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Two oscillation theorems for even-order equations x(“)(t)+p(t)f(x(t),x(h(t))) =0 
are established. These results are the extensions of those reported by Hamedani for 
the second-order equation x”(f) + p(t)f(x(t), x(h(t))) = 0. 0 1989 Academic PESS, IIIC. 

The purpose of this paper is to study the oscillatory behavior of the 
differential equation 

X’W + p(t)f(x(t), O(t))) = 0, t> t,, (1) 

where n is even, n >, 2. We shall restrict our attention to those solutions of 
(1) which exist on some ray [T, co), where T > to, and which are nontrivial 
in any neighborhood of infinity. Such a solution is called oscillatory if it has 
arbitrarily large zeros. Otherwise, the solution is said to be nonoscillatory. 
An equation is said to be oscillatory if all of its solutions are oscillatory. 

For the sake of completeness, we shall first state a few conditions and 
recall various oscillation results concerning the equation 

x”(t) + p(t) &m(t), e(t))) = 0. (2) 

Conditions: 

(Cl) PECCto, m), p(t)>O, t> to; 
(CJ h~C[t,, co), g(t)<h(t), and O<k<g’(t)< 1; 
(C,) f~ C(R x R), R = (-co, co), and f(x, y) has the sign of x and 

y when they have the same sign; 
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(C,) there exists M > 0 such that, uniformly for x > M, 

lim inf f(x, Y) 

I I 
~ ac>o; 

lYl-+o3 Y 

(C,) limsup,,,tS,“p(s)ds=co; 

(GA lim sup, _ m t’~“(l/m!)~~,(t-~)m~‘p(u)du=Co, for some m>2; 
(C,) h~C[t,, co), h(t)<& for tat,, lim,,,h(t)=co; 

(C,) lim Supt- m t 17 p(s)(h(s)/s) ds 7 c-l, where c is as in (C,); 

(C,) lim supI + x t~;&)d~>c-‘, where c is as in (C,) and 
y(t) = sup{s 2 t, ) h(s) < t} for t 2 t,; 

(Cm) f; ~bM(s)/s) ds < ~0; 
(C,,) there exists a positive integer K such that q,(t)= 6c jy p(s) 

(h(s)/s)ds and a,(t)=~~ N:-, (s)ds+a,(t) are defined for m= 1,2, . . . . K- 1, 
but lim,,, J:, @iPI (s) ds = GO, where c is as in (C,) and 6 is a constant, 
0<6<1; 

(C,,) u,(t) is defined for m = 1, 2, . . . . such that lim,, ~ a,(t) = ~0 
pointwise for all large t. 

Remarks 1. (i) Travis [6] proved that under conditions (C,)-(C,) all 
solutions of (2) are oscillatory. 

(ii) ‘In [S], Yeh showed that under conditions (C,)-(C,) and (C,) 
all solutions of (2) are oscillatory, extending the result in (i). 

(iii) Recently, Hamedani [4] reported that under conditions (C,), 
(C,), (C,), (C,), and either (C,) or (C,) all solutions of (2) are oscillatory. 

(iv) Hamedani [4] also showed that under (C,), (C,), (C,), (C,), 
(C,,), and either (C,,) or (C,,) all solutions of (2) are oscillatory, 
extending the results of Yan [7] for the linear case x”(t) + p(t) x(h(t)) = 0. 

In a recent paper, Grace and Lalli [2] extended Yeh’s result (ii) to 
Eq. (1) without further restrictions on the functions involved. In this paper 
we shall extend the results given in (iii) and (iv) to Eq. (1) without further 
restrictions on the functions involved. 

RESULTS 

The following lemmas are basic for our discussions. The first two are 
taken from [3], the third from Cl], and the fourth from [S]. They are 
given here for the sake of completeness. 
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LEMMA 1. Let x be a positive, n times differentiable function on [to, 00). 
Zf x”“(t) is of constant sign and not identically zero in any interval [t,, co), 
then there exists t, z t,, and an integer j, 0 d j d n with n + j even for xc”’ 2 0 
or n + j odd for xcn) < 0, such that j > 0 implies xck)(t) > 0 for t > t, 
(k=O, l,..., j-l) and j<n-1 implies that (-l)i+kx’k’(t)>O for tat, 
(k=j,j+l,..., n-l). 

