(C \) be a clause in \(P_k \) of the form \(H ← A_1, ..., A_m, L, B_1, ..., B_n \) with \(m, n ≥ 0 \). If \(L \) has a finitely failed SLD-tree in \(P_k \), then we say that \(C \) has a finitely failed body in \(P_k \) and we get \(P_{k+1} \) by deleting \(C \) from \(P_k \).

The above five replacement rules R8–R12 will collectively be called boolean rules.

Notice that rules R8–R11 are implicitly used when considering programs as sets of clauses, and bodies of clauses as sets of literals. On the contrary, as already mentioned, in this paper we consider programs as sequences of clauses and bodies of clauses as sequences of literals, and we have to make an explicit use of rules R8–R11, when needed. Our choice is motivated by the fact that some instances of these rules are not correct when considering the computed answer substitution semantics (see Section 3.2.2) or the pure Prolog semantics (see Section 3.2.4).

Theorem 2 (Tamaki and Sato [130]). Every transformation sequence constructed by using the rules of unfolding, definition introduction, definition elimination, and clause replacement is totally correct w.r.t. \(\text{Sem}_H \).

Proof. By the soundness and completeness of SLD-resolution, we get the total correctness of unfolding. The total correctness of the definition introduction and definition elimination is a consequence of the fact that the notion of correctness of a transformation sequence is defined w.r.t. queries containing only predicate symbols which occur in the initial program. The total correctness of the clause replacement rule is a straightforward consequence of the definitions. \(\square \)

Nothing can be said about the total correctness of a transformation sequence \(P_0, ..., P_n \) containing folding and goal replacement steps different from R8 and R9. Indeed, for \(P_k \) and \(P_{k+1} \), with \(0 ≤ k < n \), it may happen that either \(\text{Sem}_H(P_k, ← A) < \text{Sem}_H(P_{k+1}, ← A) \) or \(\text{Sem}_H(P_k, ← A) > \text{Sem}_H(P_{k+1}, ← A) \), where \(< \) means \(≤ \) and \(≠ \).

For instance, consider the following transformation sequence:

\[
\begin{align*}
P_0: & \quad p ← q \quad q ←, \\
P_1: & \quad p ← p \quad q ← \quad (\text{by folding, or goal replacement, since } p \equiv q \text{ is valid in } P_0), \\
P_2: & \quad p ← q \quad q ← \quad (\text{by unfolding using the clause } p ← q \text{ in } P_0).
\end{align*}
\]

Thus, we have derived the program \(P_2 \) equal to program \(P_0 \).

We have that \(\text{Sem}_H(P_0, ← p) > \text{Sem}_H(P_1, ← p) \) and \(\text{Sem}_H(P_1, ← p) < \text{Sem}_H(P_2, ← p) \).

However, the reader may verify that by applying the folding rule or the goal replacement rule to the program \(P_k \) of a transformation sequence \(P_0, ..., P_n \), we derive clauses which are true in the least Herbrand model of \(P_0 \). Thus, we have the following result, which generalizes the result of Tamaki and Sato [132], which was stated for a weaker version of the transformation rules.
Theorem 3 (Partial correctness of transformations w.r.t. Semₜᵢ). Every transformation sequence constructed by using the rules R₁–R₁₂ is partially correct w.r.t. the semantics Semₜᵢ.

From Theorem 3 it follows that if there exist a transformation sequence \(P₀, P₁, \ldots, Pₙ₋₁, Pₙ \) constructed by using the set of rules R₁–R₁₂ and a transformation sequence \(Pₙ, Q₁, \ldots, Qₖ, P₀ \), with \(k \geq 0 \), constructed by using the same set of rules, then both sequences are totally correct w.r.t. Semₜᵢ. This property suggests the introduction of the notion of reversible transformation sequence, which can be stated w.r.t. any set \(R \) of transformation rules.

Definition 4. Let \(R \) be a set of transformation rules. A transformation sequence \(P₀, P₁, \ldots, Pₙ₋₁, Pₙ \) is said to be reversible w.r.t. \(R \) iff there exists a transformation sequence \(Pₙ, Q₁, \ldots, Qₖ, P₀ \), with \(k \geq 0 \), which can be constructed by using the same set \(R \).

A transformation rule which belongs to \(R \) is said to be reversible w.r.t. \(R \) iff every transformation sequence \(P₀, P₁ \) obtained by applying that rule to any given program \(P₀ \) is reversible w.r.t. \(R \).

Notice that the construction of the transformation sequence \(Pₙ, Q₁, \ldots, Qₖ, P₀ \) should be independent of the construction of the transformation sequence \(P₀, P₁, \ldots, Pₙ₋₁, Pₙ \). This independence condition is crucial because, in general, we can derive a new program by using clauses occurring in a program which is not the last one of the transformation sequence at hand. Thus, it may be the case that there exists a transformation sequence \(P₀, P₁, \ldots, Pₙ₋₁, Pₙ, \ldots, P₀ \), but there is no transformation sequence \(Pₙ, Q₁, \ldots, Qₖ, P₀ \), that is, \(P₀, P₁, \ldots, Pₙ₋₁, Pₙ \) is not reversible.

Theorem 5. Let Sem be a semantics function and let \(R \) be a set of transformation rules which are partially correct w.r.t. Sem. If a transformation sequence constructed using \(R \) is reversible, then it is totally correct w.r.t. Sem.

In general, it is hard to check whether or not a transformation sequence is reversible. However, we have that the clause replacement rule is reversible w.r.t. itself (as a simple consequence of its definition), and rules R₁₃ and R₁₄, which we will introduce below, are reversible w.r.t. any set of rules including \{R₁, R₂, R₆\}. Therefore, by Theorems 3 and 5, every transformation sequence \(P₀, P₁ \) obtained by applying rule R₁₃ or rule R₁₄ to a given program \(P₀ \) is totally correct w.r.t. Semₜᵢ.

These rules R₁₃ and R₁₄ are instances of the folding and goal replacement rules, respectively.

R₁₃. Reversible Folding. A folding step of clauses \(C₁, \ldots, Cₙ \) in \(P_k \) using \(D₁, \ldots, Dₙ \) in program \(P_j \) is said to be a reversible folding iff \(j = k \) and \(\{C₁, \ldots, Cₙ\} \cap \{D₁, \ldots, Dₙ\} = \emptyset \).

Let \(C \) be the clause derived by applying reversible folding to clauses \(C₁, \ldots, Cₙ \) in \(P_k \) using \(D₁, \ldots, Dₙ \), and let \(P_k, P_{k₊₁} \) be the resulting transformation sequence. We also have that \(P_{k₊₁}, P_k \) is a transformation sequence, because \(D₁, \ldots, Dₙ \) are in \(P_{k₊₁} \), and by unfolding \(C \) using \(D₁, \ldots, Dₙ \) in \(P_{k₊₁} \), we get \(P_k \) again.

Example 7. By reversible folding from the program

\[
P₀: \quad p \leftarrow q, r \quad q \leftarrow r \leftarrow s \leftarrow q
\]
we get
\[P_1: \ p \leftarrow s, r \quad q \leftarrow r \quad s \leftarrow q. \]
Notice that by unfolding the first clause of \(P_1 \) w.r.t. \(s \), we get again \(P_0 \).

Various instances of the reversible folding rule have been proposed [66, 91, 92].

As already mentioned, in general folding is not a totally correct rule w.r.t. \(\text{Sem}_d \)
and, thus, it is not reversible w.r.t. the set of rules made out of unfolding, folding,
definition introduction, definition elimination, and boolean rules \(\text{RS-R12} \), which
are partially correct w.r.t. \(\text{Sem}_d \). An analogous statement holds if we refer to
\(\text{T&S-folding} \) instead of folding.

In rule \(\text{R13} \) we have indicated some sufficient conditions which make the folding
rule a reversible rule. These conditions are particularly useful because they can be
syntactically checked.

In what follows, by an application of the reversible folding rule, we will mean an
application of rule \(\text{R13} \), rather than an application of the folding rule which
produces a reversible transformation sequence.

Unfortunately, the reversibility restriction to the folding rule seriously limits its
power. For instance, for the derivation of the recursive definition of the predicate
average in the example of Section 2, we have performed a folding step which is not
a reversible folding. The following example shows that the set of rules consisting of
unfolding and reversible folding is strictly less powerful than the set consisting of
unfolding and (totally correct) folding.

Example 8. Let us consider the following two programs:

\[P_0: \ p \leftarrow q, r \quad q \leftarrow q \quad r \leftarrow r, \]
\[P_1: \ p \leftarrow p \quad q \leftarrow q \quad r \leftarrow r. \]

\(P_1 \) can be obtained from \(P_0 \) by a folding step (which is a \(\text{T&S-folding} \) step). This
folding step is totally correct because \(P_0 \) and \(P_1 \) are equivalent w.r.t. \(\text{Sem}_d \). On the
other hand, it is impossible to derive \(P_1 \) from \(P_0 \) by using unfolding and reversible
folding only. Indeed, if we apply unfolding or reversible folding to any clause in \(P_0 \),
we get again \(P_0 \).

R14. Reversible Goal Replacement. Let \(C \) be a clause in \(P_k \) and let \(S \equiv T \) be a valid
replacement law w.r.t. the semantics \(\text{Sem} \) and program \(P_k \). The replacement of
\(S \) in \(C \) using \(S \equiv T \) is said to be a Sem-reversible goal replacement if \(S \equiv T \) is
valid w.r.t. \(\text{Sem} \) and the derived program \(P_{k+1} \).

Suppose that by replacement of \(S \) in \(C \) using \(S \equiv T \) we derive a clause \(R \) and we get the program \(P_{k+1} = (P_k \setminus \{C\}) \cup \{R\} \) and \(S \equiv T \) is valid w.r.t. \(\text{Sem} \) and
\(P_{k+1} \). The \(T \equiv S \) is valid w.r.t. \(\text{Sem} \) and \(P_{k+1} \), and by replacement of \(T \) in \(R \) using
\(T \equiv S \), we get \(P_k \) again. Thus, the conditions indicated in R14 are sufficient to
ensure that goal replacement is reversible w.r.t. \{R14\}.

Similarly to the case of folding, by an application of the reversible goal replacement rule, we will mean an application of the rule R14.

Rules R8 and R9 are particular instances of \(\text{Sem}_d \)-reversible goal replacements.

In what follows we will feel free to say "reversible goal replacement," instead of
"Sem-reversible goal replacement," when the semantics function \(\text{Sem} \) is under-
stood from the context.

Example 9. Consider again the programs \(P_0 \) and \(P_1 \) of Example 8. The folding step
which produces \(P_1 \) from \(P_0 \) can also be viewed as a goal replacement step, because
A. PETTOROSSI AND M. PROIETTI

\[p = q, r \] is valid w.r.t. \(\text{Sem}_H \) and \(P_0 \). Since \(p = q, r \) is valid also w.r.t. \(\text{Sem}_H \) and \(P_1 \), the transformation step from \(P_0 \) to \(P_1 \) can be viewed as an application of the \(\text{Sem}_H \)-reversible goal replacement rule and, therefore, it is correct w.r.t. \(\text{Sem}_H \).

As a summary of the above considerations, we have the following result.

Theorem 6 (Maher [91]). Let \(P_0, \ldots, P_n \) be a transformation sequence of definite programs, constructed by using the following transformation rules: unfolding, reversible folding, definition introduction, definition elimination, \(\text{Sem}_H \)-reversible goal replacement (including R8 and R9), and clause replacement (including R10, R11, and R12). Then \(P_0, \ldots, P_n \) is correct w.r.t. the semantics \(\text{Sem}_H \).

We have seen that the reversible folding rule R13 has the advantage of being a totally correct transformation rule, but, as already mentioned, it is a weak rule (see Example 8). In order to overcome this limitation, we now present a more powerful folding rule which is not an instance of R13 and yet is totally correct w.r.t. \(\text{Sem}_H \). The correctness of this new rule is ensured by an easily verifiable condition on the transformation sequence.

Let us first notice that by performing a folding step, we may introduce recursive clauses from nonrecursive clauses and some infinite computations may replace finite computations, thereby affecting the semantics of the program and loosing total correctness.

A simple example of this undesired introduction of infinite computations is self-folding, where all clauses in a predicate definition can be folded using themselves. For instance, the definition \(p \leftarrow q \) of a predicate \(p \) can be replaced (using T&S-folding) by \(p \leftarrow p \).

This inconvenience can be avoided by ensuring that “enough” unfolding steps have been performed before folding, so that “going backward in the computation” (as folding does) does not prevail over “going forward in the computation” (as unfolding does). This idea is the basis of various techniques in which total correctness is ensured by counting the number of unfolding and folding steps performed during the transformation sequence [3, 17, 75, 77, 82].

For the presentation of the powerful folding rule we promised above, we need the following assumptions [124]. We assume that all predicate symbols occurring in each program of a transformation sequence \(P_0, \ldots, P_n \) are partitioned into the set \(\text{Pred}_{\text{new}} \) of new predicates and the set \(\text{Pred}_{\text{old}} \) of old predicates. New predicates are the ones which either occur in the head of exactly one clause of \(P_0 \), and not elsewhere in \(P_0 \), or they are in the head of clauses introduced by applying the T&S-definition rule (see below).

The distinction between new and old predicates could be generalized in a way similar to the one presented in Tamaki and Sato [133], where the set of predicates of the initial program is partitioned into an arbitrary number of levels so that the level of a predicate symbol in the body of a clause is not greater than the level of the head of the clause.

R15. T&S-Definition. Given a transformation sequence \(P_0, \ldots, P_k \), we may get a new program \(P_{k+1} \) by adding to program \(P_k \) a clause \(H \leftarrow \text{Body} \) such that:

1. the predicate of \(H \) does not occur in \(P_0, \ldots, P_k \), and
2. \(\text{Body} \) is made out of literals with old predicates occurring in \(P_0, \ldots, P_k \).
Notice that due to T & S-folding steps, a new predicate may occur in the body of a clause whose head has an old predicate.

In order to describe some conditions which ensure the total correctness of T & S-folding (see Theorem 8 below), we need to take into account whether or not an atom has been generated by unfolding during a transformation sequence. This motivates the introduction of the following notion which we describe in the case of normal programs because we also need to use it later in Section 3.3.

Definition 7 (Fold-allowing occurrences of literals). Let \(P_0, \ldots, P_n \) be a transformation sequence of normal programs constructed by using the following rules: unfolding, T & S-folding, T & S-definition, definition elimination, and boolean rules (that is, R8–R12). Let \(D \) be a clause in \(P_i \) with \(0 \leq i \leq n \).

1. For each clause \(C \) in \(P_i \) which is not involved in the derivation from \(P_{i-1} \) to \(P_i \), each literal of \(\text{bd}(C) \) in \(P_i \) is fold-allowing iff the same literal of \(\text{bd}(C) \) in \(P_{i-1} \) is fold-allowing.

2. Suppose that \(D \) has been derived by unfolding a clause \(C \) in \(P_{i-1} \) w.r.t. a positive literal \(A \). Thus, \(C \) and \(D \) are of the form \(H \leftarrow B_1, \ldots, B_k, A, B_{k+1}, \ldots, B_m \) and \((H \leftarrow B_1, \ldots, B_k, \text{bd}(E), B_{k+1}, \ldots, B_m) \theta \), respectively, where \(E \) is a clause such that \(\text{hd}(E) \) is unifiable with \(A \) via a most general unifier \(\theta \). In \(D \) the literals occurring in \(\text{bd}(E) \theta \) are fold-allowing and, for \(r = 1, \ldots, m \), the literal \(B_r \theta \) is fold-allowing iff \(B_r \) in \(\text{bd}(C) \) is fold-allowing.

