Note

Ears of triangulations and Catalan numbers∗

F. Hurtado, M. Noy∗

Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Pau Gargallo 5,
08028 Barcelona, Spain

Received 3 September 1993; revised 1 March 1994

Abstract

It is known that a convex polygon of n sides admits Cn−2 triangulations, where Cn is
a Catalan number. We classify these triangulations (considered as outerplanar graphs) accord-
ing to their dual trees, and prove the following formula for the number of triangulations of
a convex n-gon whose dual tree has exactly k leaves:

\[\frac{n^{2n-2k}}{k^2} \frac{C_{n-2}}{2k-4} \cdot \]

The proof is bijective and provides a recursive formula for the Catalan numbers similar to, but
different from, a classical identity of Touchard. An averaging argument allows one to deduce
Touchard’s formula from ours.

Keywords: Catalan numbers; Triangulation; Polygon; Outerplanar graph; Dual graph

1. Introduction

There are many combinatorial objects counted by the Catalan numbers. Some of
them have been widely studied, specially binary trees and lattice paths (see [10,
Chapter 3]), while others have received less attention. One of the latter is the case for
the triangulations of a convex polygon, a problem that goes back to Euler [2, 9]. If we
let \(t_n \) be the number of ways of triangulating a convex polygon of n sides by means of
nonintersecting diagonals, it can be shown that the following recurrence holds:

\[t_n = t_2 t_{n-2} + \cdots + t_k t_{n-k} + \cdots + t_2 t_{n-2}. \]

This, together with the convention \(t_2 = 1 \), gives

\[t_n = C_{n-2} = \frac{1}{n-1} \binom{2n-4}{n-2}. \]

∗ Partially supported by CICYT, Grant TIC-147.
∗ Corresponding author. E-mail: noy@ma2.upc.es.
where \(C_n \) denotes a Catalan number. For example, a quadrangle admits \(C_2 = 2 \) triangulations and a hexagon admits as many as \(C_4 = 14 \).

If the polygon is not convex, an exact formula can be obtained for families of polygons with a high degree of 'regularity' [3]. Also, in [4] tight bounds for the number of triangulations of a general simple polygon were obtained as functions of the number of concave vertices.

A triangulation of a polygon, whether convex or not, is a planar graph (actually, a maximal outerplanar graph) and one can consider the dual graph associated with it. We will always exclude the unbounded face; in this way the dual graph becomes a tree, since without using additional internal points no cycle can be produced (see Fig. 1). The leaves of the tree are called ears of the triangulation, or of the polygon; there are at least two of them, and this fact provides the basis for several inductive proofs in the combinatorial geometry of polygons [6].

We consider the problem of counting how many triangulations has a convex polygon with a prescribed number of ears. The answer is contained in Theorem 1 and is found by considering the homeomorphy classes of the dual trees, whose number turns out to be again a Catalan number. As a consequence we obtain in Theorem 2 a recursive formula for the Catalan numbers, very similar in appearance to a classical identity of Touchard. By computing the mean number of ears of an arbitrary triangulation we deduce Touchard's identity from ours.

2. Counting triangulations by the ears

The dual tree \(U \) of a triangulation has the property that the degree of any vertex is at most three, since a triangle is adjacent to at most three other triangles. When rooted, it becomes a binary tree in which every vertex has either 0, 1 or 2 sons and there is a distinction between a right and a left son. Leaves correspond to ears and vertices of degree 3 to triangles neither of whose sides is an edge of the polygon. We will be concerned with the homeomorphy class of \(U \), that is, the tree \(U' \) obtained by removing all the degree 2 vertices. Then \(U' \) is a full binary tree having the same number \(k \) of leaves as \(U \) and \(k - 1 \) internal vertices (excluding the root). We recall for future reference that the number of full binary trees with \(n \) internal vertices is equal to \(C_n \) [10].

Theorem 1. The number of triangulations of a convex polygon with \(n \) sides having exactly \(k \) ears is equal to

\[
e(n,k) = \frac{n}{k} 2^{n-2k} \binom{n-4}{2k-4} C_{k-2}, \quad 2 \leq k \leq \lfloor n/2 \rfloor.
\]

Proof. Select a vertex \(v \) and consider triangulations having \(v \) as an ear. We now consider the dual tree \(U \) rooted at the ear \(v \) together with its reduction \(U' \) (see Fig. 1). In this way \(U \) and \(U' \) become planted binary trees.
If k is the number of ears then, as explained above, U' has $k - 1$ leaves and $k - 2$ internal vertices, and its order is $2k - 2$, so that there are C_{k-2} possible choices for U'. Choose a fixed U' and consider the possible dual trees U giving rise to the selected U'. The order of U will be $n - 2$, the number of triangles in any triangulation of a polygon with n sides. Hence we must insert $n - 2 - (2k - 2) = n - 2k$ vertices of degree 2 and they can be inserted anywhere in the edges of U'. In order to show how the terms 2^{n-2k} and $\binom{n-4}{k-2}$ enter into the formula we make the following two observations.

