Oscillation Theorems for n th-Order Functional Differential Equations

G. G. Hamedani and Gary S. Krenz
Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin 53233

Submitted by E. Stanley Lee
Received January 26, 1988

Abstract

Two oscillation theorems for even-order equations $x^{(n)}(t)+p(t) f(x(t), x(h(t)))=0$ are established. These results are the extensions of those reported by Hamedani for the second-order equation $x^{\prime \prime}(t)+p(t) f(x(t), x(h(t)))=0$. © 1989 Academic Press, Inc.

Introduction

The purpose of this paper is to study the oscillatory behavior of the differential equation

$$
\begin{equation*}
x^{(n)}(t)+p(t) f(x(t), x(h(t)))=0, \quad t \geqslant t_{0} \tag{1}
\end{equation*}
$$

where n is even, $n \geqslant 2$. We shall restrict our attention to those solutions of (1) which exist on some ray [T, ∞), where $T \geqslant t_{0}$, and which are nontrivial in any neighborhood of infinity. Such a solution is called oscillatory if it has arbitrarily large zeros. Otherwise, the solution is said to be nonoscillatory. An equation is said to be oscillatory if all of its solutions are oscillatory.

For the sake of completeness, we shall first state a few conditions and recall various oscillation results concerning the equation

$$
\begin{equation*}
x^{\prime \prime}(t)+p(t) f(x(t), x(h(t)))=0 \tag{2}
\end{equation*}
$$

Conditions:
$\left(\mathrm{C}_{1}\right) \quad p \in C\left[t_{0}, \infty\right), p(t) \geqslant 0, t \geqslant t_{0} ;$
$\left(\mathrm{C}_{2}\right) \quad h \in C\left[t_{0}, \infty\right), g(t) \leqslant h(t)$, and $0<k \leqslant g^{\prime}(t) \leqslant 1$;
$\left(\mathrm{C}_{3}\right) \quad f \in C(R \times R), R=(-\infty, \infty)$, and $f(x, y)$ has the sign of x and y when they have the same sign;
$\left(\mathrm{C}_{4}\right)$ there exists $M>0$ such that, uniformly for $x \geqslant M$,

$$
\liminf _{|y| \rightarrow \infty}\left|\frac{f(x, y)}{y}\right| \geqslant c>0
$$

$\left(\mathrm{C}_{5}\right) \quad \lim \sup _{t \rightarrow \infty} t \int_{t}^{\infty} p(s) d s=\infty$;
(C6) $\lim \sup _{t \rightarrow \infty} t^{1-m}(1 / m!) \int_{t_{0}}^{t}(t-u)^{m-1} p(u) d u=\infty$, for some $m>2$;
(C $\left.\mathrm{C}_{7}\right) \quad h \in C\left[t_{0}, \infty\right), h(t) \leqslant t$, for $t \geqslant t_{0}, \lim _{t \rightarrow \infty} h(t)=\infty$;
$\left(\mathrm{C}_{8}\right) \quad \lim \sup _{t \rightarrow \infty} t \int_{t}^{\infty} p(s)(h(s) / s) d s>c^{-1}$, where c is as in $\left(\mathrm{C}_{4}\right)$;
$\left(\mathrm{C}_{9}\right) \lim \sup _{t \rightarrow \infty} t \int_{\gamma(t)}^{\infty} p(s) d s>c^{-1}$, where c is as in $\left(\mathrm{C}_{4}\right)$ and $\gamma(t)=\sup \left\{s \geqslant t_{0} \mid h(s) \leqslant t\right\}$ for $t \geqslant t_{0} ;$
$\left(\mathrm{C}_{10}\right) \quad \int_{t_{0}}^{\infty} p(s)(h(s) / s) d s<\infty ;$
$\left(\mathrm{C}_{11}\right)$ there exists a positive integer K such that $\alpha_{0}(t)=\delta c \int_{t}^{\infty} p(s)$ $(h(s) / s) d s$ and $\alpha_{m}(t)=\int_{t}^{\infty} \alpha_{m-1}^{2}(s) d s+\alpha_{0}(t)$ are defined for $m=1,2, \ldots, K-1$, but $\lim _{t \rightarrow \infty} \int_{r_{0}}^{t} \alpha_{K-1}^{2}(s) d s=\infty$, where c is as in $\left(\mathrm{C}_{4}\right)$ and δ is a constant, $0<\delta<1$;
$\left(\mathrm{C}_{12}\right) \quad \alpha_{m}(t)$ is defined for $m=1,2, \ldots$, such that $\lim _{m \rightarrow \infty} \alpha_{m}(t)=\infty$ pointwise for all large t.