LEMMA 2. Zf the function x is as in Lemma 1 and xcn-- l’(t) x’“‘(t) d 0 for 

t 2 t,, then for every 2, 0 < A< 1, there exists an M, > 0 such that 

x(h) 2 M, t- ’ IxCn - l’(t)1 

for all large t. In addition, if lim, _ co x(t) # 0, then there exists M, > 0 such 
that 

x(t)~M,t”-l Ix’“-l’(t)1 

for all large t. 

LEMMA 3. Let (C,) holdand let x(t)EC*[T, co), x(t)>O, x’(t)>O, and 
x”(t) < 0 for t 2 T. Then for each k, E (0, 1) there exists a T,, Z T such that 

x(h(t)) > k, $-)x(t), t>, T,,. 

LEMMA 4. Let x(t)EC*[T, co) with x(t)>O, x’(t)>O, and x”(t)<Ofor 
t > T. Then for each k, E (0, 1) there is a Tk2 > T such that 

x(t) z k,tx’(t), for t>TkZ. 

Observe that in Lemma 4, the choice of k, E (0, 1) is arbitrary, while in 
Lemma 2, for n = 2, the Mz “exists.” 

THEOREM 1. Under the conditions stated in (iii), Eq. (1) is oscillatory. 

Proof W.l.o.g., in (C,), we may assume lim inf,,, --tot If(x, y)/yI > c 
uniformly in xb M. In view of (C,) or (C,) it suffices to consider only 
unbounded solutions. 

Let x(t) be a positive unbounded nonoscillatory solution of Eq. (1) on 
an interval [tl, co), t, 2 to. Let t, 2 t, be chosen so that 

h(t) > t, forall tat,. 

Then x(h(t)) > 0 for all t > t,. From (1) and (C,), it follows that x’“)(t) < 0 
for tB t,. By Lemma 1, there exist an odd integer j, 1 6 j < n - 1, 
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and a t3 3 t, such that xck’(t) > 0 for t 2 t, (k = 0, 1, . . . . j- 1) and 
C-1) i+kx(k)(t)>O for tat3 (k=j, j+l,..., n-1). 

Integrating Eq. (1) from t to co (t B t3), we have 

x’“-“(t) 2 Srn p(s)f(x(s), x(h(s))) ds. 
I (3) 

Now suppose that (C,) holds. If j= 1, then x”(t)<0 for t>, t,. By 
Lemma 3, for each k, E (0, l), there exists t, > t3 such that 

x(/z(t)) 3 k, Yx(t), for tat,. (4) 

Let k2 E (0, 1). If n = 2, then by Lemma 4, there exists a t5 Z t, such that 

x(t)> k2txcnp1)(t), for t> t,. 

On the other hand, if n > 2, by applying the second half of Lemma 2 and 
observing that M2 tR- ’ 3 k, t for all t sufficiently large, we again obtain 

x(t)>k2tx’“-l’(t), for tat,, 

for some t5 > t4. Combining this with (3) and (4) yields 

x(t)>k,t s O” P(J) f(x(s), 44s))) ds 
I 

3k 

for t > t,. From this inequality we see that 

s 

m 

C -‘Bk,k,limsupt 
,-a3 f 

p(s) !$) ds. 

From (5) and (C,), it follows that 

I 

cc 
c -‘<a=limsupt 

t-m f 
p(s) ‘+ ds < 00. 

(5) 

(6) 

From (5) and (6), observing that k,, k2 E (0, 1) are arbitrary, we obtain the 
contradiction c-l <a < c-l. 