3. Suppose that \(D \) has been derived by T & S-folding \(C \) in \(P_{i-1} \). Thus, \(C \) and \(D \) are of the form \(H \leftarrow B_1, \ldots, B_k, \text{bd}(E) \theta, B_{k+1}, B_m \) and \(H \leftarrow B_1, \ldots, B_k, \text{hd}(E) \theta, B_{k+1}, \ldots, B_m \), respectively, for a clause \(E \) and a substitution \(\theta \). In \(\text{bd}(D) \) the literal \(\text{hd}(E) \theta \) is fold-allowing and for \(r = 1, \ldots, m \), the literal \(B_r \) is fold-allowing iff \(B_r \) in \(\text{bd}(C) \) is fold-allowing.

4. Suppose that \(D \) has been derived by applying the T & S-definition rule. Then no literal in \(\text{bd}(D) \) is fold-allowing.

5. Suppose that \(D \) has been derived by applying rule R8 (goal rearrangement) to \(C \) in \(P_{i-1} \). Thus, \(C \) and \(D \) are of the form \(H \leftarrow B_1, \ldots, B_k, B_{k+1}, \ldots, B_m \) and \(H \leftarrow B_1, \ldots, B_k, L, B_{k+1}, \ldots, B_m \), respectively. For \(r = 1, \ldots, m \), the literal \(B_r \) in \(\text{bd}(D) \) is fold-allowing iff \(B_r \) in \(\text{bd}(C) \) is fold-allowing.

6. Suppose that \(D \) has been derived by applying rule R9 (deletion of duplicate goals) to \(C \) in \(P_{i-1} \). Thus, \(C \) and \(D \) are of the form \(H \leftarrow B_1, \ldots, B_k, L, B_{k+1}, \ldots, B_m \) and \(H \leftarrow B_1, \ldots, B_k, L, B_{k+1}, \ldots, B_m \), respectively. In \(\text{bd}(D) \) the literal \(L \) is fold-allowing iff at least one occurrence of \(L \) in \(\text{bd}(C) \) is fold-allowing. For \(r = 1, \ldots, m \), the literal \(B_r \) in \(\text{bd}(D) \) is fold-allowing iff \(B_r \) in \(\text{bd}(C) \) is fold-allowing.

7. Suppose that \(P_i \) has been derived from \(P_{i-1} \) by applying rule R10 (clause rearrangement). Thus, they are of the form \(\ldots, C_1, C_2, \ldots \) and \(\ldots, C_2, C_1, \ldots \), respectively. For \(j = 1, 2 \), each literal occurring in \(\text{bd}(C_j) \) in \(P_i \) is fold-allowing iff the same literal occurring in \(\text{bd}(C_j) \) in \(P_{i-1} \) is fold-allowing.
One can easily show that inherited literals defined in Seki [124] are exactly the literals which are not fold-allowing according to Definition 7.

Theorem 8 (Correctness of T&S-folding w.r.t. Sem$_H$ [132]). Let P_0, \ldots, P_n be a transformation sequence of definite programs, constructed by using the following transformation rules: unfolding, T&S-folding, T&S-definition, definition elimination, and boolean rules. Suppose that no T&S-folding step is performed after a definition elimination step. Suppose also that we apply T&S-folding to a clause C using a clause D only if (i) $\text{hd}(D)$ has a new predicate and (ii) either $\text{hd}(C)$ has an old predicate or at least one atom in $\text{bd}(C)$ is fold-allowing. Then P_0, \ldots, P_n is correct w.r.t. the semantics Sem$_H$.

The hypothesis that no T&S-folding step is performed after a definition elimination step is needed to prevent a T&S-folding step being applied using a clause with a head predicate whose definition has been eliminated. This point is illustrated by the following example.

Example 10. Let us consider the transformation sequence

\[
\begin{align*}
& p \leftarrow q & p \leftarrow \text{fail} & q \leftarrow, \\
& p \leftarrow q & p \leftarrow \text{fail} & q \leftarrow \text{newp} \leftarrow q \quad \text{(by T&S-definition),} \\
& p \leftarrow q & p \leftarrow \text{fail} & q \leftarrow \quad \text{(by definition elimination),} \\
& p \leftarrow \text{newp} & p \leftarrow \text{fail} & q \leftarrow \quad \text{(by T&S-folding).}
\end{align*}
\]

According to our definition, newp is a new predicate and p is an old one. Thus, hypotheses (i) and (ii) of Theorem 8 are fulfilled. However, the transformation sequence is not correct w.r.t. Sem$_H$.

Notice that when we T&S-fold clause C w.r.t. a sequence of atoms in $\text{bd}(C)$, no atom in that sequence is required to be fold-allowing.

Theorem 8 can be used to show the correctness of the transformation process presented in Section 2, where average is the only new predicate. Unfortunately, Theorem 8 does not ensure the correctness of a transformation sequence where we allow general Sem$_H$-reversible goal replacement steps. However, we may construct transformation sequences containing both Sem$_H$-reversible goal replacement steps and folding steps which are not instances of R13, by concatenating several transformation sequences, each of them being proved correct either by Theorem 6 or by Theorem 8.

The reader may find in Tamaki and Sato [132, 133] and Gardner and Shepherdson [66] some other restricted forms of the folding and goal replacement rules which are correct w.r.t. Sem$_H$.

3.2.2. COMPUTED ANSWER SUBSTITUTIONS. We now consider the semantics function Sem based on the notion of computed answer substitutions [89], which captures the procedural behavior of definite programs more accurately than the least Herbrand model semantics.

Two substitutions η and θ are said to be equal modulo renaming iff there exists a renaming substitution ρ such that η is equal to the restriction of $\theta\rho$ to the domain of θ. In what follows we will always consider substitutions modulo renaming.

The computed answer substitution semantics is a function $\text{Sem}_{\text{CA}} : \text{Programs} \times \text{Queries} \rightarrow (D, \leq)$, where Programs is the set of definite programs, Queries is the
set of atomic queries, and (D, \leq) is the powerset of the set of all substitutions (modulo renaming) ordered by set inclusion. By definition, we have that $\text{Sem}_{CA}(P, \leftarrow A) = \{\theta \mid \text{there exists an SLD-refutation of } \leftarrow A \text{ with computed answer substitution } \theta\}$.

By soundness and completeness of SLD-resolution, we have that the equivalence w.r.t. Sem_{CA} implies the equivalence w.r.t Sem_{ni}. However, the converse is not true. For instance, consider the two programs

$$P_1: \quad p(a) \leftarrow,$$

$$P_2: \quad p(X) \leftarrow p(a) \leftarrow.$$

We have that P_1 and P_2 have the same least Herbrand model $\{p(a)\}$. However, $\text{Sem}_{CA}(P_1, \leftarrow p(X)) = \{(X/a)\}$, while $\text{Sem}_{CA}(P_2, \leftarrow p(X)) = \{(),(X/a)\}$, where $\{\}$ is the identity substitution.

Various researchers have addressed the problem of proving the correctness of some transformation rules w.r.t. Sem_{CA} [13,17,78]. It can easily be shown that the boolean rules R&R12 preserve the Sem_{CA} semantics with the exception of rule R9 (deletion of duplicate goals) and rule R11 (deletion of subsumed clauses), as is shown in the following example.

Example 11. Let us consider the program

$$P_1: \quad p(X) \leftarrow q(X), q(X) \quad q(t(Y,a)) \leftarrow q(t(a,Z)) \leftarrow.$$

By deleting an occurrence of $q(X)$ in the body of the first clause, we get

$$P_2: \quad p(X) \leftarrow q(X) \quad q(t(Y,a)) \leftarrow q(t(a,Z)) \leftarrow.$$

The substitution $\{X/t(a,a)\}$ belongs to $\text{Sem}_{CA}(P_1, \leftarrow p(X))$ and not to $\text{Sem}_{CA}(P_2, \leftarrow p(X))$.

Let us consider now the program

$$P: \quad p(X) \leftarrow p(a) \leftarrow.$$

The clause $p(a) \leftarrow$ is subsumed by $p(X) \leftarrow$. However, if we delete $p(a) \leftarrow$, the Sem_{CA} semantics is not preserved, because $\{X/a\}$ is no longer a computed answer substitution for the query $\leftarrow p(X)$.

There are particular cases where the deletion of duplicate goals and the deletion of subsumed clauses are correct w.r.t. Sem_{CA}, and indeed the following two rules are correct w.r.t. Sem_{CA}.

R16. Deletion of Duplicate Ground Goals. We get program P_{k+1} from program P_k by replacing a ground goal G, G in a clause of P_k using the replacement law $G, G \equiv G$.

This rule is an instance of the Sem_{CA} reversible goal replacement rule.

R17. Deletion of Duplicate Clauses. We get program P_{k+1} by replacing the sequence of clauses $\langle C, C \rangle$ in program P_k by $\langle C \rangle$.

For the correctness of a transformation sequence w.r.t. Sem_{CA} we have the following results, corresponding to Theorems 6 and 8, respectively.
Theorem 9. Let P_0, \ldots, P_n be a transformation sequence of definite programs, constructed by using the following transformation rules: unfolding, reversible folding, definition introduction, definition elimination, reversible goal replacement R_{14} (in particular, rules R_8 and R_{16}), and clause replacement R_7 (in particular, rules R_{10}, R_{12}, and R_{17}). Then P_0, \ldots, P_n is correct w.r.t. Sem_{CA}.

Theorem 10 (Correctness of T&S-folding w.r.t. Sem_{CA} [13,78]). Let P_0, \ldots, P_n be a transformation sequence constructed by using the following transformation rules: unfolding, T&S-folding, T&S-definition, definition elimination, goal rearrangement, deletion of duplicate ground goals, clause rearrangement, deletion of duplicate clauses, and deletion of clauses with finitely failed body. Suppose that no T&S-folding step is performed after a definition elimination step. Suppose also that we apply T&S-folding to a clause C using a clause D only if (i) $hd(D)$ has a new predicate and (ii) either $hd(C)$ has an old predicate or at least one atom in $bd(C)$ is fold-allowing. Then P_0, \ldots, P_n is correct w.r.t. the semantics Sem_{CA}.

3.2.3. Finite Failure. In Theorems 6, 8, 9, and 10 we have shown that the set of atomic consequences of a program and the set of answer substitutions that are computed by a program are preserved by a number of transformations. However, the use of the rules according to the hypotheses of Theorem 8 may transform a finitely failing program into an infinitely failing program (and vice versa), as shown by the following example.

Example 12. Let us consider the transformation sequence where p is the only new predicate:

P_0: $p(X) \leftarrow q(X), r(X)$
$q(a) \leftarrow r(b), r(b) \leftarrow r(b)$

(by unfolding the first clause w.r.t. $r(X)$),

P_1: $p(b) \leftarrow q(b), r(b)$
$q(a) \leftarrow r(b) \leftarrow r(b)$

(by T&S-folding the first clause).

P_2: $p(b) \leftarrow p(b)$
$q(a) \leftarrow r(b) \leftarrow r(b)$

This transformation sequence satisfies the conditions stated in Theorem 8, but P_0 finitely fails for the query $\leftarrow p(b)$, while P_2 does not.

In order to reason about the preservation of finite failure during program transformation, we now consider the semantics function Sem_{FF} from Programs \times Queries to (D, \leq), where Programs is the set of definite programs, Queries is the set of atomic queries, and (D, \leq) is the powerset of the set of (possibly not ground) atoms ordered by set inclusion. By definition, $Sem_{FF}(P, \leftarrow A) = \{B \mid B$ is an instance of A and there exists a finitely failed SLD-tree for P and $\leftarrow B\}$.

One can easily show the partial correctness of our transformation rules R_1 and R_4–R_{14} w.r.t. Sem_{FF}. (Example 10 shows that rules R_2 and R_3, together with definition elimination, are not partially correct w.r.t. Sem_{pp}.) Thus, similarly to the cases of Sem_H and Sem_{CA}, we have the following result, basically due to Maher [91].
Theorem 11. Let \(P_0, \ldots, P_n \) be a transformation sequence of definite programs constructed by using the transformation rules: unfolding, reversible folding, definition introduction, definition elimination, reversible goal replacement (in particular, rules R8 and R9), and clause replacement (in particular, rules R10, R11, and R12). Then \(P_0, \ldots, P_n \) is correct w.r.t. \(\text{Sem}_{\text{FF}} \).

Notice that, since fairness of SLD-derivations [89] is a sufficient condition for obtaining a finitely failed SLD-tree, if there exists one, the preservation of fairness ensures the total correctness of a transformation sequence w.r.t. \(\text{SEM}_{\text{FF}} \).

Unfortunately, if we allow folding steps which are not reversible foldings, it may be the case that a folding step affects the fairness of SLD-derivations, because as we will show below, it imposes a “synchronized” evaluation of a sequence of atoms. Thus, given a program \(P_1 \) and a query \(Q \), by applying folding steps which are not reversible, we may derive a program \(P_2 \) such that a fair SLD-derivation for \(Q \) using \(P_2 \) encodes an unfair SLD-derivation for \(Q \) using \(P_1 \).

Let us consider, for instance, program \(P_1 \) of Example 12 and the infinite sequence of goals \(p(b), -p(b), \ldots \), which describes the fair SLD-derivation for the program \(P_1 \), and the query \(p(b) \). Since the folding step which produced \(P_2 \) from \(P_1 \) replaces \("q(b), r(b)" \) by \("p(b)" \), this derivation can be viewed as an encoding of the unfair SLD-derivation for \(P_1 \):

\[p(b), q(b), r(b), q(b), r(b), \ldots \]

which is obtained by always selecting for SLD-resolution the atom \(r(b) \).

The following Theorem 12 is a modification of Theorem 8. Its proof is based on the fact that unfair SLD-derivations cannot be introduced if all atoms replaced in a folding step have previously been derived by unfolding. This condition is not fulfilled by the folding step shown in Example 12 because in the body of the clause \(p(b) \leftarrow q(b), r(b) \) in \(P_1 \), the atom \(q(b) \) has not been derived by unfolding, or in the sense of Definition 7, \(q(b) \) is not fold-allowing.

Theorem 12 (Correctness of T&S-folding w.r.t. \(\text{Sem}_{\text{FF}} \) [124]). Let \(P_0, \ldots, P_n \) be a transformation sequence of definite programs constructed by using the following transformation rules: unfolding, T&S-folding, T&S-definition, definition elimination, and boolean rules. Suppose that no T&S-folding step is performed after a definition elimination step. Suppose also that we apply T&S-folding to a clause \(C \) using a clause \(D \) only if (i) \(\text{hd}(D) \) has a new predicate and (ii) either \(\text{hd}(C) \) has an old predicate or all atoms of \(\text{bd}(C) \) w.r.t. which T&S-folding steps are performed are fold-allowing. Then \(P_0, \ldots, P_n \) is correct w.r.t. the semantics \(\text{Sem}_{\text{FF}} \).