Remarks 1. (i) Travis [6] proved that under conditions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{5}\right)$ all solutions of (2) are oscillatory.
(ii) In [8], Yeh showed that under conditions $\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{4}\right)$ and $\left(\mathrm{C}_{6}\right)$ all solutions of (2) are oscillatory, extending the result in (i).
(iii) Recently, Hamedani [4] reported that under conditions $\left(\mathrm{C}_{1}\right)$, $\left(\mathrm{C}_{3}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{7}\right)$, and either $\left(\mathrm{C}_{8}\right)$ or $\left(\mathrm{C}_{9}\right)$ all solutions of (2) are oscillatory.
(iv) Hamedani [4] also showed that under $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{3}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{7}\right)$, $\left(\mathrm{C}_{10}\right)$, and either $\left(\mathrm{C}_{11}\right)$ or $\left(\mathrm{C}_{12}\right)$ all solutions of (2) are oscillatory, extending the results of Yan [7] for the linear case $x^{\prime \prime}(t)+p(t) x(h(t))=0$.

In a recent paper, Grace and Lalli [2] extended Yeh's result (ii) to Eq. (1) without further restrictions on the functions involved. In this paper we shall extend the results given in (iii) and (iv) to Eq. (1) without further restrictions on the functions involved.

Results

The following lemmas are basic for our discussions. The first two are taken from [3], the third from [1], and the fourth from [5]. They are given here for the sake of completeness.

Lemma 1. Let x be a positive, n times differentiable function on $\left[t_{0}, \infty\right)$. If $x^{(n)}(t)$ is of constant sign and not identically zero in any interval $\left[t_{1}, \infty\right)$, then there exists $t_{x} \geqslant t_{0}$ and an integer $j, 0 \leqslant j \leqslant n$ with $n+j$ even for $x^{(n)} \geqslant 0$ or $n+j$ odd for $x^{(n)} \leqslant 0$, such that $j>0$ implies $x^{(k)}(t)>0$ for $t \geqslant t_{x}$ $(k=0,1, \ldots, j-1)$ and $j \leqslant n-1$ implies that $(-1)^{i+k} x^{(k)}(t)>0$ for $t \geqslant t_{x}$ $(k=j, j+1, \ldots, n-1)$.

Lemma 2. If the function x is as in Lemma 1 and $x^{(n-1)}(t) x^{(n)}(t) \leqslant 0$ for $t \geqslant t_{x}$, then for every $\hat{\lambda}, 0<\lambda<1$, there exists an $M_{1}>0$ such that

$$
x(\lambda t) \geqslant M_{1} t^{n-1}\left|x^{(n-1)}(t)\right|
$$

for all large t. In addition, if $\lim _{t \rightarrow \infty} x(t) \neq 0$, then there exists $M_{2}>0$ such that

$$
x(t) \geqslant M_{2} t^{n-1}\left|x^{(n-1)}(t)\right|
$$

for all large t.

Lemma 3. Let $\left(\mathrm{C}_{7}\right)$ hold and let $x(t) \in C^{2}[T, \infty), x(t)>0, x^{\prime}(t)>0$, and $x^{\prime \prime}(t)<0$ for $t \geqslant T$. Then for each $k_{1} \in(0,1)$ there exists a $T_{k_{1}} \geqslant T$ such that

$$
x(h(t)) \geqslant k_{1} \frac{h(t)}{t} x(t), \quad t \geqslant T_{k_{1}} .
$$

Lemma 4. Let $x(t) \in C^{2}[T, \infty)$ with $x(t)>0, x^{\prime}(t)>0$, and $x^{\prime \prime}(t) \leqslant 0$ for $t \geqslant T$. Then for each $k_{2} \in(0,1)$ there is a $T_{k_{2}} \geqslant T$ such that

$$
x(t) \geqslant k_{2} t x^{\prime}(t), \quad \text { for } \quad t \geqslant T_{k_{2}}
$$

Observe that in Lemma 4, the choice of $k_{2} \in(0,1)$ is arbitrary, while in Lemma 2, for $n=2$, the M_{2} "exists."

