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1. Introduction, definitions and preliminaries

Let X, denote the class of functions of the form:

f@ =24 a, 2" (peN:={1,23,..1)), (1.1)
n=1

which are analytic in the punctured open unit disk
U':={z:z€eC and 0<|z|] <1} =T\ {0}
For simplicity, we write
2= 2X.
Letf, g € X, where f(z) is given by (1.1) and g(2) is defined by
0o
g)=z"+ Z bp_pz"7P.

n=1
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Then the Hadamard product (or convolution) f * g is defined by
o0
9@ =27+ anpbyp2"? = (g 5f)(2).
n=1

For parameters
aeC (G=1,...,q9 and B eC\Z, (Z, ={0,—-1,-2,..};j=1,...,9),
the generalized hypergeometric function
gFs(or, .o oq; Bi, oo vy Bss 2)

is defined by the following infinite series:

. Loy = (@)n - (@ i
oo g o 2 =) G g

(@<s+1;q,s €Ny =NU{0};z € U),
where (1), is the Pochhammer symbol defined by

I (n=0)
(M = {A(k-ﬁ-l)"'()\'f‘n_]) (n e N).

Corresponding to the function
hp(etr, ..., aq; By .., Bs; 2),
defined by
hp(eer, ... 0q; Br, ooy By 2) =2 P g Fs(or, ... ag; Ba, - - -, Bss 2),

we consider a linear operator (which is essentially a meromorphically p-modified version of the familiar Dziok-Srivastava
linear operator [1,2])

Hp(otq, ...,ag B, ..., Bs) : X — X
defined by the following Hadamard product:

Hp(aq, ..., 0q; B1, oo os Bf (@) = hplag, ... 0g; By ..o, Bs; 2) xf(2)

(q<s+1;q,s € Ng; z € U%). (1.2)
Iff € X, is given by (1.1), then we have

_ = (a@)n--- (aq)n z"P s
Hy(@1, ., g; Brs oy BIF(2) = 2 ”;M Gy — (MeNzel").
In order to make the notation simple, we write
HY* (o) == Hp(a1, ..., ag; Biy ..o, Bs) (@ =s+1;q,s € Np).
It is easily verified from the definition (1.2) that
z (HI*(@1)f) (@) = aiHI* (o1 + Df @) — (a1 + DHI*(@)f @) (f € 5p). (13)

In recent years, Liu and Srivastava [3], Raina and Srivastava [4], and Aouf [5] obtained many interesting results involving
the linear operator Hy* (1). In particular, for

q=2, s=1, o] = a, Bi=c, and oy =1,
we obtain the following linear operator:
Ly(a, 0O)f (2) = Hy(ay, 1; B1)f (2) (z € UY),

which was introduced and investigated earlier by Liu and Srivastava [6], and was further studied in a subsequent
investigation by Srivastava et al. [7]. It should also be remarked that the linear operator Hg’s(ozl) is a generalization of other
linear operators considered in many earlier investigations (see, for example, [8-16]).

Let & denote the class of functions of the form:

o0
p@) =14 pad”,

n=1



Z.-G. Wang et al. /| Computers and Mathematics with Applications 57 (2009) 571-586 573

which are analytic and convex in U and satisfy the following condition:
RpE) >0 (zeU).
For two functions f and g, analytic in U, we say that the function f (z) is subordinate to g(z) in U, and write
f@)<g@ (e,
if there exists a Schwarz function w(z), which is analytic in U with
w(0)=0 and |w)| <1 (ze€U)
such that
f@)=g@) (el
Indeed it is known that
f@) <g@) (zel)=f(0)=¢g(0) and f(U) Cg(0).
Furthermore, if the function g is univalent in U, then we have the following equivalence:
f@) <g@) (zel) < f(0) =g and f(U) Cg).
Throughout this paper, we assume that

2i

p. keN, q,s € Ny, &k = €Xp (T) )
k

1 k=1 )
e 2) =2 Y&l (A" @f) () =277+ (€ 5, (14)
j=0
‘1 -_
g @i2) = 3 [HE @ @ + H' @)f @] =27+ (¢ € 5. (15)
and
‘l -
Wi 2) = 5 [Hi@)f @ — HE @) (D)) =27+ (e 5. (16)

Clearly, for k = 1, we have
fir(ar; 2) = HP (a)f @).