3.2.4. PURE PROLOG. In this section we consider the case where a definite program is evaluated using a Prolog evaluator. Its control strategy can be described as follows. The SLD-tree for a given program and a given query is constructed by using the left-to-right rule for selecting the atom w.r.t. which SLD-resolution should be applied in a given goal. In this SLD-tree, the sons of a given goal are ordered from left to right according to the order of the clauses used for performing the corresponding SLD-resolution step. Thus, we have an ordered SLD-tree which is visited in a depth-first manner. The use of the Prolog control strategy has two consequences: (i) the answer substitutions are generated in a fixed order, possibly with repetitions, and (ii) there may be some answer substitutions which cannot be obtained in a finite number of computation steps, because in the depth-first visit
they are “after” branches of infinite length. Therefore, the completeness of SLD-resolution is lost.

We will define a semantics function $\text{Sem}_{\text{Prolog}}$ by taking into consideration the generation order, the multiplicity, and the “finite time computability” of the answer substitutions. Thus, given a program P and a query Q, we consider the ordered SLD-tree T constructed as specified above. The left-to-right ordering of the brother nodes in T determines the left-to-right ordering of the branches and leaves.

If T is finite, then $\text{Sem}_{\text{Prolog}}(P, Q)$ is the sequence of the computed answer substitutions (modulo renaming) corresponding to the nonfailed leaves of T in the left-to-right order.

If T is infinite, we consider a (possibly infinite) sequence F of computed answer substitutions (modulo renaming), each substitution being associated with a leaf of T. F is obtained by visiting from left to right the nonfailed leaves which are on branches to the left of the leftmost infinite branch. There are two cases: either F is infinite, in which case $\text{Sem}_{\text{Prolog}}(P, Q)$ is F, or F is finite, in which case $\text{Sem}_{\text{Prolog}}(P, Q)$ is F followed by the symbol \bot, which is called the undefined substitution. All substitutions different from \bot are said to be defined.

Thus, $\text{Sem}_{\text{Prolog}}$ is defined as a function from Programs \times Queries to (D, \leq), where Programs and Queries are the sets of definite programs and atomic queries, respectively. (D, \leq) is the set SubstSeq of finite or infinite sequences of defined substitutions and finite sequences of defined substitutions followed by the undefined substitution \bot. Similar approaches to the semantics of Prolog can be found in Jones and Mycroft [74], Debray and Mishra [38], Deville [44], and Baudinet [7].

The sequence consisting of the substitutions $\theta_1, \theta_2, \ldots$ is denoted by $\langle \theta_1, \theta_2, \ldots \rangle$, and the concatenation of two sequences S_1 and S_2 in SubstSeq is denoted by $S_1 \circ S_2$ and is defined as the usual monoidal concatenation of finite or infinite sequences, with the extra property $\langle \bot \rangle \circ S = \langle \bot \rangle$.

Example 13. Consider the following three programs:

$P_1: \quad p(a) \leftarrow \quad p(b) \leftarrow \quad p(a) \leftarrow$

$P_2: \quad p(a) \leftarrow \quad p(X) \leftarrow p(X) \quad p(b) \leftarrow$

$P_3: \quad p(a) \leftarrow \quad p(b) \leftarrow p(b) \quad p(a) \leftarrow$

We have that

$\text{Sem}_{\text{Prolog}}(P_1, p(X)) = \langle \{ X/a \}, \{ X/b \}, \{ X/a \} \rangle$,

$\text{Sem}_{\text{Prolog}}(P_2, p(X)) = \langle \{ X/a \}, \{ X/a \}, \ldots \rangle$,

$\text{Sem}_{\text{Prolog}}(P_3, p(X)) = \langle \{ X/a \}, \bot \rangle$.

The order \leq over SubstSeq expresses a less defined than or equal to relation between sequences which can be introduced as follows. For any two sequences of substitutions S_1 and S_2, the relation $S_1 \leq S_2$ holds iff either $S_1 = S_2$ or $S_1 = S_3 \circ (\bot)$ and $S_2 = S_3 \circ S_4$, for some S_3 and S_4 in SubstSeq. For instance, $\langle \bot \rangle \leq S$ for any (possibly empty) sequence S and for all substitutions η_1, η_2, η_3 with $\eta_1 \neq \bot$ and $\eta_2 \neq \bot$, $\langle \eta_1, \eta_3, \eta_2 \rangle$. The sequences $\langle \eta_1 \rangle$ and $\langle \eta_1, \eta_2 \rangle$ are not comparable w.r.t. the order \leq.

Unfortunately, most transformation rules presented in the previous sections are not even partially correct w.r.t. $\text{Sem}_{\text{Prolog}}$. Indeed, it is easy to see that the
application of a boolean rule may affect the order, or the multiplicity, or the finite
time computability of the computed answer substitutions.

An unfolding step may affect the order of the computed answer substitutions as
well as the termination of a program, as is shown by the following examples.

Example 14. By unfolding w.r.t. \(r(Y) \) the first clause of the program

\[
P_0: \quad p(X,Y) \leftarrow q(X), r(Y)
q(a) \leftarrow \quad q(b) \leftarrow \quad r(a) \leftarrow \quad r(b) \leftarrow,
\]

we get

\[
P_1: \quad p(X,a) \leftarrow q(X) \quad \quad p(X,b) \leftarrow q(X)
q(a) \leftarrow \quad q(b) \leftarrow \quad r(a) \leftarrow \quad r(b) \leftarrow.
\]

The order of the computed answer substitutions is changed. Indeed, we have that

\[
\text{Sem}_{\text{Prolog}}(P_0, \leftarrow p(X,Y)) = \langle \{X/a,Y/a\}, \{X/a,Y/b\}, \{X/b,Y/a\}, \{X/b,Y/b\} \rangle
\]

\[
\text{Sem}_{\text{Prolog}}(P_1, \leftarrow p(X,Y)) = \langle \{X/a,Y/a\}, \{X/b,Y/a\}, \{X/a,Y/b\}, \{X/b,Y/b\} \rangle.
\]

Example 15. By unfolding w.r.t. \(r \) the first clause of the program

\[
P_0: \quad p \leftarrow q,r \quad q \leftarrow \quad q \leftarrow q \quad r \leftarrow \quad r \leftarrow,
\]

we get

\[
P_1: \quad p \leftarrow q,fail \quad p \leftarrow q \quad q \leftarrow q \quad r \leftarrow fail \quad r \leftarrow.
\]

\(P_1 \) is less defined than \(P_0 \). Indeed, we have that

\[
\text{Sem}_{\text{Prolog}}(P_0, \leftarrow p) = \langle \{ \}, \{ \}, \ldots \rangle,
\]

\[
\text{Sem}_{\text{Prolog}}(P_1, \leftarrow p) = \langle \bot \rangle.
\]

Example 16. By unfolding w.r.t. \(r(X) \) the first clause of the program

\[
P_0: \quad p \leftarrow q(X), r(X) \quad q(a) \leftarrow q(a) \quad r(b) \leftarrow,
\]

we get

\[
P_1: \quad p \leftarrow q(b) \quad q(a) \leftarrow q(a) \quad r(b) \leftarrow.
\]

\(P_1 \) is more defined than \(P_0 \). Indeed, we have that

\[
\text{Sem}_{\text{Prolog}}(P_0, \leftarrow p) = \langle \bot \rangle,
\]

\[
\text{Sem}_{\text{Prolog}}(P_1, \leftarrow p) = \langle \top \rangle.
\]

We also have that the use of the folding rule does not always preserve \(\text{Sem}_{\text{Prolog}} \).
In order to overcome this inconvenience, several researchers have proposed
restricted versions of the unfolding and folding rules [112,118]. The following rules
\(R18 \) and \(R19 \) are two instances of the unfolding rule which can be shown to be
totally correct w.r.t. \(\text{Sem}_{\text{Prolog}} \).
R18. Leftmost Unfolding. A leftmost unfolding step of clause C consists of an unfolding step of C w.r.t. the leftmost atom of its body.

R19. Deterministic Non-Left-Propagating Unfolding. The unfolding of a clause $H \leftarrow F, A, G$ w.r.t. the atom A is deterministic non-left-propagating iff (i) there exists one clause D such that A is unifiable with $hd(D)$ via a most general unifier θ and (ii) $H \leftarrow F$ is a variant of $(H \leftarrow F)\theta$.

Also the definition introduction, definition elimination, and clause replacement rules are totally correct w.r.t. $\text{Sem}_{\text{Prolog}}$. We have that the goal replacement rule is partially correct w.r.t. $\text{Sem}_{\text{Prolog}}$ and so is the T&S-folding rule if we allow the use of clauses of the current program only. Thus, we can state a result which is analogous to Theorems 6, 9, and 11 for Sem_{H}, Sem_{CA}, and Sem_{FF}, respectively.

Theorem 13. Let P_0, \ldots, P_n be a transformation sequence of definite programs constructed by using the transformation rules: leftmost unfolding, deterministic non-left-propagating unfolding, T&S-folding, definition introduction, definition elimination, reversible goal replacement, and clause replacement. Suppose that each T&S-folding is an instance of the reversible folding rule R13. Then P_0, \ldots, P_n is correct w.r.t. $\text{Sem}_{\text{Prolog}}$.

For the case of T&S-folding which is not an instance of reversible folding, we have the following result, which is analogous to Theorems 8, 10, and 12 and is based on the fact that an application of the leftmost unfolding rule is “a step forward in the computation” using the left-to-right computation rule.

Theorem 14 (Correctness of T&S-folding w.r.t $\text{Sem}_{\text{Prolog}}$ [112]). Let P_0, \ldots, P_n be a transformation sequence of definite programs constructed by using the following transformation rules: leftmost unfolding, deterministic non-left-propagating unfolding, T&S-folding, T&S-definition, and definition elimination. Suppose that no T&S-folding step is performed after a definition elimination step. Suppose also that we apply T&S-folding to a clause C using a clause D only if (i) $hd(D)$ has a new predicate and (ii) either $hd(C)$ has an old predicate or the leftmost atom of $bd(C)$ is fold-allowing. Then P_0, \ldots, P_n is correct w.r.t. the semantics $\text{Sem}_{\text{Prolog}}$.

The following example shows that in Theorem 14 we cannot replace “the leftmost atom” by “an atom.”

Example 17. Let us consider the initial program

$$P_0: \quad p \leftarrow q(X), r(X) \quad q(X) \leftarrow \text{fail} \quad r(X) \leftarrow r(X).$$

We have that (i) p is a new predicate and q, r, and fail are old predicates and (ii) the occurrences of $q(X)$ and $r(X)$ in the first clause are not fold-allowing. By deterministic non-left-propagating unfolding of $p \leftarrow q(X), r(X)$ w.r.t. $r(X)$, we get the following program which is equal to P_0:

$$P_1: \quad p \leftarrow q(X), r(X) \quad q(X) \leftarrow \text{fail} \quad r(X) \leftarrow r(X).$$
Now, the occurrence of \(r(X) \) in the first clause is fold-allowing. If we fold the first clause of \(P_1 \) using that same clause, we get

\[
P_2: \quad p \leftarrow p \quad q(X) \leftarrow \text{fail} \quad r(X) \leftarrow r(X).
\]

\(P_2 \) is not equivalent to \(P_0 \) w.r.t. \(\text{Sem}_{\text{Prolog}} \). Indeed, we have that

\[
\text{Sem}_{\text{Prolog}}(P_0, \leftarrow p) = \langle \top \rangle,
\]

\[
\text{Sem}_{\text{Prolog}}(P_2, \leftarrow p) = \langle \bot \rangle.
\]

In this paper we have considered only the case of pure Prolog, where the SLD-resolution steps have no side effects. Properties preserved by unfold/fold rules when transforming Prolog programs with side effects, including cuts, can be found in Deville [44], Sahlin [118], and Prestwich [109].

3.3 Semantics Preserving Transformations for Normal Programs

In this section we consider the case where the bodies of the clauses contain negative literals. There is a large number of papers dealing with transformations that preserve the various semantics which have been proposed for logic programs with negation. In particular, some restricted forms of unfolding and folding have been shown to be correct w.r.t. various semantics, such as the success set and finite failure set semantics [66, 124, 127], Clark’s completion [28, 66, 127], Fitting’s and Kunen’s three-valued extensions of Clark’s completion [16, 54, 86, 119], perfect model semantics [92, 116, 124], stable model semantics [67, 93], and well-founded model semantics [93, 125, 138]. For limitations of space, we will report here only on the results concerning the following three semantics [89]: (i) success set, (ii) finite failure set, and (iii) Clark’s completion.

The success set semantics for normal programs, denoted \(\text{Sem}_{\text{SS}} \), is a function from Programs \(\times \) Queries to \((D, \leq)\), where Programs is the set of normal programs, Queries is the set of atomic queries, and \((D, \leq)\) is the powerset of the set of (possibly not ground) atoms ordered by set inclusion. By definition we have that \(\text{Sem}_{\text{SS}}(P, \leftarrow A) = \{B \mid B \text{ is an instance of } A \text{ and there exists an SLDNF-refutation for } P \text{ and } \leftarrow B\} \).

The finite failure semantics for normal programs, denoted \(\text{Sem}_{\text{FF}} \), has the same domain and codomain of \(\text{Sem}_{\text{SS}} \). By definition we have that \(\text{Sem}_{\text{FF}}(P, \leftarrow A) = \{B \mid B \text{ is an instance of } A \text{ and there exists a finitely failed SLDNF-tree for } P \text{ and } \leftarrow B\} \).

For the correctness of a transformation sequence w.r.t. \(\text{Sem}_{\text{SS}} \) and \(\text{Sem}_{\text{FF}} \) there are results which are analogous to Theorem 12. Indeed, the statement of that theorem is valid if we replace “definite programs” by “normal programs” and we consider any of the two semantics \(\text{Sem}_{\text{SS}} \) or \(\text{Sem}_{\text{FF}} \).

Notice also that the hypotheses for the version of Theorem 12 for normal programs and \(\text{Sem}_{\text{SS}} \) are more restrictive than the hypotheses of Theorem 8 for definite programs and \(\text{Sem}_{\text{H}} \). This is due to the fact that in order to preserve the success set of normal programs, we may need to preserve their finite failure sets as well, because the evaluation of positive goals may require the evaluation of negative goals.
Now we consider a definition of the semantics function based on the completion of a normal program. This function is from Programs \times Queries to (D, \leq), where Programs is the set of normal programs, Queries is the set of atomic queries, and (D, \leq) is the powerset of the set of (possibly not ground) atoms ordered by set inclusion. By definition we have that $\text{Sem}_{\text{Comp}}(P, \leftarrow A) = \{ B \mid B$ is an instance of the atom A and the universal closure of B is a logical consequence of the completion $\text{Comp}(P)$ of the program P).

The partial correctness of the unfolding and folding rules can easily be established, as illustrated by the following example.