Theorem 1. Under the conditions stated in (iii), Eq.(1) is oscillatory.
Proof. W.l.o.g., in $\left(\mathrm{C}_{4}\right)$, we may assume $\lim \inf _{|y| \rightarrow \infty}|f(x, y) / y|>c$ uniformly in $x \geqslant M$. In view of $\left(\mathrm{C}_{8}\right)$ or $\left(\mathrm{C}_{9}\right)$ it suffices to consider only unbounded solutions.

Let $x(t)$ be a positive unbounded nonoscillatory solution of Eq. (1) on an interval $\left[t_{1}, \infty\right), t_{1} \geqslant t_{0}$. Let $t_{2} \geqslant t_{1}$ be chosen so that

$$
h(t) \geqslant t_{1} \quad \text { for all } \quad t \geqslant t_{2} .
$$

Then $x(h(t))>0$ for all $t \geqslant t_{2}$. From (1) and (C C_{3}), it follows that $x^{(n)}(t)<0$ for $t \geqslant t_{2}$. By Lemma 1 , there exist an odd integer $j, 1 \leqslant j \leqslant n-1$,
and a $t_{3} \geqslant t_{2}$ such that $x^{(k)}(t)>0$ for $t \geqslant t_{3} \quad(k=0,1, \ldots, j-1)$ and $(-1)^{j+k} x^{(k)}(t)>0$ for $t \geqslant t_{3}(k=j, j+1, \ldots, n-1)$.

Integrating Eq. (1) from t to $\infty\left(t \geqslant t_{3}\right)$, we have

$$
\begin{equation*}
x^{(n-1)}(t) \geqslant \int_{t}^{\infty} p(s) f(x(s), x(h(s))) d s . \tag{3}
\end{equation*}
$$

Now suppose that $\left(\mathrm{C}_{8}\right)$ holds. If $j=1$, then $x^{\prime \prime}(t)<0$ for $t \geqslant t_{3}$. By Lemma 3, for each $k_{1} \in(0,1)$, there exists $t_{4} \geqslant t_{3}$ such that

$$
\begin{equation*}
x(h(t)) \geqslant k_{1} \frac{h(t)}{t} x(t), \quad \text { for } \quad t \geqslant t_{4} . \tag{4}
\end{equation*}
$$

Let $k_{2} \in(0,1)$. If $n=2$, then by Lemma 4 , there exists a $t_{5} \geqslant t_{4}$ such that

$$
x(t) \geqslant k_{2} t x^{(n-1)}(t), \quad \text { for } \quad t \geqslant t_{5}
$$

On the other hand, if $n>2$, by applying the second half of Lemma 2 and observing that $M_{2} t^{n-1} \geqslant k_{2} t$ for all t sufficiently large, we again obtain

$$
x(t) \geqslant k_{2} t x^{(n-1)}(t), \quad \text { for } \quad t \geqslant t_{5}
$$

for some $t_{5} \geqslant t_{4}$. Combining this with (3) and (4) yields

$$
\begin{aligned}
x(t) & \geqslant k_{2} t \int_{t}^{\infty} p(s) f(x(s), x(h(s))) d s \\
& \geqslant k_{1} k_{2} t \int_{t}^{\infty} p(s) \frac{h(s)}{s}\left(\frac{f(x(s), x(h(s)))}{x(h(s))}\right) x(s) d s \\
& \geqslant k_{1} k_{2} x(t) \inf _{s \geqslant r}\left(\frac{f(x(s), x(h(s)))}{x(h(s))}\right) t \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s
\end{aligned}
$$

for $t \geqslant t_{5}$. From this inequality we see that

$$
\begin{equation*}
c^{-1} \geqslant k_{1} k_{2} \limsup _{t \rightarrow \infty} t \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s \tag{5}
\end{equation*}
$$

From (5) and (C_{8}), it follows that

$$
\begin{equation*}
c^{-1}<a=\underset{t \rightarrow \infty}{\lim \sup } t \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s<\infty . \tag{6}
\end{equation*}
$$

From (5) and (6), observing that $k_{1}, k_{2} \in(0,1)$ are arbitrary, we obtain the contradiction $c^{-1}<a \leqslant c^{-1}$.