Making use of the integral operator Hg's(ou) and the above-mentioned principle of subordination between analytic
functions, we now introduce and investigate the following subclasses of the class X}, of meromorphically p-valent functions.

Definition 1. A function f € X, is said to be in the class }’p‘?f(a; a1; ¢) if it satisfies the following subordination condition:

2[4+ ) (P @nf) @ + o (H @+ Df) @)
- 7 7 <¢@) (zel), (1.7)
p[A+a)fi @ 2) + af i (@1 + 1: 2)]

for some o (o > 0), where ¢ € P, :’ks(m; z) is defined by (1.4) and
Tilar +1;2) #0 (zeU).
For simplicity, we write
?,f}f(o; ag; @) = fﬁp?ks(OK]; ?).

Remark 1. In a recent paper, Zou and Wu [17] introduced and investigated a subclass MS; («) of X' consisting of functions
which are meromorphically a-starlike with respect to symmetric points and satisfy the following inequality:

A+ @ +a(f'@)]
(14 )T 2) + az(Tf )

) >0 (ze€l),
where

1
If (2) = EU(Z) —f(=2)].
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It is easy to see by setting

14z
1—z

pzls k:25 q:25 S:15 a]:azzﬂ]:]s and ¢(Z):

that the class ?‘p‘f;f (a; aq; ¢) reduces to the known function class MS; («). More recently, Srivastava et al. [7] studied a
subclass X, «(a, c; ¢) of X, consisting of functions which are satisfy the following subordination condition:

2(Lp(@,0f) @

phok(a, c; z)
where ¢ € £ and

<¢(2) (zel,

1k )
fora,¢;2) = o > & (£p(a.of ) () #0 (z € U).

j=0
It is also easy to see by setting
q=2, s=1, oy =a, B1=c, a; =1, and a=0

that the class j“qu,f (o; or1; @) reduces to the aforementioned known function class X, «(a, ¢; ¢).

Definition 2. A function f € X, is said to be in the class gg’s(a; a1; ¢) if it satisfies the following subordination condition:

2[4 o) (@) @ +a (B @ + 1f) @)
- q.s q.5 <¢2) (z€U;az0),
p[(1+ g (er:2) + ag’ (a1 + 1: 2)]

where ¢ € 2, g7’ (ay; 2) is defined by (1.5), and
g (n+1;2) #0 (z e U").
For simplicity, we write

505 a3 @) =: G5 (s @).

Definition 3. A function f € X, is said to be in the class Jf’g’s(a; aq; @) if it satisfies the following subordination condition:

z [(1 + o) (H (@)f) @) + o (HF (a1 + Df)’ (z)]
- s s <¢2) (z€U;az0),
p [+ @)h}*(a1; 2) + ahy®(ar + 1; 2)]

where ¢ € 2, h}*(a1; 2) is defined by (1.6), and
hi*(er +1;2) #0  (z € UY).
For simplicity, we write

JegvS(o; ar; P) = Jfg‘s(m; P).

Remark 2. In a recent paper, Zou and Wu [18] introduced and investigated a subclass MS;.(cr) of X consisting of functions
which are meromorphically «a-starlike with respect to symmetric conjugate points and satisfy the following inequality:

o[ A0+ Of@) +e (@ @)]
(1 +)Tef 2) + az(Tef (2))

) >0 (zel,
where
1 rvar—
L@ =5 (1@ -[-2).

It is easy to see by setting

1+z
1—-z

p:15 q:2’ S:15 a1:a2:,31:1, and ¢(Z):

that the class Jfg’s (a; aq; ¢) reduces to the above-mentioned function class MS}. (c).