Example 18. Let us consider the program

\begin{align*}
P_0: \quad & p \leftarrow q, \neg r \quad q \leftarrow s, t \quad q \leftarrow s, u \quad v \leftarrow t \quad v \leftarrow u \quad s \leftarrow u \leftarrow \\
\text{whose completion is} \quad & \text{Comp}(P_0): \quad p \leftarrow q \wedge \neg r \quad q \leftarrow (s \wedge t) \vee (s \wedge u) \\
& \quad v \leftarrow t \vee u \quad s \leftarrow u \quad u \leftarrow u \\
\end{align*}

By unfolding the first clause of P_0 w.r.t. q, we get

\begin{align*}
P_1: \quad & p \leftarrow s, t \neg r \quad p \leftarrow s, u, \neg r \quad q \leftarrow s, t \quad q \leftarrow s, u \\
& \quad v \leftarrow t \quad v \leftarrow u \quad s \leftarrow u \leftarrow \\
\text{whose completion is} \quad & \text{Comp}(P_1): \quad p \leftarrow (s \wedge t \wedge \neg r) \vee (s \wedge u \wedge \neg r) \quad q \leftarrow (s \wedge t) \vee (s \wedge u) \\
& \quad v \leftarrow t \vee u \quad s \leftarrow u \quad u \leftarrow u \\
\text{Comp}(P_1)$ can be obtained by replacing q in $p \leftarrow q \wedge \neg r$ of $\text{Comp}(P_0)$ by $(s \wedge t) \vee (s \wedge u)$ and then applying the distributive and associative laws. Since $q \leftarrow (s \wedge t) \vee (s \wedge u)$ holds in $\text{Comp}(P_0)$, we have that $\text{Comp}(P_1)$ is a logical consequence of $\text{Comp}(P_0)$.

From P_1, by folding the definition of p using the definition of v in P_1 itself, we get

\begin{align*}
P_2: \quad & p \leftarrow s, v, \neg r \quad q \leftarrow s, t \quad q \leftarrow s, u \\
& \quad v \leftarrow t \quad v \leftarrow u \quad s \leftarrow u \leftarrow \\
\text{whose completion is} \quad & \text{Comp}(P_2): \quad p \leftarrow s \wedge v \wedge \neg r \quad q \leftarrow (s \wedge t) \vee (s \wedge u) \\
& \quad v \leftarrow t \vee u \quad s \leftarrow u \quad u \leftarrow u \\
\text{Comp}(P_2)$ can be obtained from $\text{Comp}(P_1)$ by first using the associative, commutative, and distributive laws for replacing the formula $p \leftarrow (s \wedge t \wedge \neg r) \vee (s \wedge u \wedge \neg r)$ by $p \leftarrow (t \vee u) \wedge (s \wedge \neg r)$, and then replacing $t \vee u$ by v. Since $v \leftarrow t \vee u$ holds in $\text{Comp}(P_1)$, we have that $\text{Comp}(P_2)$ is a logical consequence of $\text{Comp}(P_1)$.

In general, if a program P_{k+1} can be obtained from a program P_k by folding steps which use clauses in P_k only or by unfolding steps, then $\text{Comp}(P_{k+1})$ can be obtained from $\text{Comp}(P_k)$ by one or more replacements of a formula F by a formula G such that $F \leftrightarrow G$ is a logical consequence of $\text{Comp}(P_k)$. Thus, $\text{Comp}(P_{k+1})$ is a logical consequence of $\text{Comp}(P_k)$.
A similar statement holds if P_{k+1} can be obtained from P_k by applying the goal replacement rule or the clause replacement rule. Thus, we have the following result, analogous to Theorem 3 for Sem_H.

Theorem 1.5 (Partial correctness of transformations w.r.t. Sem_Comp). Let P_0, \ldots, P_n be a transformation sequence constructed by using rules R1–R12. Suppose that each folding step is performed by using clauses in the current program only. Then P_0, \ldots, P_n is partially correct w.r.t. the semantics Sem_Comp.

Unfortunately, the unfolding rule is not totally correct w.r.t. Sem_Comp, as shown by the following example adapted from Maher [92].

Example 19. Let us consider the program

$$P_0: \ p(X) \leftarrow q(X) \quad p(X) \leftarrow \neg q(\text{succ}(X)) \quad q(X) \leftarrow q(\text{succ}(X)),$$

whose completion is (equivalent to)

$$\text{Comp}(P_0): \ \forall X (p(X) \leftrightarrow q(X) \lor \neg q(\text{succ}(X)))$$

$$\forall X (q(X) \leftrightarrow q(\text{succ}(X))),$$

together with the axioms of Clark's equality theory (CET) [4, 28, 89]. CET is a first order complete (and hence decidable) equality theory which axiomatizes the identity relation on the Herbrand universe. By unfolding of the last clause of P_0, we get

$$P_1: \ p(X) \leftarrow q(X) \quad p(X) \leftarrow \neg q(\text{succ}(X)) \quad q(X) \leftarrow q(\text{succ}(\text{succ}(X))),$$

whose completion is (equivalent to)

$$\text{Comp}(P_1): \ \forall X (p(X) \leftrightarrow q(X) \lor \neg q(\text{succ}(X)))$$

$$\forall X (q(X) \leftrightarrow q(\text{succ}(\text{succ}(X))))$$

together with the axioms of CET.

We have that $\forall X p(X)$ is a logical consequence of $\text{Comp}(P_0)$. On the other hand, $\forall X p(X)$ is not a logical consequence of $\text{Comp}(P_1)$. Indeed, let us consider the interpretation I whose universe is the set of integers, $p(x)$ holds iff $q(x)$ holds iff x is an even integer, and succ is the successor function. I is a model of $\text{Comp}(P_1)$ whereas it is not a model of $\forall X p(X)$.

We may restrict the use of the unfolding rule to make it totally correct w.r.t. Sem_Comp by requiring that during a transformation sequence no self-unfolding steps are performed, that is, we never unfold a clause using itself (and possibly other clauses).

Indeed, if program P_1 is derived from program P_0 by performing an unfolding step which is not self-unfolding, then the transformation sequence P_0, P_1 is reversible (w.r.t. any set of rules including R1 and R13), because we may get P_0 from P_1 by reversible folding (rule R13). Thus, by Theorems 5 and 15, we have that the unfolding rule is totally correct w.r.t. Sem_Comp.

As a consequence, we have the following result, where by reversible unfolding, we mean an unfolding step which is not self-unfolding.
Theorem 16. Let P_0, \ldots, P_n be a transformation sequence constructed by using the transformation rules: reversible unfolding, reversible folding, definition introduction, definition elimination, reversible goal replacement, and clause replacement. Then P_0, \ldots, P_n is correct w.r.t. Sem_{Comp}.

We end this section by showing, through the following example, that the hypotheses of Theorem 12 are not sufficient to ensure the correctness of T&S-folding w.r.t. Sem_{Comp}.

Example 20. Let us consider the transformation sequence

$P_0: p \leftarrow q \quad q \leftarrow q \quad r \leftarrow p \quad r \leftarrow \neg q,$

$P_1: p \leftarrow q \quad q \leftarrow q \quad r \leftarrow p \quad r \leftarrow \neg q$ (by reversible unfolding of $p \leftarrow q$),

$P_2: p \leftarrow p \quad q \leftarrow q \quad r \leftarrow p \quad r \leftarrow \neg q$ (by T&S-folding of $p \leftarrow q$).

By Theorem 12, P_0 and P_2 are equivalent w.r.t. Sem_{m}. Let us now consider the completions of P_0 and P_2, respectively.

$\text{Comp}(P_0): \quad p \leftrightarrow q \quad q \leftrightarrow q \quad r \leftrightarrow p \lor \neg q.$

$\text{Comp}(P_2): \quad p \leftrightarrow p \quad q \leftrightarrow q \quad r \leftrightarrow p \lor \neg q.$

We have that r is a logical consequence of $\text{Comp}(P_0)$. On the contrary, r is not a logical consequence of $\text{Comp}(P_2)$. Indeed, the interpretation where p is false, q is true, and r is false is a model of $\text{Comp}(P_2)$, but not of r.

It should be noted that in Example 20, P_0 is equivalent to P_2 w.r.t. other two-valued or three-valued semantics for normal programs such as the already mentioned Fitting’s and Kunen’s extensions of Clark’s completion, perfect model, stable model, and well-founded model semantics. The reader may find various correctness results of T&S-folding w.r.t. these semantics in Sato [118] and Seki [123, 124].

4. STRATEGIES FOR TRANSFORMING LOGIC PROGRAMS

The transformation process should be directed by some metarules, which we call strategies, because, as we have seen in the previous section, the transformation rules have inverses, and thus, they allow for final programs which are equal to the initial programs. Obviously, we are not interested in such useless transformations.

In this section we present an overview of some transformation strategies which have been proposed in the literature. They are used, in particular, for solving one of the most crucial problems of the transformation methodology, that is, the use of the definition rule for the introduction of the so-called eureka predicates.

The reader may refer to Feather [53], Partsch [104], Deville [44], and Pettorossi and Proietti [108] for a treatment of transformation strategies for functional and logic programs.

For simplicity reasons, we only consider the case of definite programs with the least Herbrand model semantics Sem_{H}. We will use in our examples the following rules, whose correctness w.r.t. Sem_{H} is ensured when they are used according to the hypotheses of Theorems 6 and 8: unfolding (R1), T&S-folding (R3), T&S-definition (R15), definition elimination (R5), reversible goal replacement (R14), and boolean rules (R8–R12).
In some examples below we will construct transformation sequences by using both T&S-folding and reversible goal replacement not in accord with the hypotheses of Theorems 6 and 8. In these examples, however, the correctness w.r.t. Sem_{T} continues to hold, as the reader may check by referring to Tamaki and Sato [132, 133].

In order to simplify our presentation, we will usually avoid the use of rule R8 (goal rearrangement) and rule R9 (deletion of duplicate goals).

If we allow the use of boolean rules, then the concatenation of sequences of literals and the concatenation of sequences of clauses are associative, commutative, and idempotent. Therefore, in that case, when dealing with collections of literals or programs, we will feel free to use set-theoretic notations, such as $\{ \cdots \}$ and \cup instead of $\langle \cdots \rangle$ and \oplus.

Before presenting the technical details of the transformation strategies, we would like to give an informal explanation of the main ideas which justify their use. We are given an initial program and we want to apply the transformation rules to improve its efficiency. In order to do so, we usually need a preliminary analysis of the initial program by which we discover that the evaluation of a goal, say A_1, \ldots, A_n, in the body of a program clause is inefficient because it evokes some redundant computations.

For example, by analyzing the initial program P_0 given in Section 2, we may discover that the evaluation of the conjunction of atoms "length(L, N), sumlist(l, S)" in the body of the clause

$1. \text{average}(l, A) \leftarrow \text{length}(L, N), \text{sumlist}(L, S), \text{div}(S, N, A)$

is inefficient because it determines a double traversal of the list L.

In order to improve the performance of program P_0, we can apply the technique which consists in introducing a new predicate, say newp, by means of a clause, say N, with body A_1, \ldots, A_n. This initial transformation step has been formalized as an application of the tupling strategy (see Section 4.1). We then unfold clause N one or more times, thereby generating some new clauses. This process can be viewed as a symbolic evaluation of a query which is an instance of A_1, \ldots, A_n. This unfolding may give us the opportunity to improve the performance of our program, because, for instance, we may delete some clauses with finitely failed body, thus avoiding failures at run time, or we may delete duplicate atoms, thus avoiding repeated computations, and so on.

With reference to the example of Section 2, we recall that by unfolding clause 1 w.r.t. length and sumlist, we derived the clauses

$9. \text{newp}([L], 0, 0) \leftarrow$,
$10. \text{newp}([H\mid T], s(N), S1) \leftarrow \text{length}(T, N), \text{sumlist}(T, S), \text{sum}(H, S, S1),$

which avoid multiple traversals of the input list when it is empty.

The efficiency improvements due to the unfoldings can be iterated at each level of recursion and, thus, they become computationally significant only if we find a recursive definition of newp. In that case, the multiple traversals of the input will be avoided for any given list. This recursive definition can often be achieved by performing a folding step using the clause N introduced by tupling.

In our case, by folding we get

$10f. \text{newp}([H\mid T], s(N), S1) \leftarrow \text{newp}(T, N, S), \text{sum}(H, S, S1)$
and, indeed, this recursive clause together with clause 9 avoids multiple traversals of any input list.

In some unfortunate cases we may not be able to perform the desired final folding steps and derive the recursive definition of newp. In those cases we may use some auxiliary strategies and we may introduce some extra eureka predicates which allow us to perform the required folding steps. Two of those auxiliary strategies are the loop absorption and generalization strategies described in Section 4.1.

In Darlington [34], the expression "need for folding" is introduced to refer to the need to perform the final folding steps for improving program efficiency. This need plays an important role in the program transformation methodology, and it can be regarded as a metastrategy. It is the need for folding that often suggests the suitable strategy to apply at each step of the derivation.

Need for folding in program transformation is related to similar ideas in the field of automated theorem proving [19] and program synthesis [46], where inductive proofs and inductive synthesis tactics are driven by the need to apply an inductive hypothesis.

4.1 Basic Transformation Strategies

We now describe some of the basic strategies which have been introduced in the literature for transforming logic programs. They are tupling, loop absorption, and generalization.

The basic ideas underlying these strategies come from the early days of program transformation and they were already present in Burstall and Darlington [27]. The tupling strategy was formally defined by Pettorossi [106], where it was used for tupling together different function calls which require common subcomputations or visit the same data structure. The name "loop absorption" was introduced by Proietti and Pettorossi [111] to indicate a strategy which derives a new predicate definition when a goal is recurrently evaluated in the program to be transformed. This strategy is present in various forms in a number of different transformation techniques, such as the above-mentioned tupling, supercompilation [136], compiling control [23], as well as various techniques for partial evaluation (see Section 5). Finally, the generalization strategy has its origin in the automated theorem proving context [19], where it is used to generate a new generalized conjecture to allow the application of an inductive hypothesis.

The tupling, loop absorption, and generalization strategies will be used in this paper as building blocks to describe a (nonexhaustive) number of more complex transformation techniques.

For a formal description of the strategies and their possible mechanization, we now introduce the notion of unfolding tree, which represents the process of unfolding a given clause using a given program. This notion is also related to the notion of symbolic trace tree of Bruynooghe et al. [23], where, however, goal replacement is not taken into account.

Definition 17. Let \(P \) be a program and let \(C \) be a clause. An unfolding tree for \(\langle P, C \rangle \) is a (finite or infinite) nonempty labeled tree such that:

(i) the root is labeled by the clause \(C \);
(ii) if M is a node labeled by a clause D, then:

either M has no sons,

or M has n (≥ 1) sons labeled by the clauses D_1, \ldots, D_n obtained by unfolding D w.r.t. an atom of its body using P,

or M has one son labeled by a clause obtained by goal replacement from D.

In an unfolding tree we also have the usual relations of descendant node (or clause) and ancestor node (or clause).

Given a program P and a clause C, the construction of an unfolding tree for $\langle P, C \rangle$ is nondeterministic. In particular, during the process of constructing an unfolding tree, we need to decide whether or not a node should have son-nodes, and in case we decide that son-nodes should be constructed by unfolding, we need to choose the atom w.r.t. which unfolding step should be performed. These choices can be realized by using a function defined as follows.

Definition 18. An unfolding selection rule (or u-selection rule, for short) is a function that, given an unfolding tree and one of its leaves, tells us whether or not to unfold the clause in that leaf and in the affirmative case, tells us the atom w.r.t. which that clause should be unfolded.

Definition 19. Given a clause C of the form $H \leftarrow A_1, \ldots, A_m, B_1, \ldots, B_n$, the linking variables of the sequence of atoms A_1, \ldots, A_m in C are the variables in $\text{vars}(A_1, \ldots, A_m) \cap \text{vars}(H, B_1, \ldots, B_n)$.

We now formally introduce the tupling, loop absorption, and generalization strategies.