(a) There are 2^m ways in which m vertices of degree 2 can be chosen, any of which can have either a left son or a right son. Geometrically it corresponds to the selection of m diagonals and each of them can be selected in two ways, according to whether they produce a left or right son in the dual tree. (Fig. 2 shows one such selection). Moreover, the selection of chains in different edges of U' are independent and we are left with a total of 2^{n-2k} choices.

(b) We can linearly order the tree U (say by preorder) and then select the position of the $2k - 2$ vertices not of degree 2 among a total of $n - 2$ positions. But rooting the tree at the ear v fixes two of these vertices, namely the root and its unique son, hence we must select $2k - 4$ objects among $n - 4$.

Finally we have n choices for v and each triangulation has been counted k times, once for every ear, hence the factor \(\frac{n}{k} \). The theorem follows. \(\square\)

3. Formulas for the Catalan numbers

Theorem 2. The Catalan numbers C_n satisfy the following recurrence:

$$C_{n+1} = (n + 3) \sum_{k=0}^{\left\lfloor (n-1)/2 \right\rfloor} \frac{1}{k + 2} 2^{n-2k-1} \binom{n-1}{2k} C_k.$$ \hspace{1cm} (2)
Proof. This is a consequence of Theorem 1. In fact, summing $e(n + 3, s)$ for s one gets

$$C_{n+1} = t_{n+3} = \sum_{s=2}^{[n+3/2]} e(n + 3, s) = \sum_{s=2}^{[n+3/2]} \frac{n + 3}{s} 2^{n+3-2s} \binom{n-1}{2s-4} C_{s-2},$$

and the change of index $k = s - 2$ gives the desired result. \(\square\)

This identity has a quite interesting feature: the Catalan number on the left hand counts triangulations while those in the right hand count binary trees. Also, the identity is very similar to Touchard's formula (see [11]), which is

$$C_{n+1} = \sum_{k=0}^{[n/2]} 2^{n-2k} \binom{n}{2k} C_k. \quad (3)$$

Formulas (2) and (3) provide different decompositions of C_n as shown in the following table.

<table>
<thead>
<tr>
<th>n</th>
<th>C_n</th>
<th>Ears</th>
<th>Touchard</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>4 + 1</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>12 + 2</td>
<td>8 + 6</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>28 + 14</td>
<td>16 + 24 + 2</td>
</tr>
<tr>
<td>6</td>
<td>132</td>
<td>64 + 64 + 4</td>
<td>32 + 80 + 20</td>
</tr>
<tr>
<td>7</td>
<td>429</td>
<td>144 + 240 + 45</td>
<td>64 + 240 + 120 + 5</td>
</tr>
</tbody>
</table>

We finally proceed to deduce Touchard’s formula from (2). To this end we prove the following lemma.
Lemma. The mean number of ears in a triangulation of a convex n-gon is equal to \(nt_{n-1}/t_n = nC_{n-3}/C_{n-2} \).

Proof. Let us count in two ways the pairs \((T, v)\), where \(T \) is a triangulation of the convex \(n \)-gon and \(v \) is an ear of \(T \). If we denote by \(e(T) \) the number of ears of \(T \) then

\[
\sum_T e(T) = nt_{n-1},
\]

since there are \(t_{n-1} \) triangulations having a fixed ear. The result follows dividing by \(t_n \), the size of the population. \(\Box \)

Now the mean number of ears is obviously equal to

\[
\frac{1}{t_n} \sum_k e(n, k)k.
\]

Combining this with the lemma and Theorem 1 we arrive at

\[
t_{n-1} = \sum_k \left(\frac{n - 4}{2k - 4} \right) 2^{n-2k} C_{k-2}
\]

and changing variables as before one gets (3). Different combinatorial proofs of (3) can be found in [7] using noncrossing partitions or in [1] using lattice paths.

Remark. A consequence of the previous lemma is that, since the Catalan numbers satisfy the first order recurrence \((n - 1)t_n = 2(2n - 5)t_{n-1} \), the mean number of ears of a triangulation is

\[
\frac{n(n - 1)}{2(2n - 5)}.
\]

In other words, about one fourth of the vertices are ears. A routine calculation shows that the distribution \(e(n, k) \) for fixed \(n \) is unimodal with a peak at \(\lfloor \frac{n^2 - n + 4}{4n - 2} \rfloor \). Thus, asymptotically, the mean and the mode of the distribution are both at \(n/4 \).

Acknowledgments

We would like to thank an anonymous referee for calling our attention to references [5] and [8], where results similar to ours can be found casted in terms of certain tridiagonal integer matrices.

References