Z.-G. Wang et al. /| Computers and Mathematics with Applications 57 (2009) 571-586 575

Definition 4. A function f € X, is said to be in the class &Z’f{ (a5 a3 @) if it satisfies the following subordination condition:

2[4+ @) (P @f) @ +a (H @+ 1f) @)
- g5 3 <¢@) (zel)
p [+ a)ff(a1: 2) + afli (@ + 1: 2)|
(¢ 20:fe (s ar: ),

where ¢ € P, 7} (@1; 2) is defined as in (1.4), and

fg:i(al +1;2) #0 (z e U).
For simplicity, we write

S0 @15 @) = Fyi(@n; @),

Remark 3. If we set
q=2, s=1, o =a, B1=rc, =1, and =0

in the class 3;;"’,:()»; ay; ¢), then it reduces to the class X, k(a, ¢; ¢), which was also introduced and studied recently by
Srivastava et al. [7].

Definition 5. A function f € X, is said to be in the class &3 (a; a1; ¢) if it satisfies the following subordination condition:

2[4+ o) (HP*@)f) @ +a (@ + Df) @]
— s s <¢(z) (ze€l)
p[(1+a)g* (ar; 2) + agp*(or + 15 2)]
(¢20:g€ 9 ar:¢),
where ¢ € 2, gp*(a1; 2) is defined as in (1.5), and
g1 +1;2) #0 (z € UY).
For simplicity, we write

&3 (0; ar; ) = &) (a5 @).

Definition 6. A function f € X, is said to be in the class @g"(a; aq; @) if it satisfies the following subordination condition:

2[4+ @) (P @f) @ +a (HE @+ 1f) @)
- s s <¢@) (el
p[(1+ )by’ (a1; 2) + abp’ (o1 + 1: 2)]

(¢ 20:b € H (a:ar: 9))

where ¢ € 2, bj*(a1; 2) is defined as in (1.6), and
hg*s(al +1,2) 20 (zeU").
For simplicity, we write
9,°(0; a3 @) =: 977 (13 B).
In order to establish our main results, we shall also make use of each of the following lemmas.

Lemma 1 (See [19,20]). Let B8, y € C. Suppose also that ¢(z) is convex and univalent in U with
¢0) =1 and R(PBP@)+y)>0 (zeU).
If p(2) is analytic in U with p(0) = 1, then the following subordination:
zp'(2)

e

<¢@) (zel)

implies that

p@) < 9(z) (z€l).
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Lemma 2 (See [21]). Let B, y € C. Suppose that ¢(z) is convex and univalent in U with
¢0)=1 and R(Be()+y) >0 (ze€l).

Also let
a2) <@ (zel).

If p(z) € & and satisfies the following subordination:

o)+ -9 _ 40 cew,
Ba@) + vy

then
p@) <9p(2) (z€l).

Lemma 3. Let f € ¥, (; a1; ¢). Then

z [(1 +) (5 @f) @ +a (ff @ + 1f) (z)]

— U). 1.8
Aol i@t to] 0@ @€V (18)
Furthermore, if ¢ € P with
m(i +2a1+p—p¢(z)> >0 (a>0zel),
o
then
q.s . !
—Zi(f” ((1:2) <¢@) (ze).
ppk( lvz)
Proof. Making use of (1.4), we have
A k—
flils g2) = Z (HE* (1)) (e 72)
n=0
1 £ +
=& ; P (HE (@)f) (e H2)
=g Tila;z) (€(0,1,....k—1}) (1.9)
and
(i) = ZeJ“’*” HY (a1)f) (£h2). (1.10)

Replacing oy by o1 + 1in (1.9) and (1.10), respectively, we can get

[+ 1 62) = g fli +1:2) (G €{0,1,....k—1}) (1.11)
and
(o + 152)) Zs'@“) (H?* (1 + Df) (£h2). (1.12)

From (1.9) to (1.12), we can get
2[4+ (@) @ +a (e +1f) @)
P+ a)ff (@1 2) + aff (@1 + 15 2)
L ko1 02 [(1+a) (HE* (an)f) (£l2) + e (HI* (@1 + 1f) (elz ]
2 p[(1+ ) (@1 2) +af (01 + 1;2)]
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1 ez [+ o) (HP @f) € + e (H @ + 1) (2]
— - Z (z € U).
KIS At affie do) +affien + 1:62)]

pk

Moreover, since f € F°(«; aq; ¢), it follows that

pk

ez 1+ ) (H* @) (el) + o (HY @ + 1) (el2) |

, S . <@
p[(1+ ffi s ) + affi(en + 1: 2)]

(zeU;jefo,1,..., k—1}).