S1. Tupling. Let A_1, \ldots, A_n, with $n \geq 1$, be some atoms occurring in the body of a clause C of a given initial program. We introduce a new predicate newp defined by a clause T of the form

\[
\text{newp}(X_1, \ldots, X_k) \leftarrow A_1, \ldots, A_n,
\]

where X_1, \ldots, X_k are the linking variables of A_1, \ldots, A_n in C. We then look for the recursive definition of the eureka predicate newp by performing some unfolding steps followed by suitable folding steps using clause T. We finally fold clause C w.r.t. the atoms A_1, \ldots, A_n using clause T.

The tupling strategy is often applied when A_1, \ldots, A_n share some variables. The program improvements which can be achieved by using this strategy are based on the fact that we need to evaluate only once the subgoals which are common to the computations determined by the tupled atoms A_1, \ldots, A_n. By tupling, we can also avoid multiple visits of data structures and the construction of intermediate bindings.

S2. Loop Absorption. Suppose that a nonroot clause C in an unfolding tree has the form $H \leftarrow A_1, \ldots, A_m, B_1, \ldots, B_n$, and the body of a descendant D of C contains (as a subsequence of atoms) an instance $(A_1, \ldots, A_m)\theta$ of A_1, \ldots, A_m for some substitution θ. Suppose also that the clauses in the path from C to D have been
generated by applying no transformation rule, except for R8 and R9, to \(B_1, \ldots, B_n \). We introduce a new predicate defined by the following clause \(A \):

\[
\text{newp}(X_1, \ldots, X_k) \leftarrow A_1, \ldots, A_m,
\]

where \(\{X_1, \ldots, X_k\} \) is the minimum subset of \(\text{vars}(A_1, \ldots, A_m) \) which is necessary to fold both \(C \) and \(D \) using a clause whose body is \(A_1, \ldots, A_m \). (See point 2 of R3 for the conditions on \(\{X_1, \ldots, X_k\} \) and \(\theta \) which should be satisfied to allow folding.) We fold clause \(C \) using clause \(A \) and we then look for the recursive definition of the eureka predicate \(\text{newp} \). This can be done by performing the unfolding steps corresponding to the steps which lead from clause \(C \) to clause \(D \) and then folding using clause \(A \) again.

S3. Generalization. Given a clause \(C \) of the form \(H \leftarrow A_1, \ldots, A_m, B_1, \ldots, B_n \), we define a new predicate \(\text{genp} \) by a clause \(G \) of the form

\[
\text{genp}(X_1, \ldots, X_k) \leftarrow \text{Gen}A_1, \ldots, \text{Gen}A_m,
\]

where \((\text{Gen}A_1, \ldots, \text{Gen}A_m)_\theta = A_1, \ldots, A_m \), for a given substitution \(\theta \), and \(\{X_1, \ldots, X_k\} \) is a superset of the variables which are necessary to fold \(C \) using a clause whose body is \(\text{Gen}A_1, \ldots, \text{Gen}A_m \). We then fold \(C \) using \(G \) and we get

\[
H \leftarrow \text{genp}(X_1, \ldots, X_k)_\theta, B_1, \ldots, B_n.
\]

We finally look for the recursive definition of the eureka predicate \(\text{genp} \).

A suitable form of the clause \(G \) introduced by generalization can often be obtained by matching clause \(C \) against one of its descendants, say \(D \), in the unfolding tree which is considered during program transformation (see Example 23 below). In particular, we will consider the case where the following four conditions hold:

1. \(D \) is the clause \(K \leftarrow E_1, \ldots, E_m, F_1, \ldots, F_r \), and \(D \) has been obtained from \(C \) by applying no transformation rule, except for R8 and R9, to \(B_1, \ldots, B_n \).
2. \(E_1, \ldots, E_m \) is not an instance of \(A_1, \ldots, A_m \).
3. The goal \(\text{Gen}A_1, \ldots, \text{Gen}A_m \) is the most specific generalization of \(A_1, \ldots, A_m \) and \(E_1, \ldots, E_m \).
4. \(\{X_1, \ldots, X_k\} \) is the minimum subset of \(\text{vars}(\text{Gen}A_1, \ldots, \text{Gen}A_m) \) which is necessary to fold both \(C \) and \(D \) using a clause whose body is \(\text{Gen}A_1, \ldots, \text{Gen}A_m \).

Notice that if conditions 1, 3, and 4 hold and \(E_1, \ldots, E_m \) is an instance of \(A_1, \ldots, A_m \) then loop absorption is applicable.

4.2 Techniques Which Use Basic Transformation Strategies

In this section we will present some techniques for improving program efficiency by using the tupling, loop absorption, and generalization strategies.

4.2.1 Compiling Control. One of the advantages of logic programming over conventional imperative programming is that by writing a logic program, one may separate the "logic" part of an algorithm from the "control" part [85]. By doing so, the correctness of an algorithm w.r.t. a given specification is often easier to prove. Obviously, we are then left with the problem of providing an efficient control.

Unfortunately, the standard top-down, depth-first, and left-to-right Prolog strategy for controlling SLD-resolution does not always give us the desired level of
efficiency, because of the amount of nondeterminism during the evaluation of a program. Much work has been done in the direction of improving the control strategy of logic languages (see, for instance, Bruynooghe and Pereira [25] and Naish [98]).

We consider here a transformation technique, called compiling control [23], which follows a different approach. Instead of enhancing the naive Prolog evaluator using a better (and often more complex) control strategy, we transform the given program so that the derived program behaves under the naive evaluator as the given program would behave under an enhanced evaluator.

The main advantage of the compiling control technique is that we can use relatively simple evaluators which have small and efficient compilers.

The compiling control approach can also be followed to “compile” bottom-up and mixed evaluation strategies [43, 120] as well as lazy evaluation and coroutines [100]. In this paper we only show the use of the compiling control technique in the case where the control to be “compiled” is a computation rule different from the left-to-right Prolog rule. In this case, by applying compiling control, one can improve generate-and-test programs by simulating a computation rule which selects test predicates as soon as the relevant data are available.

A similar idea also has been investigated in the area of functional programming, within the so-called filter promotion strategy [9, 34]. Some other transformation techniques for improving generate-and-test logic programs which are closely related to the compile control technique and the filter promotion strategy can be found in Seki and Furukawa [126], Brough and Hogger [21], and Träff and Prestwich [135].

The problem of “compiling” a given computation rule \(C \) can be described as follows: given a program \(P_1 \) and a set \(Q \) of queries, we want to derive a new program \(P_2 \) which, for any query in \(Q \), is equivalent to \(P_1 \) w.r.t. \(Sem_H \) and behaves under the left-to-right computation rule as \(P_1 \) does under the rule \(C \) [23, 42].

By “equal behavior,” we mean that for a query in \(Q \), the SLD-tree, say \(T_1 \), constructed by using \(P_1 \) and the computation rule \(C \), is equal to the SLD-tree, say \(T_2 \), constructed by using \(P_2 \) and the left-to-right computation rule if (i) we look at \(T_1 \) and \(T_2 \) as directed trees with leaves labeled by “success” or “failure” and arcs labeled by most general unifiers, and (ii) we possibly replace nonbranching paths of \(T_1 \) by single arcs, each of which is labeled by the composition of the most general unifiers labeling the corresponding path to be replaced. Thus, when comparing the trees \(T_1 \) and \(T_2 \), we disregard the goals in the nodes.

Basic forms of compiling control can be formulated as follows. Given a program \(P_1 \), a set \(Q \) of queries, and a computation rule \(C \), compiling control derives the new program \(P_2 \) by first constructing a suitable unfolding tree, say \(T \), and then applying the loop absorption strategy. (Some more complex forms of compiling control require the use of generalization strategies possibly more powerful than S3.)

Without loss of generality, we assume that every query in \(Q \) is of the form \(q(\cdots) \) and in \(P_1 \) there exists only one clause, say \(R \), whose head predicate is \(q \). (We can use the T&S-definition rule to comply with this condition.) The root clause of \(T \) is \(R \), and new nodes are generated by using a suitable \(u \)-selection rule.

It is required that the unfolding tree \(T \) constructed from \(P_1, Q \), and \(C \) satisfy the condition that each SLD-tree generated by a query in \(Q \) using the program \(P_1 \) and the computation rule \(C \) is a concretization tree \(T \), which is derived from \(T \) as follows.
Let \(q(\cdots) \) be unifiable with \(\text{hd}(R) \) via a substitution \(\theta \). \(T_{\gamma} \) is derived from \(T \) by (i) deleting each node (and the subtree rooted in that node) whose clause head is not unifiable with \(\text{hd}(R)\theta \), (ii) replacing, for each remaining node, the clause in that node, say \(D \), by \(\leftarrow \text{bd}(D)\mu \), where \(\mu \) is the most general unifier of \(\text{hd}(R)\theta \) and \(\text{hd}(D) \), and, finally, (iii) adding the root \(\leftarrow q(\cdots)\theta \).

Example 21. Let us consider the program

\[
P_1: \quad \begin{align*}
q(X) & \leftarrow r(X), s(X) & r(a) & \leftarrow r(X) & t(X) & \leftarrow r(X) & u(X) & \leftarrow s(a) & s(h) & \leftarrow t(h) & u(a) & \leftarrow .
\end{align*}
\]

An unfolding tree \(T \) starting from the clause \(q(X) \leftarrow r(X), s(X) \) is as depicted in Figure 1, where (as we will also do in all figures) we have underlined the atoms which have been selected for unfolding.

Figure 2 shows the concretization tree \(T_{\gamma} \) of the tree \(T \) for the query \(\leftarrow q(b) \) and the substitution \(\theta = \{X/b\} \).

Notice that, in general, the unfolding tree \(T \) may correspond to an infinite set of concretization trees (because \(Q \) may be infinite). Thus, \(T \) itself may be an infinite tree and, in this case, the compiling control technique is applied by looking for a finite-graph representation (if any) of \(T \) itself. In our Example 22 below, this representation is obtained by identifying any two nodes \(N_1 \) and \(N_2 \) iff \(N_2 \) is a descendant of \(N_1 \) and the body of the clause in \(N_2 \) is an instance of the body of the clause in \(N_1 \) (see dashed arrows of Figure 3).

This finite-graph representation will allow us to apply the loop absorption strategy w.r.t. the clauses corresponding to each pair of identified nodes, and we will get the final program, where the given computation rule has been “compiled.”

In general, the construction of the unfolding tree \(T \) from the given program \(P_1 \), the set \(Q \) of queries, and the computation rule \(C \) can be viewed as the evaluation of an “abstract query” which represents the whole set \(Q \) by using the program \(P_1 \) and the rule \(C \). We will not give here the formal notion of abstraction which may allow us to effectively construct the tree \(T \), and we refer to Cousot and Cousot [32], where abstract interpretation techniques are presented.

Example 22 (Common subsequences). Let sequences be represented as lists of items. We assume that \(\text{subseq}(X,Y) \) holds iff \(X \) is a subsequence of \(Y \) in the sense that \(X \) can be obtained from \(Y \) by deleting some (possibly not contiguous) elements. Suppose that we want to verify whether or not a sequence \(X \) is a common subsequence of the two sequences \(Y \) and \(Z \). The following program \(\text{Csub} \) does so by first verifying that \(X \) is a subsequence of \(Y \), and then by verifying that \(X \) is a subsequence of \(Z \).

![Figure 1](image-url) The unfolding tree \(T \) for \(\langle P_1, q(X) \leftarrow r(X), s(X) \rangle \).
TRANSFORMATION OF LOGIC PROGRAMS

295

FIGURE 2. The concretization tree T_y of the unfolding tree T for $\langle P_1, \leftarrow q(b) \rangle$.

\[\leftarrow q(b) \]

\[\leftarrow r(b), s(b) \]

\[\leftarrow u(b), s(b) \]

\[\text{failure} \]

1. $csub(X, Y, Z) \leftarrow \text{subseq}(X, Y), \text{subseq}(X, Z),$
2. $\text{subseq}([\], X) \leftarrow,$
3. $\text{subseq}([A|X|],[A|Y|]) \leftarrow \text{subseq}(X, Y),$
4. $\text{subseq}([A|X|],[B|Y|]) \leftarrow \text{subseq}([A|X|], Y),$

where $csub(X, Y, Z)$ holds iff X is a subsequence which is common to both Y and Z.

Let Q be the set of queries $\{\leftarrow csub(X, s1, s2) | s1$ and $s2$ are ground lists and X is an unbound variable$\}$ and let the computation rule C be the following: if the body of the clause to be unfolded is $\text{subseq}(w, x), \text{subseq}(y, z)$ and w is a proper subterm of y, then C selects the atom $\text{subseq}(y, z)$ else C selects the leftmost atom in the body.

We first construct the infinite unfolding tree T corresponding to Csub, Q and C. A finite-graph representation of T is depicted in Figure 3, where dashed arrows denote identifications of nodes. The tree T has as its root clause 1, which is the only clause whose head unifies with $csub(X, s1, s2)$.

We leave to the reader the task of verifying that for every query $\leftarrow csub(X, s1, s2)$ in Q, the SLD-tree rooted in $\leftarrow csub(X, s1, s2)$ and constructed by using the computation rule C is a concretization tree of T.

Since the body of clause 10 is an instance of the body of clause 6, we apply the loop absorption strategy. We introduce a eureka predicate newcsub by the clause

11. $\text{newcsub}(A, X, Y, Z) \leftarrow \text{subseq}(X, Y), \text{subseq}([A|X|], Z)$

and we fold clause 6, whereby we obtain

6f. $\text{csub}([A|X|],[A|Y|], Z) \leftarrow \text{newcsub}(A, X, Y, Z).$

FIGURE 3. An unfolding tree T for $\langle \text{Csub}, \text{csub}(X, Y, Z) \leftarrow \text{subseq}(X, Y), \text{subseq}(X, Z) \rangle$ using the computation rule C.
We also have that the body of clause 7 is an instance of the body of clause 1. We fold clause 7 and we get

\[7f. \text{csub}([A | X], [B | Y], Z) \leftarrow \text{csub}([A | X], Y, Z)\].

We now have to look for the recursive definition of the predicate newcsub. Starting from clause 11, we perform the unfolding steps corresponding to the steps which lead from clause 6 to clauses 9 and 10. We get clauses

12. newcsub(A, X, Y, [A | Z]) \leftarrow \text{subseq}(X, Y), \text{subseq}(X, Z),
13. newcsub(A, X, Y, [B | Z]) \leftarrow \text{subseq}(X, Y), \text{subseq}([A | X], Z),

and by folding we get

12f. newcsub(A, X, Y, [A | Z]) \leftarrow \text{csub}(X, Y, Z),
13f. newcsub(A, X, Y, [B | Z]) \leftarrow \text{newcsub}(A, X, Y, Z).

The final program is made out of clauses 8, 6f, 7f, 12f, and 13f.

Let us now compare the SLD-tree, say \(T_1\), for Csub, a query \(\leftarrow \text{csub}(X, s_1, s_2)\) in \(Q\), and the computation rule \(C\), with the SLD-tree, say \(T_2\), for the final program, the query \(\leftarrow \text{csub}(X, s_1, s_2)\), and the left-to-right computation rule. The trees \(T_1\) and \(T_2\) are equal except that (i) if a node of \(T_1\) is labeled by a goal of the form \(\leftarrow \text{subseq}(\cdots), \text{subseq}(\cdots)\), then the corresponding node of \(T_2\) is labeled by either \(\leftarrow \text{csub}(\cdots)\) or \(\leftarrow \text{newcsub}(\cdots)\), and (ii) some paths of \(T_1\) have been replaced according to the rewritings shown in Figure 4 for any unbound variable \(X\) and ground lists \(t_1\) and \(t_2\).

