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Abstract

This paper is a contribution to the problem of existence of ideal Nash equilibrium in noncooperative multicriteria games in
strategic form. We give an existence theorem by using the maximal element theorem due to Deguire et al. [P. Deguire, K.K. Tan,
G.X.-Z. Yuan, The study of maximal elements, fixed points for Ls -majorized mappings and their applications to minimax and
variational inequalities in product topological spaces, Nonlinear Anal. TMA 37 (1999) 933–951] and the characterization provided
by Voorneveld et al. [M. Voorneveld, S. Grahn, M. Dufwenberg, Ideal equilibria in non cooperative multicriteria games, Math.
Methods Oper. Res. 52 (2000) 65–77].
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1. Introduction

In recent years, many authors have studied the game problems with vector payoffs, for example, see [1,4,6,11,12]
and the references therein. Although many concepts have been suggested to solve multicriteria games [3,7,8], the
notion of the Pareto–Nash equilibrium, introduced by Shapley (1959), is the most studied concept in game theory. In
[10], the authors introduced the new concept of ideal Nash equilibrium for finite multicriteria games which has the
best properties. In fact, the ideal Nash strategy of each player enables him to maximize all his criteria when the other
players choose their ideal equilibrium strategies. In consequence, when its existence is guaranteed it is preferable to
solve the game using the ideal Nash equilibrium. In [10], the authors gave a characterization and axiomatization of
the ideal Nash equilibrium and showed its existence in a particular class of bicriteria games constructed from ordinal
potential games.

The aim of this paper is to point out a more general class with a nonempty set of ideal Nash equilibria. By using
the maximal element theorem due to Deguire et al. [5] and the characterization given in [10], we provide an existence
theorem for a more general class of multicriteria games.
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applies.
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2. Preliminaries and definitions

Consider a multicriteria game

G = 〈I, (X i )i∈I , ( fi )i∈I 〉, (1)

where I = {1, 2, . . . , n} is a finite set of players; for all i ∈ I, X i ⊂ Rli is the set of pure strategies of player i ∈ I ;
X =

∏n
i=1 X i is the set of outcomes of the game and for all i ∈ I, fi : X −→ Rr(i) is the vector payoff function of

player i ∈ I , where r(i) ∈ N is the number of criteria of player i . Throughout this paper, we assume that each player
is a maximizer.

We can interpret the multicriteria game (1) as follows: each player i ∈ I is considered as an organization which
includes r(i) members. Each member k ∈ {1, . . . , r(i)} of the i th organization has a payoff function fik : X i −→ R.
A choice of strategy xi ∈ X i by the organization i is supposed to be taken by common agreement of all the members
with the objective to maximize the payoff of each of them, taking into account the fact that the payoff of each member
depends also on the strategy choices x j ∈ X j of the other organizations j ∈ I \ {i}. The idea is from that of
Voorneveld [10].

We denote by ∆m = {µ = (µ1, µ2, . . . , µm) ∈ Rm
+,

∑m
i=1 µi = 1}, the unit simplex in Rm and Rm

+ = {x =

(x1, . . . , xm) ∈ Rm, xi = 0,∀i = 1, . . . ,m}.

For vectors x, y ∈ Rm , we denote by 〈x, y〉 =
∑m

k=1 xk yk the inner product of x and y; ek the kth standard basis
vector of Rm .

For a = (a1, a2, . . . , am), b = (b1, b2, . . . , bm) ∈ Rm ; we define vector inequalities as follows:

a = b ⇔ a j = b j for all j ∈ {1, . . . ,m};

a ≥ b ⇔ a = b and a 6= b;

a > b ⇔ a j > b j for all j ∈ {1, . . . ,m}.

We design by a � b (respectively a 6≥ b, a 6> b) the negation of the relations a = b (respectively a ≥ b, a > b). Let
be λ = (λ1, . . . , λn) ∈

∏n
i=1 ∆r(i) and consider the λ-weighted game

Gλ = 〈I, (X i )i∈I , (gi )i∈I 〉 (2)

associated to the multicriteria game (1), where each player has the same set of strategies as in G; for all i ∈ I , the
payoff function gi : X −→ R is defined by gi (x) = 〈λi , fi (x)〉 =

∑k=r(i)
k=1 λik fik(x), where λi ∈ ∆r(i) is the vector

of weights for the vector criteria fi (·) of player i ∈ I .