577

(1.13)

(1.14)

By noting that ¢(z) is convex and univalent in U, we conclude from (1.13) and (1.14) that the assertion (1.8) of Lemma 3

holds true.
Next, making use of the relationships (1.3) and (1.4), we have

k=1 .
2 (f (@3 2) + (1 + P13 2) = al—: 3P (HE (@1 + 1f) (€2
=0

= ff@i+1:2) (€.
Letf € F,'¢ (@; a1; ¢) and suppose that
z (fl (s 7))’
pfy (s 2)
Then v (z) is analytic in U and 1/ (0) = 1. It follows from (1.15) and (1.16) that

V() =— (z € U).

q'S(Oél + 1 Z)
Pk( 1,2)

From (1.16) and (1.17), we can get

ay+p—pyY ) =o

z(flr+1:2) = —O% (¢’ @) + o1 +p =Py @IV (@) [l (@132) (z € U).
It now follows from (1.8) and (1.16)-(1.18) that

2[+0) (i @nf) @ + o (i + 1) @]
p[(1+a)ffi(@r:2) + affi (a1 + 1: 2)]

P+ )Y @f (@132) + 5p (2¢'@) + o1 +p = pY DWW @) £ (@13 2)
B p(1+ e)ff (@i 2) + plen +p — py @15 (e 2)

1+ @ + & (20 @ + o1 +p — PP @I @)
B I+ + Zlor +p—pY @)

L2y’ @+ ((1+ ) + Zlon +p = PV @1) ¥2)

(14 0) + Flor +p — py(2)]

zy'(z)
L4201 +p—pY(2)

=@+

< ¢(z) (ze€l).

Thus, since
m(ﬁjtzm +p—p¢(z)) >0 (a>0:ze),
o

by means of (1.19) and Lemma 1, we find that

q,s . 4
V() = M <@ (Zel).
ppk( 15 )

This completes the proof of Lemma 3. O

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)
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By similarly applying the method of proof of Lemma 3, we can easily get the following results for the classes 9,2’5 (s ap; @)
and #;"* (a; ay; ¢).

Lemmad4. Let f € §}°(ov; a1 ¢). Then

[0+ o) (g @f) @ +a (g + 1f) @]
p[(1+a)gy (ar;2) + agy (a1 + 15 2)]

Furthermore, if ¢ € P with

< ¢) (ze€l).

9%(E + 2011 +p—p¢>(2)) >0 (¢>0,z€0),
o
then

4S5\
_M < ¢@) (zel).
pgy”(a1; 2)

Lemma 5. Let f € #;"(o; a1 ¢). Then

2[4+ 0) (@) @ + e (b + 1f) @]
 p[A+oh (@ 2) + ahi (e + 152)]

Furthermore, if ¢ € P with

< ¢(z) (ze€l).

o
9%(—1+2a1+p—p¢(z)> >0 (a¢>0;z€l),
o

then
z (hy (@13 2))

—W < ¢(Z) (Z € [U)

In the present paper, we aim at proving such results as inclusion relationships, integral representations and convolution
properties for each of the following function classes which we have introduced here:

Flas o @), 9F%@iar¢) and  HI(as ar; )
as well as

Fiang),  6M(@ang) and 5% o).

The results presented in this paper would provide extensions of those given in a number of earlier works. Several other new
results are also obtained as corollaries and consequences of our main results.