If $3 \leqslant j<n-1$, then by Lemma 2 , there exists t_{6} such that

$$
\begin{equation*}
x^{(j-1)}(t) \geqslant M_{2} t^{n-j} x^{(n-1)}(t) \quad \text { for } \quad t \geqslant t_{6} . \tag{7}
\end{equation*}
$$

By Taylor's formula and Lemma 1, we have

$$
\begin{align*}
x(t)= & x\left(T_{0}\right)+x^{\prime}\left(T_{0}\right)\left(t-T_{0}\right)+\cdots+\frac{x^{(j-1)}\left(T_{0}\right)}{(j-1)!}\left(t-T_{0}\right)^{j-1} \\
& +\frac{x^{(j)}\left(t_{1}^{*}\right)}{j!}\left(t-T_{0}\right)^{j} \\
\geqslant & \frac{x^{(j-1)}\left(T_{0}\right)}{(j-1)!}\left(t-T_{0}\right)^{j-1} \tag{8}
\end{align*}
$$

and

$$
\begin{align*}
x^{(j-1)}(t) & =x^{(j-1)}\left(T_{0}\right)+x^{(j)}\left(T_{0}\right)\left(t-T_{0}\right)+\frac{x^{(j+1)}\left(t_{2}^{*}\right)}{2!}\left(t-T_{0}\right)^{2} \\
& \leqslant x^{(j-1)}\left(T_{0}\right)+x^{(j)}\left(T_{0}\right)\left(t-T_{0}\right) \tag{9}
\end{align*}
$$

where $T_{0}=\max \left\{t_{6}, t_{x}\right\} \leqslant t_{1}^{*}, t_{2}^{*} \leqslant t$.
From (8) and (9), it follows that there exist $M_{3}>0$ and $t_{7} \geqslant T_{0}$ such that

$$
\begin{equation*}
x(t) \geqslant M_{3} t^{j-2} x^{(j-1)}(t), \quad \text { for } \quad t \geqslant t_{7} . \tag{10}
\end{equation*}
$$

Since $x^{(j-1)}(t)>0, \quad x^{(j)}(t)>0$, and $x^{(j+1)}(t)<0, \quad$ by Lemma 3, for $k_{1} \in(0,1)$, there exists $t_{8} \geqslant t_{7}$ such that

$$
\begin{equation*}
x^{(j-1)}(h(t)) \geqslant k_{1} \frac{h(t)}{t} x^{(j-1)}(t) \quad \text { for } \quad t \geqslant t_{8} \tag{11}
\end{equation*}
$$

Now from (3), (7), (11), and (C_{3}), for $t \geqslant t_{8}$, we have

$$
\begin{align*}
x^{(j-1)}(t) & \geqslant M_{2} t^{n-j} \int_{t}^{\infty} p(s) f(x(s), x(h(s))) d s \\
& \geqslant k_{1} M_{2} t^{n-j} \int_{t}^{\infty} p(s) \frac{h(s)}{s}\left(\frac{f(x(s), x(h(s)))}{x^{(j-1)}(h(s))}\right) x^{(j-1)}(s) d s \\
& \geqslant k_{1} M_{2} t^{n-j} x^{(j-1)}(t) \int_{t}^{\infty} p(s) \frac{h(s)}{s}\left(\frac{f(x(s), x(h(s)))}{x^{(j-1)}(h(s))}\right) d s \tag{12}
\end{align*}
$$