OSCILLATION THEOREMS 393 

If 3 6 j < n - 1, then by Lemma 2, there exists t, such that 

X(j-1)(t)>,~2tn~jX(n~1)(t) for tZ t,. (7) 

By Taylor’s formula and Lemma 1, we have 

x(t) = x( To) + x’( T,)( t - To) + . . . + x(‘-L)(TO) tt- T )j-l 

(j-l)! O 

+ 

(8) 

and 

x(i- l)(t) = x(i- 1) Vo)+x”‘(~o)(t- To)+ 2, 
.dj+ “(G) (t _ T 

0 
)’ 

< x(j- I’( To) + x(j)( T,)( t - To), (9) 

where To=max{t,, t,}<t:, t:dt. 
From (8) and (9), it follows that there exist M, > 0 and t7 2 To such that 

x(t)3it.f,tj-2x(j-L) (t), for t2t7. (10) 

Since x(j- l’(t) > 0, x”‘(t) > 0, and x(j+ ‘j(t) < 0, by Lemma 3, for 
k, E (0, l), there exists t, > t, such that 

x(j-l)(h(t))>k, y,-+‘)(t) for t2 t,. (11) 

Now from (3), (7), (ll), and (C,), for t>t,, we have 

x(j-l)(t)>~2t-j 
I O” P(S) f(x(s), x@(s))) ds I 

i 
oc 

2 k,M,t”-’ p(s) h(s) fW)T XW))) 
f s ( x(j- “(h(S)) > 

x(j- l)(s) ds 

ak,hf2t”-jx(j-l) t ( ) srn p(s) !$) ~~~,~~‘,;;lc;~;“) ds. (12) 
I 

Using (10) in (12) we obtain 

1 2 k, M2,,,f3 f-j 

I 
for t$ tg, 

f 

(13) 
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where tg = max{t,, ts}. Let tto>, tg be such that h(t) 2 1 and for a fixed, 
but arbitrary k, E (0, l), M,M,t”--“a k,t, for all t 3 t,,. Then from (13) it 
follows that 

s 
cc 

c P’3k,k,limsupt p(s) fy ds, (14) 
,-CC f 

which is identical to (5). The rest now follows as in the case of j= 1. 
If j = n - 1 3 3, then by Lemma 4, for k, E (0, l), there exists t,, such that 

x’“~2’(t)~kztx(“~‘)(t), for t>t,,. (15) 

From (3) and (15), we have 

x(n-Z)(t)~k2tj‘x p(s) ~~“;~$~))) xc”-2)(h(~))ds, for tat,,. 
f 

(16) 

By Lemma 3, for k, E (0, l), there exists t12 3 t,, such that 

x’“-2’@(t)) 2 k, TV Mt) (n-qt), for t> t12. 

The argument used in obtaining (10) holds in this setting, hence, for some 
M, > 0 and h(t) 2 t, 

x@(t)) > M3r3(t) x’“-*‘(h(t)). 

By (C,), w.l.o.g., we may assume M3h”-3(t) 2 1 for all t> t,, = 
max{ f7, t,,). Thus, 

x(/l(t)) 2 X’“-2’(h(t)), for tat,,. (18) 

Combining (16), (17), and (18) yields 

From this we obtain (5) and the argument proceeds as in the case of j= 1. 
The case where (C,) holds instead of (C,) follows in a similar manner. 

To give another set of sufficient conditions for the oscillation of (1 ), we 
need the following lemma. 
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LEMMA 5. Assume (C,), (C,), (C,), (C,), and (C,,) hold. Let x(t) be a 
nonoscillatory solution of (1) and its corresponding j (as in Lemma 1) be 
given. Then, 

w(t) = 
x+ ‘)(t)/x”- “(/It) zf 1 <j<n- 1, andIIE(0, 1) 
x(“-1)(t)/x(n-2yt) if j=n- 1, 

satisfies 

i 

m 

w’(s) ds < co, 
t 

and 

jrn w2(s) ds + kd so; p(s) y ds f w(t), (20) I I 

(19) 

for t sufficiently large, where d> 0 may depend on x(t), 0 < k < 1 is an 
arbitrary constant which is independent of x(t). 