2. A set of inclusion relationships

We first provide some inclusion relationships for the following function classes:
Foi o d),  §pf(@ionsg) and 3 (as o @)
as well as

Sl @), 63w an¢) and 97 (a; ar; @),

each of which was defined in the preceding section.
Theorem 1. Let ¢ € P with

Eﬁ(% + 224 —I—p—pd)(z)) >0 (x>0;zel).
Then

Fle @ ars ¢) C F (s ¢).
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Proof. Letf € F, («; &1; ¢) and suppose that
z (H (a1 2)f) (@)
)y (@13 2)

Then q(z) is analytic in U and q(0) = 1. It follows from (1.3) and (2.1) that

qz) = — (z € V).

A @i 2) = =2 + 10 @) + “ P ef @)

Differentiating both sides of (2.2) with respect to z and using (2.1), we have

95 : ! q,s ’
20 @)+ (a1 +p+ w dy =42 (Hy goil +.1)f) @
p.k (0[1, Z) p.k (Ol],Z)

It now follows from (1.7), (1.16), (1.17), (2.1) and (2.3) that
z [(1 +a) (HE(@)f) @) + e (HE (o1 + 1)f) (z)]
p[A+afi (@ 2) + of) (@1 + 1: 2)]
P+ a)q@)fy (i 2) + 3p [26'@) + [er + p = pY (D19@) ] (13 2)
- P+ @ff@i2) + ey +p— pY @V (@ 2)]
(0 + )@+ % [24@) + a1 +p - pY (9)]4@)]
(I+a) + lon +p—pY @]

£20@) + [(1+0) + Loy +p - py )1 4@)
(I+a) + o +p —py(2)]

2q'(z)
24201+ p—pY(2)

=q(2) + < ¢ (zel).

Moreover, since
o
9{<—1+2a1 +p—p¢(z)) >0 (¢>0;z€l),
o
by Lemma 3, we have

z(flen2)
phi(ar; 2)
Thus, by (2.4) and Lemma 2, we find that
q(z) < ¢(z) (z€U),

\S

that is, that f € #,'¢ (@1; ¢). This implies that

V() = <¢@) (zel).

Fok (@ a15 ¢) C FL (s ¢).

The proof of Theorem 1 is evidently completed. O

(2.1)

(2.4)

In view of Lemmas 4 and 5, and by similarly applying the method of proof of Theorem 1, we can easily get the following

inclusion relationships.
Corollary 1. Let ¢ € P with

m(%+2a1 +p—p¢(z)) >0 (a>0:zeD).
Then

Gy’ (s 013 9) C Gp7 (o3 ¢).
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Corollary 2. Let ¢ € P with
o
9‘%(*1 + 201 —I—p—pd)(z)) >0 (¢>0;z€0).
o

Then
Hy (o o15 ) C H (o @)

Theorem 2. Let ¢ € P with

ER(% + 2aq —I—p—pd)(z)) >0 (¢ >0;z€0).
Then

Sl a1; @) C Fpilans @).

Proof. Letf € 3} (@; a1; ¢) and suppose that

z(HY (@ 2f) @
piyi(ar; 2)

Then p(z) is analytic in U and p(0) = 1. It follows from (1.3) and (2.5) that

p(z) =

(z € U). (2.5)

s o o1 +p
P@ipler; 2) = —ng;}'S(a] + Df 2) + 1TH;}“axl)f(z). (26)
Differentiating both sides of (2.6) with respect to z and using (2.5), we have

z (s z))’) oy = 2 (H @t ) @

fi (o 2) p fr(a; 2)

zp'(2) + (al +p+

Furthermore, we suppose that
z(fpr(@i:2)
Py (ai; 2)

The remainder of the proof of Theorem 2 is similar to that of Theorem 1. We, therefore, choose to omit the analogous details
involved. We thus find that

p(@) < ¢(2) (z€D),
which implies that f € Sg:i(al; ¢). The proof of Theorem 2 is thus completed. 0O

w(z) = (z € V).

In view of Lemmas 4 and 5, and by similarly applying the method of proof of Theorem 2, we can easily get the following
inclusion relationships.

Corollary 3. Let ¢ € P with

m(% + 2w +p—p¢>(z)) >0 (a>0:ze).
Then

& (s ar; @) C & (s @).