Definition 1. Let {Fi }i∈I be a family of multivalued maps Fi : W −→ 2Zi , where I is any index set and for all i ∈ I ,
W , Zi are topological vector spaces and 2Zi is the set of all subsets of Zi .

The point x̄ ∈ W is said to be a maximal element for the family {Fi }i∈I , if Fi (x̄) = φ, for all i ∈ I.

Definition 2 ([2]). Let W, Z be topological vector spaces and 2Z the family of all subsets of Z , M a nonempty convex
subset of W and let P : M −→ 2Z be a multivalued map such that for each x ∈ M, P(x) is a closed, convex cone
with nonempty interior.

A multivalued function H : M × M −→ 2Z is called P(x)-quasi-convex-like, if for each x, y1, y2 ∈ M and
t ∈ [0, 1], we have either

H(x, t y1 + (1 − t)y2) ⊆ H(x, y1)− P(x),

or

H(x, t y1 + (1 − t)y2) ⊆ H(x, y2)− P(x).

H is called P(x)-quasi-concave-like if (−H ) is P(x)-quasi-convex-like.

Remark 1. If the function H is defined on M ⊂ W into R and P(x) = R+ for all x ∈ M , then the P(x)-quasi-
concavity-like is equivalent to the quasi-concavity.
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3. Ideal Nash equilibrium

In 1959, Loyd Shapley generalized the Nash equilibrium concept for strategic multicriteria games, hereby called
efficient and weakly efficient Nash equilibrium. Their existence is established by scalarization of the vector payoff
functions of the players, see for example [9,12]. Recently, Ansari [1] studied the existence of weak efficient Nash
equilibrium by the Maximal element approach.

Definition 3 ([9]). A situation x∗
∈ X is said to be

• a weakly efficient Nash equilibrium for the multicriteria game (1), if for each i ∈ I and yi ∈ X i ,

fi (x
∗) 6< fi (yi , x∗

−i );

• an efficient Nash equilibrium for the game (1), if for each i ∈ I and yi ∈ X i ,

fi (x
∗) 6≤ fi (yi , x∗

−i ).

We will denote by X E N (G) the set of efficient Nash equilibria and by X W E N (G) the set of weakly efficient Nash
equilibria for the multicriteria game G.

In 2000, Voorneveld et al. [10] proposed the concept of ideal Nash equilibrium, in which each player maximizes
all his criteria simultaneously. Thus, it is important to look for this equilibrium in a multicriteria game before all other
concepts.

Definition 4 ([10]). A situation x ∈ X is said to be an ideal Nash equilibrium for the multicriteria game (1), if for
each player i ∈ I and for all yi ∈ X i ,

fi (x) = fi (xi , x−i ) = fi (yi , x−i ).

We will denote by X I N (G) the set of ideal Nash equilibria of the game G.

Remark 2 ([10]).
1. It is easy to see that X I N (G) ⊆ X E N (G) ⊆ X W E N (G).
2. If each player has only one criterion, then the ideal Nash equilibria, efficient Nash equilibria and Weakly efficient

Nash equilibria coincide with the Nash equilibria.

Definition 5 ([10]). A collection Λ ⊂
∏

i∈I ∆r(i) of weight vectors is called representative for the game G, if for
each organization i ∈ I and each of its members k ∈ {1, . . . , r(i)}, there exists a weight vector in Λ assigning weight
one to this organization member:

∀i ∈ I,∀k ∈ {1, 2, . . . , r(i)}, ∃λ = (λ j ) j∈I ∈ Λ, with λi = ek ∈ ∆r(i).

Let ψi : X−i −→ Rr(i) be a vector function defined by

ψik(x−i ) = sup
yi ∈X i

fik(yi , x−i ), ∀k = 1, r(i),∀i ∈ I.

The following theorem of characterization of ideal Nash equilibrium is given in [10] for finite multicriteria games. It
stays valid for the strategic multicriteria games defined by (1).