Using (10) in (12) we obtain

$$
\begin{equation*}
1 \geqslant k_{1} M_{2} M_{3} t^{n-j} \int_{t}^{\infty} p(s) \frac{h^{j-1}(s)}{s}\left(\frac{f(x(s), x(h(s)))}{x(h(s))}\right) d s, \quad \text { for } \quad t \geqslant t_{9} \tag{13}
\end{equation*}
$$

where $t_{9}=\max \left\{t_{7}, t_{8}\right\}$. Let $t_{10} \geqslant t_{9}$ be such that $h(t) \geqslant 1$ and for a fixed, but arbitrary $k_{2} \in(0,1), M_{2} M_{3} t^{n-j} \geqslant k_{2} t$, for all $t \geqslant t_{10}$. Then from (13) it follows that

$$
\begin{equation*}
c^{-1} \geqslant k_{1} k_{2} \limsup _{t \rightarrow \infty} t \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s \tag{14}
\end{equation*}
$$

which is identical to (5). The rest now follows as in the case of $j=1$.
If $j=n-1 \geqslant 3$, then by Lemma 4 , for $k_{2} \in(0,1)$, there exists t_{11} such that

$$
\begin{equation*}
x^{(n-2)}(t) \geqslant k_{2} t x^{(n-1)}(t), \quad \text { for } \quad t \geqslant t_{11} . \tag{15}
\end{equation*}
$$

From (3) and (15), we have

$$
\begin{equation*}
x^{(n-2)}(t) \geqslant k_{2} t \int_{t}^{\infty} p(s)\left(\frac{f(x(s), x(h(s)))}{x^{(n-2)}(h(s))}\right) x^{(n-2)}(h(s)) d s, \quad \text { for } \quad t \geqslant t_{11} \tag{16}
\end{equation*}
$$

By Lemma 3, for $k_{1} \in(0,1)$, there exists $t_{12} \geqslant t_{11}$ such that

$$
\begin{equation*}
x^{(n-2)}(h(t)) \geqslant k_{1} \frac{h(t)}{t} x^{(n-2)}(t), \quad \text { for } \quad t \geqslant t_{12} \tag{17}
\end{equation*}
$$

The argument used in obtaining (10) holds in this setting, hence, for some $M_{3}>0$ and $h(t) \geqslant t_{7}$

$$
x(h(t)) \geqslant M_{3} h^{n-3}(t) x^{(n-2)}(h(t)) .
$$

By $\left(\mathrm{C}_{7}\right)$, w.l.o.g., we may assume $M_{3} h^{n-3}(t) \geqslant 1$ for all $t \geqslant t_{13}=$ $\max \left\{t_{7}, t_{12}\right\}$. Thus,

$$
\begin{equation*}
x(h(t)) \geqslant x^{(n-2)}(h(t)), \quad \text { for } \quad t \geqslant t_{13} . \tag{18}
\end{equation*}
$$

Combining (16), (17), and (18) yields

$$
\begin{aligned}
x^{(n-2)}(t) & \geqslant k_{1} k_{2} t \int_{t}^{\infty} p(s) \frac{h(s)}{s} x^{(n-2)}(s) \frac{f(x(s), x(h(s)))}{x(h(s))} d s \\
& \geqslant x^{(n-2)}(t) \inf _{s \geqslant t} \frac{f(x(s), x(h(s)))}{x(h(s))} k_{1} k_{2} t \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s \quad \text { for } t \geqslant t_{13} .
\end{aligned}
$$

From this we obtain (5) and the argument proceeds as in the case of $j=1$.
The case where $\left(\mathrm{C}_{9}\right)$ holds instead of $\left(\mathrm{C}_{8}\right)$ follows in a similar manner.
To give another set of sufficient conditions for the oscillation of (1), we need the following lemma.

Lemma 5. Assume $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{3}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{7}\right)$, and $\left(\mathrm{C}_{10}\right)$ hold. Let $x(t)$ be a nonoscillatory solution of (1) and its corresponding j (as in Lemma 1) be given. Then,

$$
w(t)- \begin{cases}x^{(n-1)}(t) / x^{(j-1)}(\lambda t) & \text { if } 1 \leqslant j<n-1, \text { and } \lambda \in(0,1) \\ x^{(n-1)}(t) / x^{(n-2)}(t) & \text { if } j=n-1,\end{cases}
$$

satisfies

$$
\begin{equation*}
\int_{t}^{\infty} w^{2}(s) d s<\infty \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t}^{\infty} w^{2}(s) d s+k d \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s \leqslant w(t) \tag{20}
\end{equation*}
$$

for t sufficiently large, where $d>0$ may depend on $x(t), 0<k<1$ is an arbitrary constant which is independent of $x(t)$.