4.2.2. COMPOSING PROGRAMS. A popular style of programming, which can be called *compositional*, consists of decomposing a given goal in smaller and easier subgoals, then writing pieces of programs which solve these smaller subgoals, and finally, composing the various pieces together. The compositional style of programming is often helpful for writing programs which can be understood easily and proved correct w.r.t. their specifications.

Unfortunately, this programming style often produces inefficient programs because the composition of the various subgoals does not take into account the
interactions which may occur among the evaluations of these subgoals. For instance, let us consider a logic program with a clause of the form

\[p(X) \leftarrow q(X, Y), r(Y), \]

where in order to solve the goal \(p(X) \), we are required to solve \(q(X, Y) \) and \(r(Y) \). The binding of the variable \(Y \) is not explicitly needed because it does not occur in the head of the clause. If the construction and the destruction of that binding are expensive, then our program is likely to be inefficient.

Similar problems occur when the compositional style of programming is applied for writing programs in other programming languages different from logic. In imperative languages one may construct several procedures which are then combined together by using various kinds of sequential or parallel composition operators. In functional languages, the small subgoals in which a given goal is decomposed are solved by means of individual functions which are then combined by using function application or tupling.

There are various papers in the literature which present techniques for improving the efficiency of the evaluation of programs written according to the compositional style of programming. Similarly to the case discussed in Section 4.2.1, two approaches have been followed: (1) the improvement of the evaluator by using, for instance, garbage collection, memoization, and various forms of laziness and coroutining, and (2) the transformation of the given program into a semantically equivalent program which can be more efficiently evaluated by a nonimproved evaluator.

In the imperative and functional cases, various transformation methods have been proposed, such as, for instance, finite differencing [103], composition or deforestation [52, 140], and tupling [106, 107]. (See also Feather [53] and Partsch [104] for a survey.)

For logic programs, two main methods have been considered: loop fusion [36] and unnecessary variable elimination [113]. The aim of loop fusion is to transform a program for computing a predicate, which is defined as the composition of two independent recursive predicates, into a program where the computations corresponding to these two predicates are performed by one predicate only. The benefits one may expect from loop fusion are the avoidance of multiple traversals of data structures and the avoidance of the construction of intermediate data structures.

The transformational methods for composing logic programs are closely related to methods for logic program construction [88, 128], where complex programs are developed by enhancing and composing simpler programs.

The method presented in Proietti and Pettorossi [113] may be used for deriving programs without unnecessary variables. A variable \(X \) of a clause \(C \) is said to be unnecessary if at least one of the following two conditions holds: (1) \(X \) occurs more than once in the body of \(C \) (in this case we say that \(X \) is a shared variable); (2) \(X \) does not occur in the head of \(C \) (in this case we say that \(X \) is an existential variable). Since unnecessary variables often determine multiple traversals of data structures and construction of intermediate data structures, the results of unnecessary variable elimination are often similar to those of loop fusion.

In the following example we recast loop fusion and unnecessary variable elimination in terms of the basic strategies presented in Section 4.1.
Example 23 (Minimal leaf replacement). Suppose that we are given a binary tree, say InTree, whose leaves are labeled by numbers. We want to obtain another tree, say OutTree, of the same shape with all its leaves replaced by their minimal value. This can be done by first computing the minimal leaf value, say Min, of InTree, and then again visiting InTree for replacing its leaves by Min. A program which realizes this algorithm is as follows:

1. mintree(InTree, OutTree) ← minleaves(InTree, Min), replace(Min, InTree, OutTree),
2. minleaves(tip(N), N) ← ,
3. minleaves(tree(L, R), Min) ← minleaves(L, MinL), minleaves(R, MinR), min(MinL, MinR, Min),
4. replace(M, tip(N), tip(M)) ← ,
5. replace(Min, tree(InL, InR), tree(OutL, OutR)) ← replace(Min, InL, OutL), replace(Min, InR, OutR),

where min(M1, M2, M) holds iff M is the minimum number between M1 and M2.

We would like to derive a program which traverses InTree only once. This could be done by applying the loop fusion method and obtaining a new program where the computations corresponding to minleaves and replace are performed by one predicate only. The same results can be achieved by avoiding the shared variables whose bindings are binary trees and, in particular, the variable InTree in clause 1. To this aim we may apply the tupling strategy to the predicates minleaves and replace which share the argument InTree. Since the atoms to be tupled constitute the whole body of clause 1 defining the predicate mintree, we do not need to introduce a new predicate and we only need to look for the recursive definition of the predicate mintree. After some unfolding steps, we get

6. mintree(tip(N), tip(N)) ← ,
7. mintree(tree(InL, InR), tree(OutL, OutR)) ← minleaves(InL, MinL), minleaves(InR, MinR), min(MinL, MinR, Min), replace(Min, InL, OutL), replace(Min, InR, OutR).

As suggested by the tupling strategy, we may now look for a fold of the goal "minleaves(InL, MinL), replace(Min, InL, OutL)" using clause 1. Unfortunately, no matching is possible because this goal is not an instance of "minleaves(InTree, Min), replace(Min, InTree, OutTree)." Thus, we apply the generalization strategy and we introduce the clause

8. genmintree(InTree, M1, M2, OutTree) ← minleaves(InTree, M1), replace(M2, InTree, OutTree),

whose body is the most specific generalization of the two goals to be folded, that is, "minleaves(InL, MinL), replace(Min, InL, OutL)" and the body of clause 1. By folding clause 1 we get

9. mintree(InTree, OutTree) ← genmintree(InTree, Min, Min, OutTree).

We are now left with the problem of finding the recursive definition of the predicate genmintree introduced in clause 8. This is an easy task because we can
perform the unfolding steps corresponding to those leading from clause 1 to
clauses 6 and 7, and then we can use clause 8 for folding. After these steps, we get
the final program:

1. mintree(InTree, OutTree) ← genmintree(InTree, Min, Min, OutTree),
9. genmintree(tip(N), N, M, tip(M)) ← ,
10. genmintree(tree(InL, InR), M1, M2, tree(OutL, OutR)) ←
genmintree(InL, ML1, M2, OutL),
genmintree(InR, MR1, M2, OutR), min(ML1, MR1, M1).

This program performs the desired tree transformation in one visit. Indeed, let
us consider the evaluation of a query of the form ← mintree(t, T), where t is a
ground binary tree and T is an unbound variable. During the visit of the input tree
t, the predicate genmintree both computes the minimal leaf value M1 and replaces
the leaves using the unbound variable M2. The instantiation of M2 to the minimal
leaf value is performed by the unification of the variables M1 and M2 due to
clause 1f of our final program.

Notice also that no shared variable whose binding is a binary tree occurs in the
clauses defining mintree and genmintree. Thus, we have been successful in elimi-
nating unnecessary variables.

4.2.3. CHANGING DATA REPRESENTATIONS. The choice of appropriate data struc-
tures is usually very important for the design of efficient programs. In essence, this
is the meaning of Wirth's motto "algorithms + data structures = programs" [146].

However, it is sometimes difficult to identify the data structures which allow a
very efficient execution of our algorithms before actually writing the programs.
Moreover, complex data structures may complicate correctness proofs.

Program transformation has been proposed as a methodology for providing
appropriate data structures in a dynamic way ([104], Chapter 8): first the program-
mer writes a preliminary version of the program implementing a given algorithm
using simple data structures, and then he transforms their representations while
preserving program semantics and improving efficiency.

The transformational design of data structures in the framework of logic
programming is considered in [99] where programs which manipulate trees are
derived.

Another example of transformational change of data representations is the
transformation of logic programs which use lists into equivalent programs which
use difference-lists. Difference-lists are data structures which are sometimes used
for implementing algorithms that manipulate sequences of elements. The advan-
tage of using difference-lists is that the concatenation of two sequences repre-
sented as difference-lists can often be performed in constant time, while the
concatenation of standard lists takes linear time w.r.t. the length of the first list.

A difference-list can be though of as a pair \(\langle L, R\rangle\) of lists, denoted by \(L \setminus R\),
such that there exists a third list \(X\) for which the concatenation of \(X\) and \(R\) is \(L\)
[30]. In that case we say that \(X\) is represented by the difference-list \(L \setminus R\).
Obviously, a single list can be represented by many difference-lists.

Programs that use lists are often simpler to write and understand than the
equivalent programs which make use of difference-lists. Several (semi)automatic
methods for the transformation of programs which use lists into programs which
use difference-lists have been proposed in the literature [20,69,94,115,147].
The problem of obtaining programs which use difference-lists, instead of lists can be formulated as follows. Let \(p(X,Y) \) be a predicate defined in a program \(P \), where \(Y \) is a list. We want to define the new predicate \(\text{diff}_p(X,L\setminus R) \) which holds iff \(p(X,Y) \) holds and \(Y \) is represented by the difference-list \(L\setminus R \).

Let us assume that the concatenation of lists is defined in \(P \) by means of a predicate \(\text{append}(X,Y,Z) \) which holds iff the concatenation of \(X \) and \(Y \) is \(Z \). Then the desired transformation can often be achieved by applying the T&S-definition rule and introducing the following definition for the predicate \(\text{diff}_p \) [144]:

\[
D: \text{diff}_p(X,L\setminus R) \leftarrow p(X,Y), \text{append}(Y,R,L).
\]

Then we have to look for a recursive definition of the predicate \(\text{diff}_p \), which should depend neither on \(p \) nor on \(\text{append} \).

This can be done, as clarified by the following example, by starting from clause \(D \) and performing some unfolding and goal replacement steps, based on the associativity property of \(\text{append} \), followed by folding steps using \(D \).

We can then express \(p \) in terms of \(\text{diff}_p \) by observing that in the least Herbrand model of \(P \cup \{D\} \), \(\text{diff}_p(X,Y\setminus \{\}) \) holds iff \(p(X,Y) \) holds. Thus, in our transformed program, the clauses for the predicate \(p \) can be replaced by the single clause

\[
E: \ p(X,Y) \leftarrow \text{diff}_p(X,Y\setminus \{}).
\]

Example 24 (List reversal using difference-lists). Let us consider the following program for reversing a list:

1. \(\text{reverse}([],[]) \leftarrow . \)
2. \(\text{reverse}([H|T],R) \leftarrow \text{reverse}(T,R1), \text{append}(R1,[H],R). \)
3. \(\text{append}([],L,L) \leftarrow . \)
4. \(\text{append}([H|T],L,[H|TL]) \leftarrow \text{append}(T,L,TL). \)

Given a list \(L \) of length \(n \), the answer to the query \(\leftarrow \text{reverse}(L,R) \) is obtained in \(O(n^2) \) SLD-resolution steps. Indeed, for the evaluation of \(\text{reverse}(L,R) \), clause 2 is invoked \(n-1 \) times. Thus, \(n-1 \) calls to \(\text{append} \) are generated, and the evaluation of each of those calls requires \(O(n) \) SLD-resolution steps.

The above program can be improved by using a difference-list for representing the second argument of reverse. This is motivated by the fact that, by clause 2, the list which appears as the second argument of reverse is constructed by the predicate \(\text{append} \) and, as already mentioned, concatenation of difference-lists can be much more efficient than concatenation of lists.

We start off by applying the T&S-definition rule and introducing the clause

\[
D1: \ \text{diff}_\text{rev}(X,L\setminus R) \leftarrow \text{reverse}(X,Y), \text{append}(Y,R,L).
\]

The recursive definition of \(\text{diff}_\text{rev} \) can easily be derived as follows. We unfold clause \(D1 \) w.r.t. \(\text{rcvrcsc}(X,Y) \) and we get

\[
D2: \ \text{diff}_\text{rev}([],L\setminus R) \leftarrow \text{append}([],R,L),
\]

\[
D3: \ \text{diff}_\text{rev}([H|T],L\setminus R) \leftarrow \text{reverse}(T,R1), \text{append}(R1,[H],Y), \text{append}(Y,R,L).
\]

By unfolding, clause \(D2 \) is replaced by

\[
D4: \ \text{diff}_\text{rev}([],R\setminus R) \leftarrow .
\]
By using the unfold/fold proof method described in Section 3.1, we can prove the
validity of the replacement law

\[F: \text{append}(R_1, [H], Y), \text{append}(Y, R, L) \equiv \text{append}(R_1, [H|R], L) \]

w.r.t. Sem and the current program made out of clauses D3, D4, 1, 2, 3, and 4. Thus, we apply the goal replacement rule to clause D3 and we get

\[D5: \text{diff}_\text{rev}([H|T], L|R) \leftarrow \text{reverse}(T, R_1), \text{append}(R_1, [H|R], L). \]

The above step is an application of the reversible goal replacement rule because law F is valid also w.r.t. the program we have obtained by this replacement step.

We now fold D5 using D1 and we get

\[D6: \text{diff}_\text{rev}([H|T], L|R) \leftarrow \text{diff}_\text{rev}(T, L\text{|}[H|R]), \]

which, together with clause D4, provides the desired recursive definition of \text{diff}_\text{rev}.

Notice that this last folding step is an application of T&S-folding and it is not
an instance of the reversible folding rule (R13). Its correctness is not ensured by
Theorem 8 because the transformation sequence corresponding to the above
derivation is constructed by using the goal replacement rule. This folding step, however, is correct w.r.t. Sem and as shown in Tamaki and Sato [13].

Our final program which uses difference-lists is obtained by replacing the
clauses defining reverse by the single clause (see clause E above)

\[D7: \text{reverse}(X, Y) \leftarrow \text{diff}_\text{rev}(X, Y\text{|}[]). \]

The derived program (made out of clauses D4, D6, and D7) takes \(O(n)\) SLD-resolution steps for reversing a list of length \(n\).

A crucial step in the derivation of programs which use difference-lists is the
introduction of the clause of the form

\[D: \text{diff}_p(X, L|R) \leftarrow p(X, Y), \text{append}(Y, R, L), \]

which defines the eureka predicate \text{diff}_p. This eureka predicate can also be viewed
as the invention of an accumulator variable, in the sense of the accumulation strategy [9]. Indeed, as indicated in Example 24, the third argument of \text{diff}_\text{rev}(X, L|R) can be viewed as an accumulator which at each SLD-resolution step stores the result of reversing the list visited so far.

In the following example, we show that the invention of accumulator variables
can be derived by using the basic strategies described in Section 4.1.

Example 25 (Inventing difference-lists by generalization). Let us consider again the
initial program of Example 24. We would like to derive a program for list reversal
which does not use the append predicate. We can do so by applying the tupling
strategy to clause 2 (because of the shared variable R1) and introducing a eureka
predicate \text{new}_\text{rev}:

\[N: \text{new}_\text{rev}(T, H, R) \leftarrow \text{reverse}(T, R_1), \text{append}(R_1, [H], R). \]

As suggested by the tupling strategy, we then look for a recursive definition of
\text{new}_\text{rev} by performing unfolding and goal replacement steps followed by folding
steps using \(N\). We have the additional requirement that the recursive definition of
new_rev should not contain any call to append. This requirement can be fulfilled if the final folding steps are performed w.r.t. a conjunction of the atoms of the form “\text{reverse}(\cdots), \text{append}(\cdots)" and no other calls to append occur in the folded clauses.

The unfolding tree generated by some unfolding and goal replacement steps starting from clause \(N\) are depicted in Figure 5.