Corollary 4. Let ¢ € P with
m(ﬂ + 204 +p—p¢(z)) >0 (x>0;ze€0).
o
Then

9y (o an: @) C 977 (n: B).

In view of Lemmas 3 to 5, and by similarly applying the methods of proofs of Theorems 1 and 2 obtained by Srivastava
et al. [7], we can also easily get the following inclusion relationships.
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Corollary 5. Let ¢ € P with
R(a1+p—pp@) >0 (ze€).
Then
Flelar+1;9) C F5(ar; d).

Corollary 6. Let ¢ € P with
R(a1+p—pp2) >0 (zel).
Then
Gy (a1 + 1) C 57 (o1; §).

Corollary 7. Let ¢ € P with

R(a1 +p—pp2) >0 (zel).
Then

Hy (o + 15.¢) C H (s ¢).

Corollary 8. Let ¢ € £ with
R(1+p—pp) >0 (ze€l).
Then
Sorler +159) C Fyhlas @),

Corollary 9. Let ¢ € £ with

R +p—pp2) >0 (zel).
Then

&y (1 + 1, ¢) C &) (ar; @).

Corollary 10. Let ¢ € P with
R(a1+p—pp2) >0 (zel).
Then
9y (e + 15.9) C 957 (s ¢).

3. Integral representations

In this section, we prove a number of integral representations associated with the function classes
Foe@; @), §2°(ar; ) and  F*(ar; d).

Theorem 3. Let f € 7,7 (a1; ¢). Then

k=1 2 ¢ (w(elg)) — 1
pe(@2) =27 exp —‘—;Z/ (';)ds :
0

=0
where !} (ar; 2) is defined by (1.4) and w(2) is analytic in U with
w(0)=0 and |w(z)| <1 (ze€U).
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Proof. Suppose thatf € F, qk (15 @). We observe that the condition (1.7) (with « = 0) can be written as follows:
_z(H @) @

D : ks (13 2)
where w(z) is analytic in U with

w(0) =0 and |w(@)| <1 (zeU).

=¢ (@) (zel), (3.2)

Replacing z by eJ,;z (G=0,1,...,k— 1) in the Eq. (3.2), we find that (3.2) also holds true, that is, that
e (HE @) (6
pr,'k (oq; 5’;<Z)
We note that

[ 82 = e i (@:2) (z € ).

—¢ (a)(af;z)) ze). (3.3)

Thus, by lettingj =0, 1, ..., k — 1in (3.3), successively, and summing the resulting equations, we get
z(fR ) 1% :
— =Y 0 (o)) Gew. (3.4)
pfp,k(oﬁ» Z) S =0
We next find from (3.4) that
as. . k=1
(f (s z)) pr? ( Z>)
—_— — (z €U, (3.5)
. ,( *(o; 2) z k JX:

which, upon integration, yields

k=1 w(€&)
log (P (a1: 2)) = EZ / udé. (3.6)

=

‘B

The assertion (3.1) of Theorem 3 can now easily be derived from (3.6). O

Theorem 4. Let f € 7,7 (a1; ¢). Then

kZ/ (w(glg))ds de, (3.7)

HE*(a)f (2) = —p/ P (0(2)) - exp
0

W\'U

where w(z) is analytic in U with
w(0) =0 and |w@)| <1 (ze€).
Proof. Suppose that f € £}’ (a1; ¢). Then, in light of (3.1) and (3.2), we have

/ (o 2)
(B @nf) @) = =2 )

k=1 2 ¢ (w(eE)) — 1
—pz P p(w(2)) - exp —%FZO fo (st : (3.8)

which, upon integration, leads us easily to the assertion (3.7) of Theorem 4. O

In view of Lemma 3, we can get another integral representation for the function class %, VS ,( S(otr; ).
Theorem 5. Let f € %, (ct1; ¢). Then

/( ¢ (@1(§) — 1
0

HIS(@)f @) = —p / £ (@2(0)) - exp (—p ds) d. (3.9)
0
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where the functions wj(z) (j = 1, 2) are analytic in U with

wj(0) =0 and |wj@@)| <1 (zeU;j=1,2).