Proof. We will give the proof for the case $1<j<n-1$ (the proof for $j=1$ or $j=n-1$ is similar). W.l.o.g., we may assume $x(t)>0$ for all t sufficiently large. In view of the argument given in the proof of Theorem 1 , for any $k_{1}, 0<k_{1}<1$, there exists $t_{8} \geqslant t_{0}$ such that

$$
\begin{align*}
0 & =x^{(n)}(t)+p(t) f(x(t), x(h(t))) \\
& =x^{(n)}(t)+p(t) x(h(t))\left(\frac{f(x(t), x(h(t)))}{x(h(t))}\right) \\
& \geqslant x^{(n)}(t)+k_{1} M_{3} p(t) \frac{h^{j-1}(t)}{t} x^{(j-1)}(t)\left(\frac{f(x(t), x(h(t)))}{x(h(t))}\right), \quad \text { for } t \geqslant t_{8} \tag{21}
\end{align*}
$$

in which we have used (10) and (11), respectively.
Let $w(t)=x^{(n-1)}(t) / x^{(j-1)}(\lambda t)$. From (21), we have

$$
w^{\prime}(t)+\lambda \frac{x^{(n-1)}(t) x^{(j)}(\lambda t)}{\left(x^{(j-1)}(\lambda t)\right)^{2}}+k_{1} M_{3} p(t) \frac{h^{j-1}(t)}{t}\left(\frac{f(x(t), x(h(t)))}{x(h(t))}\right) \leqslant 0
$$

and, applying Lemma 2 to $x^{(j)}(\lambda t)$, we obtain

$$
w^{\prime}(t)+\lambda M_{4} t^{n-j-1} w^{2}(t)+k_{1} M_{3} p(t) \frac{h^{j-1}(t)}{t}\left(\frac{f(x(t), x(h(t)))}{x(h(t))}\right) \leqslant 0 .
$$

Now, from $\left(\mathrm{C}_{7}\right)$ and $x^{\prime}(t)>0, \lim _{t \rightarrow \infty} x(h(t))$ tends monotonically upward to either a positive finite value or $+\infty$. In either case, there exists a $d>0$ such that

$$
\frac{f(x(t), x(h(t)))}{x(h(t))} \geqslant d
$$

for all t sufficiently large. Moreover, for t sufficiently large, $\lambda M_{4} t^{n-j-1} \geqslant 1$ and $M_{3} h^{j-2}(t) \geqslant 1$. Thus for all t sufficiently large,

$$
\begin{equation*}
w^{\prime}(t)+w^{2}(t)+k_{1} d p(t) \frac{h(t)}{t} \leqslant 0 . \tag{22}
\end{equation*}
$$

The rest follows as in Lemma 2 from [7, p. 381].
Following [7], we consider the sequence of functions

$$
\begin{equation*}
\left\{\alpha_{m}(t)\right\}, \quad m=0,1,2, \ldots, t \in\left[t_{0}, \infty\right) \tag{23}
\end{equation*}
$$

where

$$
\alpha_{0}(t)=\delta c \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s, \quad \alpha_{m}(t)=\int_{t}^{\infty} \alpha_{m-1}^{2}(s) d s+\alpha_{0}(t), \quad m=1,2, \ldots
$$

and δ is a constant, $0<\delta<1$. We can now state the following results:

Theorem 2. Let $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{3}\right),\left(\mathrm{C}_{4}\right),\left(\mathrm{C}_{7}\right)$, and $\left(\mathrm{C}_{10}\right)$ hold, and let there exist a constant $\delta, 0<\delta<1$, such that one of the conditions $\left(\mathrm{C}_{11}\right)$ or $\left(\mathrm{C}_{12}\right)$ is satisfied, then Eq. (1) is oscillatory.

Proof. It is easy to see that $\left(\mathrm{C}_{11}\right)$ implies

$$
\begin{equation*}
\int_{1}^{\infty} \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s d t=\infty . \tag{24}
\end{equation*}
$$

To show that $\left(\mathrm{C}_{12}\right)$ also implies (24), we assume that $\int^{\infty} \int_{2}^{\infty} p(s)$ $(h(s) / s) d s d t<\infty$ and obtain a contradiction.