Let us now consider clause \(N4\) in the unfolding tree of Figure 5. If we were able to fold it using the root clause \(N\), we would have obtained the required recursive definition of new_rev. Unfortunately, that folding step is not possible because the argument \([H1, H]\) of the call of append in clause \(N4\) is not an instance of \([H]\) in \(N\) (even if we rename the variables of the clauses).

Since \(N4\) is a descendant of \(N\), we are in a situation where we can apply the generalization strategy. By doing so we introduce a new eureka predicate gen_rev defined by the clause

\[
G1: \text{gen}_\text{rev}(T1, X, Y, R) \leftarrow \text{reverse}(T1, R2), \text{append}(R2, [X|Y], R),
\]

where the \(\text{bd}(G1)\) is the most specific generalization of \(\text{bd}(N)\) and \(\text{bd}(N1)\).

The recursive definition of \(\text{gen}_\text{rev}\) can be found by replaying the transformation steps which lead from \(N\) to \(N4\) in the unfolding tree. We get the following program:

\[
G2: \text{gen}_\text{rev}([], X, Y, [X|Y]) \leftarrow ,
G3: \text{gen}_\text{rev}([HT], X, Y, R) \leftarrow \text{gen}_\text{rev}(T, H, [X|Y], R).
\]

We can then fold clause 2 using \(G1\) and we get

\[
2f: \text{reverse}([HT], R) \leftarrow \text{gen}_\text{rev}(T, H, [], R).
\]

The final program, which is made out of clauses 1, 2f, \(G2\), and \(G3\), has a computational behavior similar to the program derived in Example 24. In particular, the third argument of \(\text{gen}_\text{rev}\) is used as an accumulator.

4.3 Overview of Other Techniques

In this section we would like to give a brief account of some more techniques which have been presented in the literature for improving the efficiency of logic programs by using transformation methods.

SCHEMATIC TRANSFORMATION. A common feature of the strategies we have described in Section 4.2 is that they are made out of sequences of transformation

\[
\text{N. new}_\text{rev}(T, H, R) \leftarrow \text{reverse}(T, R1), \text{append}(R1, [H], R)
\]

\[
\text{N1. new}_\text{rev}([], H, R) \leftarrow \text{append}([], [H], R)
\]

\[
\text{N2. new}_\text{rev}([H1|T1], H, R) \leftarrow \text{reverse}(T1, R2), \text{append}(R2, [H1], R1), \text{append}(R1, [H], R)
\]

\[
\text{N3. new}_\text{rev}([], H, [H]) \leftarrow
\]

\[
\text{N4. new}_\text{rev}([H1|T1], H, R) \leftarrow \text{reverse}(T1, R2), \text{append}(R2, [H1], R1)
\]

FIGURE 5. An unfolding tree for the reverse program.
rules which are not predefined; on the contrary, they depend on the structure of
the programs derived during the transformation process.

The schema-based approach to program transformation is complementary to the
strategy-based approach and it consists in providing a catalogue of predefined
transformations of program schemata.

A program schema is an abstraction of a program, where some terms, conjunc-
tions of literals, and clauses are replaced by metavariables. If a schema S is an
abstraction of a program P, then we say that P is an instance of S. Two schemata
S_1 and S_2 are equivalent (w.r.t. a given semantics function Sem) iff for all the
values of the metavariables the corresponding instance P_1 and P_2 are equivalent
(w.r.t. Sem). The transformation of a schema S_1 into a schema S_2 is correct (w.r.t.
Sem) iff S_1 and S_2 are equivalent (w.r.t. Sem). Usually we are interested in a
schema transformation if each instance of the derived schema is more efficient
than the corresponding instance of the initial schema.

Given an initial program P_1, the schema-based program transformation tech-
nique works as follows. We first choose a schema S_1 which is an abstraction of P_1,
then we choose a transformation of schema S_1 into schema S_2 in a given catalogue
of correct schema transformations, and finally we instantiate S_2 to get the trans-
fomed program P_2.

The problem of proving the equivalence of program schemata has been ad-
dressed within various contexts (see, for instance, Paterson and Hewitt [105],
Walker and Strong [141], and Huet and Lang [72]). Some methodologies for
developing logic programs using program schemata are proposed in Deville and
Burnay [45], Kirschenbaum et al. [79], and Fuchs and Fromherz [55] and some
examples of logic program schema transformations can be found in Brough and
Hogger [20,21] and Seki and Furukawa [126]. The schema transformations pre-
sented in these papers are useful for recursion removal (see below) and for
reducing nondeterminism in generate-and-test programs (see Section 4.2.1).

The main advantage of the schema-based approach over the strategy-based
approach is that the application of a schema transformation can be performed in
constant time; however, the choice of a suitable schema transformation in the
catalogue of the available transformations does require some extra time. On the
other hand, one of the drawbacks of the schema-based approach is the space
requirements and the fact that when the program to be transformed is not an
instance of any schema in the catalogue, then no action can be performed.

Recursion Removal. Recursion is the main control structure for declarative
(functional or logic) programs. Unfortunately, the extensive use of recursively
defined procedures may lead to inefficiency in time and space. In the case of
imperative programs, some program transformation techniques that remove recur-
sion in favor of iteration have been studied, for instance, in Paterson and Hewitt
[105] and Walker and Strong [141].

In logic programming languages, where no iterative constructs are available,
recursion removal can be understood as the derivation of tail-recursive clauses
from recursive clauses. A definite clause is said to be recursive iff its head predicate
also occurs in an atom of its body. A recursive clause is said to be tail-recursive iff it
is of the form

$$p(t) \leftarrow L, p(u),$$
where \(L \) is a conjunction of atoms. (For simplicity reasons in presenting this issue, we restrict ourselves to definite programs.) A program is said to be tail-recursive iff all its recursive clauses are tail-recursive.

The elimination of recursion in favor of iteration can be achieved in two steps. First the given program is transformed into an equivalent, tail-recursive program, and then the derived tail-recursive program is executed in an efficient, iterative way by using an ad hoc compiler optimization, called tail-recursion optimization (see Bruynooghe [22] for a detailed description and the applicability conditions in the case of Prolog implementations).

Tail-recursion optimization (also called last-call optimization) makes sense only if we assume the left-to-right computation rule, so that, for instance, when the clause \(p(t) \leftarrow L, p(u) \) is invoked, the recursive call \(p(u) \) is the last call to be evaluated.

In principle, any recursive clause can be transformed into a tail-recursive clause by simply rearranging the order of the atoms in the body. This transformation is correct w.r.t. Sem* (see rule R8). However, goal rearrangements can increase the amount of nondeterminism, thus spoiling the efficiency improvements due to tail-recursion optimization. Moreover, goal rearrangements do not preserve Prolog semantics (see Section 3.2.4), and tail-recursion optimization is usually applied to Prolog.

Thus, many researchers have elaborated more complex transformation strategies for obtaining tail-recursion without increasing the nondeterminism. We would like to mention the following three approaches.

The first approach consists in transforming almost-tail-recursive clauses into tail-recursive ones [6,35,36] by using unfold/fold rules. A clause is said to be almost-tail-recursive iff it is of the form

\[
p(t) \leftarrow L, p(u), R,
\]

where \(L \) is a conjunction of atoms and \(R \), called the tail-computation, is a conjunction of atoms whose predicates do not depend on \(p \). Usually, the tail-computation contains calls to "primitive" predicates, such as the ones for computing concatenation of lists, and arithmetic operations, such as addition and multiplication of integers. The transformation methods considered in Debray [35,36] and Azibi [6] are closely related to the ones considered by Arsac and Kodratoff [5] for functional programs. They use the generalization strategy and some replacement laws which are valid for the primitive predicates, like, for instance, associativity of list concatenation, associativity and commutativity of addition, and distributivity of multiplication over addition.

The second approach is based on schema transformation [11,20,21], where some almost-tail-recursive program schemata are shown to be equivalent to tail-recursive schemata.

The third approach consists in transforming a given program into a binary one, that is, a program whose clauses have only one atom in their bodies [134]. This transformation method is applicable to all programs and it is in the style of continuation-based transformations for functional programs [139]. The transformation works by adding to each predicate an extra argument (representing the so-called continuation), which encodes the next goal to be evaluated.
For instance, the clauses

\[
\begin{align*}
p & \leftarrow , \\
p & \leftarrow p, q
\end{align*}
\]

are transformed into

\[
\begin{align*}
p & \leftarrow p1(\text{true}) , \\
p1(G) & \leftarrow G , \\
p1(G) & \leftarrow p1((q,G)).
\end{align*}
\]

This transformation by itself does not improve efficiency. However, it allows us to use a specialized version of the Warren abstract machine \[143\] and to perform further efficiency improving transformations \[40, 101\].

Annotations and Memoing. In this paper we have mainly considered transformations which do not make use of the extralogical features of logic languages, like cuts, asserts, delay declarations, etc. In the literature, however, there are various papers which deal with transformation rules which preserve the operational semantics of full Prolog (see Section 3.2.4), and there are also some transformation strategies which work by inserting extralogical predicates into a given Prolog program to improve efficiency by taking advantage of suitable properties of the evaluator. These strategies are related to some techniques which were first introduced in the case of functional programs and are referred to as *program annotations* \[123\].

In the case of Prolog, a typical technique which produces annotated programs consists in adding a cut operator \(!\) in a point where the execution of the program can be performed in a deterministic way. For instance, the two Prolog clauses

\[
\begin{align*}
p(X) & \leftarrow C, \text{Body1,} \\
p(X) & \leftarrow \text{not}(C), \text{Body2}
\end{align*}
\]

can be transformed (if \(C\) has no side-effects) into

\[
\begin{align*}
p(X) & \leftarrow C, !, \text{Body1,} \\
p(X) & \leftarrow \text{Body2.}
\end{align*}
\]

The derived clauses are more efficient than the initial clauses and behave like an if-then-else statement.

Prolog program transformations based on the insertion of cuts are reported in Sawamura and Takeshima \[121\], Debray and Warren \[39\], and Deville \[44\].

Other techniques which introduce annotations for the evaluator are related to the automatic generation of *delay declarations* \[97, 145\], which procrastinate calls to predicates until they are suitably instantiated.

The last kind of annotation techniques which has been used for improving program efficiency is the so-called *memoization* \[96\]. Results of previous computations are stored in a table together with the program itself, and when a query has to be evaluated, that table is looked up first. This technique has been implemented in logic programming by enhancing the SLDNF-resolution compiler through tabulations \[141\] or by using the “assert” predicate for the run-time updating of the programs \[129\].
5. PARTIAL EVALUATION AND PROGRAM SPECIALIZATION

Partial evaluation (also called partial deduction in the case of logic programming) is a program transformation technique which allows us to derive a new program from an old one when part of the input data is known at compile time. This technique, which can be considered as an application of Kleene's s-m-n theorem ([80], Chapter IX), has been extensively applied in the field of imperative and functional language [10,50,59,73] and first used in logic programming by Komorowski [81] (see also Venken [139], Gallagher [60], Safra and Shapiro [117], Takeuchi [128], Takeuchi and Furukawa [131], and Ershov et al. [51] for early papers on partial deduction, with special emphasis on the problem of partially evaluating metainterpreters).

The resulting program may be more efficient than the initial program because by using the partially known input, it is possible to avoid some run-time computations which are performed at compile time.

Partial evaluation can be viewed as a particular case of program specialization [122], which is aimed at transforming a given program by exploiting the knowledge of the context where that program is used. This knowledge can be expressed as a precondition which is satisfied by the input values of the program.

Not much work has been done in the area of logic program specialization, apart from the particular case of partial deduction. Noteworthy exceptions are Bossi et al. [15] and various papers by Gallagher and others [47,64,65]. In the latter papers, the use of the abstract interpretation methodology has a crucial role. Within this methodology it is possible to represent and manipulate a possibly infinite set of input values which satisfy a given precondition, by considering, instead, an element of a finite abstract domain.

Abstract interpretation can be used before and after the application of program specialization during the so-called preprocessing phase and postprocessing phase, respectively. During the preprocessing phase, using abstract interpretations, we may collect information that depends on the control flow, such as groundness of arguments and determinancy of predicates. This information can then be exploited to direct the specialization process. Examples of this preprocessing are the binding time analysis performed by the Logimix partial evaluator of Mogensen-Bondorf [97] and the determinacy analysis performed by Mixtus [118].

During the postprocessing phase, abstract interpretations may be used to improve the program obtained by the specialization process, as indicated, for instance, in Gallagher [62], where it is shown how one can get rid of the so-called useless clauses.

The idea of partial evaluation can be presented as follows [90]. Let us consider a normal program P and an atomic query $\leftarrow A$. We construct a finite SLDNF-tree for $P \cup \{ \leftarrow A \}$ containing at least one nonroot node. For this construction we use an unfolding strategy U, which tells us the atoms which should be unfolded and when to terminate the construction of the tree.

The notion of unfolding strategy is analogous to the one of u-selection rule (see Section 4.1), but it applies to goals, instead of clauses. We then construct the set of clauses $\{ A \theta_i \leftarrow G_i | i = 1, \ldots, n \}$, called resultants, obtained by collecting from each nonfailed leaf on the SLDNF-tree, the goal $\leftarrow G_i$ and the corresponding computed answer substitution θ_i.

A partial evaluation of P w.r.t. the atom A is the program P_A obtained from P by first replacing the clauses of P which constitute the definition of the predicate
symbol, say \(p \), occurring in \(A \) by the set of resultants \(\{ A \theta_i \leftarrow G_i \} \) \(i = 1, \ldots, n \), and then keeping only the definitions of the predicates on which \(p \) depends.

The generation of \textit{finite} SLDNF-trees can be performed within general frameworks for dealing with termination of unfolding as described in Bruynooghe et al. [24] and Bol [12].

\textit{Example 26.} Let us consider the following program \(P \):

\[
\begin{align*}
p([], Y) & \leftarrow, \\
p([H|T], Y) & \leftarrow q(T, Y), \\
q(T, Y) & \leftarrow Y = b, \\
q(T, Y) & \leftarrow p(T, Y)
\end{align*}
\]

and the atom \(A = p(X, a) \). Let us use the unfolding strategy \(U \) which performs unfolding steps starting from the query \(\leftarrow p(X, a) \) until each leaf of the SLDNF-tree is either a success or a failure or it has predicate \(p \). We get the tree depicted in Figure 6.

By collecting the goals and the substitutions corresponding to the leaves of that tree, we have the set of resultants:

\[
\begin{align*}
p([], a) & \leftarrow, \\
p([H|T], a) & \leftarrow p(T, a),
\end{align*}
\]

which constitute the partial evaluation \(P_A \) of \(P \) w.r.t. \(A \). The clauses for \(q \) have been discarded because \(p \) does not depend on \(q \) in the derived program.

If we use the program \(P_A \), the evaluation of an instance of the query \(\leftarrow p(X, a) \) is more efficient than the evaluation using the initial program, because the calls to the predicate \(q \) need not be computed and some failure branches are avoided.

The notion of partial evaluation of a program w.r.t. an atom can be extended to the evaluation w.r.t. a set \(S \) of atoms by considering the set union of all resultants of the atoms in \(S \). Theorem 22 below establishes the correctness of partial evaluation. First we need the following definitions.

\textit{Definition 20.} Given a set \(R \) of normal clauses and a set \(S \) of atoms, we say that \(R \) is \(S \)-closed iff an atom in \(R \) with predicate symbol occurring in \(S \) is an instance of an atom in \(S \).