ProoJ: We will give the proof for the case 1~ j < n - 1 (the proof for 
j= 1 or j= n - 1 is similar). W.l.o.g., we may assume x(t) > 0 for all t 
sufficiently large. In view of the argument given in the proof of Theorem 1, 
for any k, , 0 < k, < 1, there exists t, 3 t, such that 

=x’“‘(t) + p(t) x(h(t)) 

>xx’“‘(t)+k,M,p(t) for tat, 

(21) 

in which we have used (10) and (1 1 ), respectively. 
Let w(t) = x(“-‘)(t)/x (j-‘)(h). From (21), we have 

w’(t) + II x’“-“(t) x”‘(lt) f(x(t),x(h(t))) 
(x”-l’(h))’ 

+k,M, p(tjhj-l(f) <o 
t > x(h(t)) ’ ’ 

and, applying Lemma 2 to x”‘(,It), we obtain 

h'-'(t) w’(t)+U4,t”-i~1w2(t)+klM,p(t)Y 

409/141/2-7 
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Now, from (C,) and x’(t) > 0, lim, _ cc x(h( t)) tends monotonically upward 
to either a positive finite value or + co. In either case, there exists a d > 0 
such that 

f(x(t), -e(t))) > d 
x(h(t)) ’ ’ 

for all t sufficiently large. Moreover, for t sufficiently large, AM, tnPJ-’ > 1 
and M, h’-‘( t) B 1. Thus for all t sufficiently large, 

w’(t) + w2(t) +k, dp(t) $),O. 

The rest follows as in Lemma 2 from [7, p. 3811. 

Following [7 J, we consider the sequence of functions 

bL&)>? m=O, 1,2, . . . . te [to, co), 

where 

s 
m a()( t) = 6c 
f 

p(s) y ds, c%,(t)= jm a:-,(s)ds+cr,,(t), 
I 

(22) 

(23) 

m = 1, 2, . . . . 

and 6 is a constant, 0 < 6 < 1. We can now state the following results: 

THEOREM 2. Let (C,), (C,), (C,), (C,), and (C,,) hold, and let there 
exist a constant 6,O < 6 < 1, such that one of the conditions (C,,) or (C,,) 
is satisfied, then Eq. (1) is oscillatory. 

Proof: It is easy to see that (C,,) implies 

cc cc 

I i‘ , 
p(s) $) ds dt = ccj (24) 

To show that (C,,) also implies (24) we assume that j” l: p(s) 
(h(s)/s) ds dt < cc and obtain a contradiction. 

It can be seen that, for any n > 0, 

I 

cc 

t 
* 

p(s) y ds < ye, 

for sufficiently large t, and hence 

I 

cc 

I 
p(s)$)ds+ 
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for all large 2. 
Choose-q > 0 so that c0 = 6cq 6 i, 

%dt) d c,lt, 

where c, = c; _, + cO. The sequence 
and hence 

then we have 

n = 1, 2, . ..) 

{c,} is bounded by (1 -. 

397 

p-G)/2 

1 - 
Jl 

- 
%z(t) 6 4c, = 

21 
’ n 1, 2, . ..) 

which contradicts (C i2). 
In view of the above facts, it suffices to prove that (1) does not have 

unbounded nonoscillatory solutions. Noting that in Lemma 5, since x(t) is 
unbounded, we may take d= c, the rest of the proof follows from Lemma 5 
and the argument given in [7, p. 3821. 

COROLLARY. Let (C,), (C,), and (C,,) hold. Zf FE C(R), yF( y) > 0 for 
y # 0, f(x, y) E F(y) satisfies (C,), and if there exists a constant 6, 
0 < 6 < 1, such thut one of the conditions (C,,) or (C,,) is satisfied, then the 
equation 

is oscillatory. 

x’“)(t) + p(t) F(x(h( t))) = 0, n even, (25) 

Remarks 2. (a) If n = 2, then Theorems 1 and 2 (including the corollary) 
become Theorems l-3 in [4]. 

(b) Corollary 4, Theorem 5, and Corollary 6 of [7] can be easily 
formulated for Eqs. (1) and (25) extending some well-known oscillation 
criteria. (See Remark 3 of [4].) 

(c) The nth-order equations given in Examples 1 and 2 of [2] satisfy 
the hypotheses of our Theorem 1. Hence they are oscillatory by our 
criterion as well. However, unlike [2,6], we do not require a minimum 
linear growth rate for the delay h(r). Thus, a delay such as h(t) = In(t) is 
allowed in our theorems. 
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