It can be seen that, for any $\eta>0$,

$$
t \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s \leqslant \eta
$$

for sufficiently large t, and hence

$$
\int_{t}^{\infty} p(s) \frac{h(s)}{s} d s \leqslant \frac{\eta}{t} .
$$

Thus,

$$
\alpha_{0}(t)=\delta c \int_{t}^{\infty} p(s) \frac{h(s)}{s} d s \leqslant \frac{\delta c \eta}{t},
$$

for all large t.
Choose $\eta>0$ so that $c_{0}=\delta c \eta \leqslant \frac{1}{4}$, then we have

$$
\alpha_{n}(t) \leqslant c_{n} / t, \quad n=1,2, \ldots,
$$

where $c_{n}=c_{n-1}^{2}+c_{0}$. The sequence $\left\{c_{n}\right\}$ is bounded by $\left(1-\sqrt{1-4 c_{0}}\right) / 2$ and hence

$$
\alpha_{n}(t) \leqslant \frac{1-\sqrt{1-4 c_{0}}}{2 t}, \quad n=1,2, \ldots
$$

which contradicts $\left(\mathrm{C}_{12}\right)$.
In view of the above facts, it suffices to prove that (1) does not have unbounded nonoscillatory solutions. Noting that in Lemma 5, since $x(t)$ is unbounded, we may take $d=c$, the rest of the proof follows from Lemma 5 and the argument given in [7, p. 382].

Corollary. Let $\left(\mathrm{C}_{1}\right),\left(\mathrm{C}_{7}\right)$, and $\left(\mathrm{C}_{10}\right)$ hold. If $F \in C(R), y F(y)>0$ for $y \neq 0, f(x, y) \equiv F(y)$ satisfies $\left(\mathrm{C}_{4}\right)$, and if there exists a constant δ, $0<\delta<1$, such that one of the conditions $\left(\mathrm{C}_{11}\right)$ or $\left(\mathrm{C}_{12}\right)$ is satisfied, then the equation

$$
\begin{equation*}
x^{(n)}(t)+p(t) F(x(h(t)))=0, \quad n \text { even }, \tag{25}
\end{equation*}
$$

is oscillatory.
Remarks 2. (a) If $n=2$, then Theorems 1 and 2 (including the corollary) become Theorems 1-3 in [4].
(b) Corollary 4, Theorem 5, and Corollary 6 of [7] can be easily formulated for Eqs. (1) and (25) extending some well-known oscillation criteria. (See Remark 3 of [4].)
(c) The n th-order equations given in Examples 1 and 2 of [2] satisfy the hypotheses of our Theorem 1. Hence they are oscillatory by our criterion as well. However, unlike [2,6], we do not require a minimum linear growth rate for the delay $h(t)$. Thus, a delay such as $h(t)=\ln (t)$ is allowed in our theorems.

Acknowledgment

We are grateful to Professor Deshpande for his observations concerning the sequence $\left\{c_{n}\right\}$.

References

1. L. Erbe, Oscillation criteria for second order nonlinear delay equations, Canad. Math. Bull. 16 (1973), 49-56.
2. S. R. Grace and B. S. Lalle, An oscillation criteria for nth order non-linear differential equations with functional arguments, Canad. Math. Bull. 26 (1983), 35-40.
3. M. K. Grammatikopoulos, Y. G. Sficas, and V. A. Staikas, Oscillatory properties of strongly superlinear differential equations with deviating arguments, J. Math. Anal. Appl. 67 (1979), 171-187.
4. G. G. Hamedani, Oscillation theorems for second order functional differential equations, J. Math. Anal. Appl. 135 (1988), 237-243.
5. J. Ohriska, Oscillation of second order delay and ordinary differential equations, Czechoslovak. Math. J. 34 (1984), 107-112.
6. C. C. Travis, Oscillation theorems for second order equations with functional arguments, Proc. Amer. Math. Soc. 31 (1972), 199-202.
7. J. Yan, Oscillatory property for second order linear delay differential equations, J. Math. Anal. Appl. 122 (1987), 380-384.
8. C. C. Yeh, An oscillation criterion for second order nonlinear differential equations with functional arguments, J. Math. Anal. Appl. 76 (1980), 72-76.