\textit{Definition 21.} Given a set \(S \) of atoms, we say that \(S \) is independent iff no two atoms in \(S \) have a common instance.

\textit{Theorem 22 (Correctness of partial evaluation [90]).} Given a normal program \(P \) and an independent set \(S \) of atoms, let us consider a partial evaluation \(P_S \) of \(P \) w.r.t. \(S \).
Then for every atomic query $\leftarrow A$ such that A is an instance of an atom in S and P_S is S-closed, we have that:

(i) $\text{Sem}_{SS}(P, \leftarrow A) = \text{Sem}_{SS}(P_S, \leftarrow A),$
(ii) $\text{Sem}_{FE}(P, \leftarrow A) = \text{Sem}_{FE}(P_S, \leftarrow A).$

This theorem can be extended to the case of computed answer substitution semantics and normal queries [90].

In Example 26, the correctness of program $P_{\mathbb{A}}$ that results from the partial evaluation process follows from Theorem 22, because for the singleton $\{p(X, a)\}$, the independence property trivially holds. The closedness property also holds because $p([1], a), p([H|T], a)$, and $p(T, a)$ are all instances of $p(X, a)$.

The closedness and independence hypotheses cannot be dropped from Theorem 22, as is shown by the following example.

Example 27. Suppose we want to partially evaluate the following program P:

\[
p(a) \leftarrow p(b),
p(b) \leftarrow
\]

w.r.t. the atom $p(a)$. We can derive the resultant $p(a) \leftarrow p(b)$. Thus, a partial evaluation of P w.r.t. $p(a)$ is the program P_a,

\[
p(a) \leftarrow p(b),
\]

obtained by replacing the definition of p in P by the resultant $p(a) \leftarrow p(b)$. P_a is not $\{p(a)\}$-closed and we have that $\text{Sem}_{SS}(P_a, \leftarrow p(a)) = \emptyset$, while $\text{Sem}_{SS}(P, \leftarrow p(a)) = \{p(a)\}$.

Now, consider the program Q,

\[
p \leftarrow q(X), \neg r(X),
q(X) \leftarrow ,
\]

and the set S of atoms $\{p, q(X), q(a)\}$ which is not independent. A partial evaluation of Q w.r.t. S is the following program Q_S:

\[
p \leftarrow q(X), \neg r(X),
q(X) \leftarrow ,
q(a) \leftarrow .
\]

Q_S is S-closed and $\text{Sem}_{SS}(Q_S, \leftarrow p) = \{p\}$, while $\text{Sem}_{SS}(Q, \leftarrow p) = \emptyset$, because the unique SLDNF-derivation for $Q \cup \{\leftarrow p\}$ flounders.

Various strategies have been proposed in the literature for computing, from a given program P and atomic query $\leftarrow A$, the set S of atoms with the independence and closedness properties required by Theorem 22 [8,24,61,95]. Some of the strategies require generalization steps and the use of abstract interpretations.

Other techniques for partial evaluation and program specialization are based on the unfold/fold rules [15,56,109,113,117]. By using those techniques, given a program P and a set of atoms $S = \{A_1, \ldots, A_m\}$, for $i = 1, \ldots, m$, we introduce a new predicate newp, defined by

\[
D_i: \text{newp}_i(X_1, \ldots, X_n) \leftarrow A_i,
\]

where X_1, \ldots, X_n are the variables occurring in A_i.
When using the definition, unfolding, and folding rules the correctness of the derives programs is ensured by the results presented in Section 3, instead of Theorem 22. In particular, as discussed in Section 3.3, for any program P and atomic query $\leftarrow \text{newp}_i(t_1,\ldots,t_n)$ we have that

$$\text{Sem}_{SS}(P \cup \{D_1,\ldots,D_m\}, \leftarrow \text{newp}_i(t_1,\ldots,t_n)) = \text{Sem}_{SS}(Q, \leftarrow \text{newp}_i(t_1,\ldots,t_n)),$$

$$\text{Sem}_{FF}(P \cup \{D_1,\ldots,D_m\}, \leftarrow \text{newp}_i(t_1,\ldots,t_n)) = \text{Sem}_{FF}(Q, \leftarrow \text{newp}_i(t_1,\ldots,t_n)),$$

where Q is any program derived from $P \cup \{D_1,\ldots,D_m\}$ by applying the transformation rules according to the restrictions of Theorems 11 and 12.

Let us now briefly compare the two approaches to partial evaluation we have mentioned above, that is, the one based on Theorem 22 and the one based on the unfold/fold rules. In the approach based on Theorem 22, the efficiency gains are obtained by constructing SLDNF-trees and extracting resultants. This process corresponds to the application of some unfolding steps, and since efficiency gains are obtained without using the folding rule, it may seem that this is an exception to the “need for folding” metastrategy of Section 4. However, in order to guarantee the correctness of the partial evaluation of a given program P w.r.t. a set of atoms S, for each element of S we are required to find an SLDNF-tree whose leaves contain instances of atoms in S (see the closedness condition), and, as the reader may easily verify, this requirement exactly corresponds to the “need for folding.”

Conversely, the second approach based on the unfold/fold rules, does not require the closedness and independence conditions, but, as we show in Example 28 below, we need to perform some final folding steps using the clauses D_1,\ldots,D_m corresponding to the atoms in S.

In this second approach, the use of the renaming technique for structure specialization [8, 63], which is often required in the first approach, is not needed, as indicated by the following example. In this example we derive by unfold/fold essentially the same program obtained by renaming in Gallagher [62]. For other issues concerning the use of folding during partial evaluation, the reader may refer to Owen [102].

We now present an example of derivation of a partial evaluation of a program by applying the unfold/fold transformation rules and the loop absorption strategy.

Example 28 (String matching [62, 118]). Let us consider the following program M for string matching:

1. match(P, T) \leftarrow match1(P, T, P, T),
2. match1([], X, Y, Z) \leftarrow,
3. match1([A|Ps], [A|Ts], P, T) \leftarrow match1(Ps, Ts, P, T),
4. match1([A|Ps], [B|Ts], P, [C|T]) $\leftarrow \neg(A = B)$, match1(P, T, P, T),

where the pattern P and the string T are represented as lists, and match(P, T) holds iff the pattern P occurs in the string T.\n
We want to partially evaluate the given program w.r.t. the atom
match([a, a, b], X). In order to do so, we first introduce the definition

5. newpl(X) ← match([a, a, b], X)

whose body is the atom w.r.t. which the partial evaluation should be performed. As usual when applying the definition rule, the name of the head predicate is a new
symbol, newpl in our case. Then we construct the unfolding tree for \(<M, \text{clause 5} > \)
using the \(u \)-selection rule which unfolds the leftmost positive atom, if any.

The \(u \)-selection rule terminates the construction of the unfolding tree when for
each clause \(C \) at a leaf of the tree at hand we have that (i) the predicates
match and match1 do not occur in \(\text{bd}(C) \), or (ii) \(C \) is a clause with finitely failed body, or
(iii) all atoms in \(\text{bd}(C) \) with predicate match or match1 can be folded using one of
the definitions introduced so far.

The \(u \)-selection rule also terminates the construction of the unfolding tree when
we can apply the loop absorption strategy, that is, an atom in the body of a clause
at a leaf \(L \) is an instance of an atom in the body of a clause occurring in an
ancestor node of \(L \).

By using this \(u \)-selection rule, we get the tree depicted in Figure 7.

In clause 8 the atom match1([a, a, b], T, [a, a, b], T) is an instance of the body of
clause 6. Thus, we can apply the loop absorption strategy and we introduce the new
definition:

9. newp2(T) ← match1([a, a, b], T, [a, a, b], T).

We fold clause 6 using clause 9 and we get

6f. newpl(X) ← newp2(X).

Now the unfold/fold derivation continues by constructing the unfolding tree for
\(<M, \text{clause 9} > \), which is depicted in Figure 8 (where we used the same \(u \)-selection
rule described above). By folding clauses 15, 13, and 11, we get the following
program:

6f. newpl(X) ← newp2(X),
16. newp2([a, a, b, T]) ← ,
15f. newp2([a, a, H|T]) ← \((b = H), \text{newp2([a, H|T])}\),
13f. newp2([a, H|T]) ← \((a = H), \text{newp2([H|T])}\),
11f. newp2([H|T]) ← \((a = H), \text{newp2(T)}\),

which is exactly the program produced by the Mixtus partial evaluator of Sahlin
(\cite{117}, p. 124).

\begin{figure}[h]
\centering
\begin{tikzpicture}
 \node (5) {5. newpl(X) ← match([a,a,b],X)};
 \node (6) [below of=5] {6. newpl(X) ← match1([a,a,b], X, [a,a,b], X)};
 \node (7) [below of=6] {7. newpl([a|T]) ← match1([a,b], T, [a,a,b], [a|T])};
 \node (8) [below of=7] {8. newpl([H|T]) ← (a=H), match1([a,a,b], T, [a,a,b], T)};
 \draw [->] (5) -- (6);
 \draw [->] (6) -- (7);
 \draw [->] (7) -- (8);
\end{tikzpicture}
\caption{An unfolding tree for \(<M, \text{newpl}(X) ← \text{match}([a, a, b], X) > \).}
\end{figure}
One of the most relevant motivations for developing the partial evaluation methodology is that it can be used for compiling programs and for deriving compilers from interpreters via the Futamura projections technique [59]. For this last application it is necessary that the partial evaluator be self-applicable, that is, able to partially evaluate itself. The interested reader may refer to Jones et al. [73] for a general overview and to Fujita and Furukawa [57], Fuller and Abramsky [58], Mogensen and Bondorf [97], and Gurr [68] for more details on the problem of self-applicability of partial evaluators in the logic languages Prolog and Gödel.

Partial evaluation has also been used in the area of deductive databases for deriving very efficient techniques for recursive query optimization. Some results in this direction can be found in Bry [26].

6. RELATED METHODOLOGIES FOR PROGRAM DEVELOPMENT

From what we have presented, it should be clear that program transformation is a methodology for program development which is very much related to various fields of theoretical computer science and software engineering. Here we want to briefly indicate some of the techniques and methods which are used in those fields which are of some relevance to the transformation methodology and its application.

Let us begin by considering some of the analysis techniques by which the programmer may investigate various properties of the programs at hand. Those properties may then be used for improving efficiency by applying transformation methods. Program properties which are often useful for program transformation concern, for instance, the flow of computation, the use of data structures, the propagation of bindings, the sharing of information among arguments, the termination for a given class of queries, the groundness and freeness of arguments, and the functionality (or determinacy) of a predicate.

Perfect knowledge about these properties is, in general, impossible to obtain, because of undecidability limitations. However, it is often the case that approximate reasoning can be carried out by using abstract interpretation techniques [37], which make use of finite interpretation domains where information can be obtained by a finite amount of computation. The interpretation domains vary accord-
ing to the property to be analyzed and the degree of information one would like to obtain [31].

A general framework where program transformation strategies are supported by abstract interpretation techniques is defined in Boulanger and Bruynooghe [18]. Among the many transformation techniques which strongly depend on program analysis techniques, we would like to mention (i) compiling control (see Section 4.2.1), where the information about the flow of computation is used for generating the unfolding tree, (ii) the specialization method of Gallagher and Bruynooghe [64], which is based on a technique for approximating the set of all possible calls generated during the evaluation of a given class of queries, (iii) various techniques which insert cuts on the basis of a determinacy information (see Section 4.3), and (iv) various techniques implemented in the Spes system [2] in which mode analysis is used to mechanize several transformation strategies.

Very much related to these methodologies for the analysis of programs are the methods for the proof of properties of programs. They have been used for program verification and, in particular, for making sure that a given set of clauses satisfies a given specification or a given first order formula is true in a chosen semantic domain. These proofs may be used to drive the application of suitable instances of the goal replacement rule.

Many proof techniques can be found in the literature, in particular, in the field of theorem proving and computer aided deduction. Among the techniques which have been used for logic programs and can be adapted to program transformation, we may recall those in Drabent and Maluszynski [48], Bossi and Cocco [13], and Deransart [41].

The field of program transformation partially overlaps with that of program synthesis. Indeed, if we consider the given initial program as a program specification, then the final program derived by transformation can be considered as an implementation of such specification. However, it is usually understood that program synthesis differs from program transformation because the specification is a somewhat implicit description of the program to be derived. Such implicit description often does not allow us to get the desired program by simple manipulations, like the one obtainable by standard transformation rules.

Moreover, it is often the case that the specification language differs from the executable language in which the final program should be written. This language barrier can be overcome by using transformation rules, but we think these techniques go beyond the area of traditional program transformation and more precisely belong to the field of logic program synthesis for which we refer to Deville and Lau [46].

Finally, we would like to mention that the transformation and specialization techniques considered in this paper have been partially extended to concurrent logic programs [137] and constraint logic programs [70].

7. CONCLUSIONS

We have looked at the theoretical foundations of the so-called "rules + strategies" approach to logic program transformation. We established a unified framework to consider and compare the various rules which have been proposed in the literature. That framework is parametric with respect to the semantics which is preserved
during transformation. We have presented various sets of transformation rules and
the corresponding correctness results w.r.t. the following semantics: the least
Herbrand model, the computed answer substitutions, the finite failure, and the
pure Prolog semantics. We have also considered the case of normal programs and,
using the proposed framework, we presented the rules which preserve finite failure,
success set, and Clark's completion semantics. Our presentation could have been
extended by considering various other semantics for normal programs available in
the literature, but space limitations prevented us from doing so.

We have also presented a unified framework in which it is possible to describe
some of the most significant methods which have been proposed for the transfor-
mation of logic programs. We have singled out a few strategies, such as the tupling,
the loop absorption, and the generalization strategies, and we have shown that the
basic techniques related to compiling control, program composition, change of data
representation, partial evaluation, and program specialization can be viewed as
suitable applications of those strategies.

An area of further investigation is the characterization of the power of the
transformation rules and strategies, both in the "completeness" sense, that is, their
capability to derive equivalent programs, and in the "complexity" sense, that is,
their capability to derive programs which are more efficient than those given. No
conclusive results are available in these directions.

A line of research that can be pursued in the future is the integration of tools,
like abstract interpretations, proof of properties, and program synthesis, within the
"rules + strategies" approach to program transformation.

The impact of the transformational methodology in the practice of logic pro-
gram development is still small. However, it is recognized that the automation of
transformation techniques and their use in a system for software development is of
crucial importance. There is a growing interest in the mechanization of transforma-
tion strategies, the production of interactive tools for implementing program
transformers, and the development of optimizing compilers which make use of the
transformation techniques.

The importance of the transformation methodology will substantially increase by
extending its theory and applications to the case of complex logic languages which
include features like constraints, parallelism, concurrency, and object-orientation.

We express our warm gratitude to M. Bruynooghe, J. P. Gallagher, M. Leuschel, M. J. Maher, T. Sato,
H. Seki, and the anonymous referees for their helpful suggestions and comments. Many thanks also to
O. Aioni and M. Gaspari for their careful reading of a previous draft of the paper.

REFERENCES

1. Aerts, K., and Van Besien, D., Autolap: A System for Transforming Logic Programs,

Program Transformation, in: Proceedings of the International Conference on Logic
Programming and Automated Reasoning (LPAR '92), Lecture Notes in Computer Science

113. Proietti, M., and Pettorossi, A., Unfolding-Definition-Folding, in This Order, for Avoiding Unnecessary Variables in Logic Programs, in: J. Maluszynski and M. Wirsing