Proof. Suppose that f € .7’ (ar1; ¢). We then find from (1.8) (with o = 0) that

p.k

q.s . /
- M = ¢ (@) el), (3.10)
pfyi (@13 2)

where w1 (z) is analytic in U and w;(0) = 0. Thus, by similarly applying the method of proof of Theorem 3, we find that

qu,f(on; Z) =z exp <—p /OZ @) —1 (wl(?) — ldé) ) (3.11)

It now follows from (3.2) and (3.11) that

q,s .
Plp (a152)

(HE*(@1)f) (2) ¢ (02(2))
—pz 1) (@2(2)) - exp (—p | Z %d‘g) , (3.12)
0

where the functions w;(z) (j = 1, 2) are analytic in U with

wj(0) =0 and |wj@2)| <1 (zeU;j=1,2).

Upon integrating both sides of (3.12), we readily arrive at the assertion (3.9) of Theorem 5. O

Remark 4. The result of Theorem 5 also holds true for the classes §;°(cr1; ) and H;* (a1; ¢). Here we choose to omit the
details involved.

In view of Lemmas 4 and 5, and by similarly applying the methods of proofs of Theorems 3 and 4, we can easily get the
following results for the function classes §;°(a1; ¢) and ;" (o1; @).

Corollary 11. Let f € §;° (a1 ¢). Then

p /Z ¢ (&) + ¢ (o)) —Zd
- £].
2 Jo 3

g (r;2) =277 - exp (

where g} (o1; z) is defined by (1.5) and w(z) is analytic in U with
w0)=0 and |w(z)| <1 (z€U).

Corollary 12. Let f € §}°(a1; ¢). Then

¢ =)) —
p/ ¢ (&) + ¢ (0(®)) ng) .
0

HI(@)f @) = —p / £ () - exp (—2 :
0

where w(z) is analytic in U with

w(0) =0 and |w@)| <1 (ze€U).

Corollary 13. Let f € #,;*(a1; ¢). Then

e ) = 27 - exp (_g [ECCEITEIE 2d5> |
0

where h})* (a1; 2) is defined by (1.6) and w(z) is analytic in U with

w(0)=0 and |w(z)| <1 (z€U).
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Corollary 14. Let f € #,;°(ay; ¢). Then

¢ _ _5)) —
¢ (@(&)) — ¢ (w(—8)) 2d$>d§,

HIS(@)f @) = —p / (P (@(0) - exp /
“2 ), :

where w(z) is analytic in U with

w0) =0 and |w@)] <1 (ze€l).

4. Convolution properties

In this section, we derive several convolution properties for the function classes

Fh@in¢), 90 ¢) and HI(ar; @),

Theorem 6. Let f € %, (ct1; ¢). Then

fl@) = —pf (PP (w(0)) - exp
0

W\'B

¥ 1/{ —¢ (w(g§)> dg | d | = (i m(ﬂ])”“'(&)”z”—l’) (4.1)

j=0 Y0 =0 (@)n--- (aq)n

where w(z) is analytic in U with

w0)=0 and |w@)| <1 (ze).

Proof. From (1.2) and (3.7), we know that

. ¢ ¢ (w(EE)) —
—p/ {77 (@) - exp —?Z/ Mdé d
0 Cj:O 0 %‘

=[z7PqFan, ..., a0 Br..... B)] *xf(2). (4.2)

Thus, from (4.2), we can easily get the assertion (4.1) of Theorem 6. O

Theorem 7. Let f € %, (ct1; ¢). Then
L $ o (w1(8) —1 ) ] o 1(B)n - (B)n
—|_ p-1 . — T de)d —_— P 43
£ [ p/o £ @(0) exp( p/o e )ac |« (TR (43)
where the functions wj(z) (j = 1, 2) are analytic in U with

wj(0) =0 and |wj@)| <1 (zeU;j=1,2).

Proof. From (1.2) and (3.9), we know that

z 4 _ 1
- P/ P (@2(2)) - exp <—P/ Plen®) —1
0 0

dg) d¢ = [z7P g F(on, ..., aq; B, ..., B)] xf(2). (4.4)
Thus, from (4.4), we easily arrive at (4.3). O

Remark 5. In view of Remark 4, we know that the convolution property of Theorem 7 also holds true for the function classes
a1 (a1; ¢) and H,* (a1; ¢). Here we choose to omit the details involved.

Theorem 8. Let

feX, and ¢
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Thenf € F,); (a1; ¢) if and only if

o @)@y n—p
—pz7P n—p
T |:< ” +n_Zl Bon-- B 1l )
N (@)n - (ag)n 1 k=
O on i 0 45
+ pp(e”) < + Z Bn -+ (B)n n‘ ) ( Zzp(-l —8“2)>i| # (4.5)

(zeU*;0§9<2n).

Proof. Suppose that f € 1 («1; ¢). Since the following subordination condition:

p.k
q,s !
D D, k (Oh’ Z)
is equivalent to
_z(H@)f) @
)% D, k( 15 Z)

it is easy to see that the condition (4.6) can be written as follows:

#¢E”) (zeU;0<6 <2m), (4.6)

z (Hg-S(al)f)’ @) +pfi(@1: 2)p(e”) #0 (2 € U 0<6 < 27). (4.7)
On the other hand, we find from (1.2) that

2 (Y @) (@) = (—pzp +Y G L an> “f ). (48)
n=1 n s/n .

Moreover, from the definition of f; 7 (a1; 2), we have
1 k—1
(o z) = HI? 7) %
i = HP @@« | 3 s _EUZ)
00 k—1
_ (o)~ -- (aq)n 1 — 1 1
=zP4+)Y ———= —Z"P x> —— | xf(2). (4.9)
( ; Bin-+ (B 1! k Z:O 2(1—e2)

Upon substituting from (4.8) and (4.9) into (4.7), we easily arrive at the convolution property (4.5) asserted by Theorem8. O

In view of Corollaries 12 and 14, and by similarly applying the method of proof of Theorem 6, we can easily get the
following results for the function classes §5°(a1; ¢) and ;" (o1; ¢).

Corollary 15. Let f € §5°(a1; ¢). Then

¢ >
f(z)=[ f (P () - exp ( ! f "’(“’@)”‘;(‘”@) s) d;}(Z T P z"-P>,
0

=0 (@)n--- (aq)n

where w(z) is analytic in U with

w0) =0 and |w(z)| <1 (ze€U).

Corollary 16. Let f € #;"(a1; ¢). Then

¢ — —£)) -2
f(z):{ / 1 ((c) - exp ( 2/ $ ((©)) ¢$(w( £) dg> d§:|
0
- n!(ﬂl)n"'(ﬂs)n n—p
* (2_;: @ (g )
where w(z) is analytic in U with
w(0)=0 and |w(z)] <1 (z€U).
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By similarly applying the method of proof of Theorem 8, we can easily get the following convolution properties for the
function classes §;°(a1; ¢) and H;* (a1; ).

Corollary 17. Let
feX, and e
Thenf € §5°(a1; ¢) if and only if

A (@)n (@ n—p pop(e?)
I+ _pZ”Z(ﬂi)w--(ﬂZ)n A R

19
p¢( )(h xf)Z)#0 (zeU*0<0 < 2m),

where h(z) is given by

_ (@)n--- (aq)n 1
h(z) =z7? — Z"7P, 4.10
(Z) ‘ * Z (lgl)n (,Bs n n! z ( )
Corollary 18. Let
feX, and ¢
Thenf € #;*(a1; ¢) if and only if

— = (al)n Tt (aq)n n—p ,._ p¢(ei9) p¢(e"9)77
— p n—p _ — %,
pz +Z_1 Bn-- (Bs)n 1! z + 3 h 5 (h+f)(—=2) #0 (z€U"0<6 < 2m),

where h(z) is given by (4.10).
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