Theorem 3.1. Let G be the multicriteria game defined by (1) and Λ a representative collection for G. The following
statements are equivalent:

(a) x ∈ X I N (G),
(b) ∀i ∈ I, fi (x) = ψi (x−i );

(c) x ∈
⋂
λ∈

∏
i∈I ∆r(i)

X I (Gλ);

(d) x ∈
⋂
λ∈Λ X I (Gλ),

where X I (Gλ) is the set of Nash equilibria for the game (Gλ).

Proposition 3.1 ([10]). The smallest representative collection for the multicriteria game G has maxi∈I r(i) elements.
Hence, maxi∈I r(i) scalarizations suffice to determine X I N (G).
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4. Existence results

In this section, we give our main results about the existence of ideal Nash equilibrium in strategic form multicriteria
games. We recall that Voorneveld et al. [10] gave a class of bicriteria games that they constructed from ordinal potential
game in which this equilibrium exists. Our study is based on the maximal element for a particular family of multivalued
maps and the characterization of this equilibrium given in Theorem 3.1.

Let Λ be a representative collection for the game (1). For each i ∈ I , define a multivalued map Ai : X −→ 2X i by

Ai (x) = {yi ∈ X i/∃λ ∈ Λ such that 〈λi , fi (x)〉 − 〈λi , fi (yi , x−i )〉 < 0}. (3)

The following proposition shows that the existence of ideal Nash equilibrium for the game (1) is equivalent with the
existence of a maximal element for the family of maps defined by (3).

Proposition 4.1. A situation x∗
∈ X is an ideal Nash equilibrium for the game (1) if and only if x∗

∈ X is a maximal
element for the family of multivalued maps defined by (3).

Proof. Consecutively using Theorem 3.1, the definition of a Nash equilibrium, and (3), it follows that

x∗
∈ X I N (G) ⇔ x∗

∈

⋂
λ∈Λ

X I (Gλ)

⇔ ∀λ ∈ Λ,∀i ∈ I,∀yi ∈ X i : 〈λi , fi (x∗)〉 − 〈λi , fi (yi , x∗

−i )〉 = 0

⇔ ∀i ∈ I : Ai (x
∗) = φ,

finishing the proof. �

By using Theorem 7 in [5] and the Proposition 4.1, we derive an existence result of ideal Nash equilibria.

Theorem 4.1. For the game (1), we suppose that for each i ∈ I ,

1. X i is a nonempty convex set;
2. the function fi is continuous on X;

3. for each x ∈ X, the function yi 7−→ fi (yi , x−i ) is Rr(i)
+ -quasi-concave-like;

4. there exists a nonempty compact subset K of X and a nonempty, compact convex subset Di of X i for each i ∈ I ,
such that for all x ∈ X \ K , there exists i ∈ I and ỹi ∈ Di such that fi (x)− fi (ỹi , x−i ) < 0.

Then, there exists an ideal Nash equilibrium for the multicriteria game (1).

Proof. Let Λ be a smallest representative collection for the game (1) and Ai : X −→ 2X i the correspondence defined
by

Ai (x) = {yi ∈ X i ∃λ ∈ Λ such that 〈λi , fi (x)〉 − 〈λi , fi (yi , x−i )〉 < 0}.

We shall prove that the family of multivalued maps {Ai }i∈I satisfies all assumptions of Theorem 7 in [5].
• For all x ∈ X , i ∈ I and λ ∈ Λ, we have 〈λi , fi (x)〉 − 〈λi , fi (xi , x−i )〉 = 0, thus xi 6∈ Ai (x).
• For all x ∈ X and i ∈ I , Ai (x) is convex. Indeed, let y1

i , y2
i ∈ Ai (x). Then, there exist λ1, λ2

∈ Λ such that

〈λ1
i , fi (x)〉 − 〈λ1

i , fi (y
1
i , x−i )〉 < 0;

〈λ2
i , fi (x)〉 − 〈λ2

i , fi (y
2
i , x−i )〉 < 0.

Let α ∈ [0, 1]. By hypothesis 3, fi is Rr(i)
+ -quasi-concave-like on X i , then (− f ) is Rr(i)

+ -quasi-convex-like, and
we have either

− fi (αy1
i + (1 − α)y2

i , x−i ) = − fi (y
1
i , x−i )− β1, β1

∈ Rr(i)
+ ,

or

− fi (αy1
i + (1 − α)y2

i , x−i ) = − fi (y
2
i , x−i )− β2, β2

∈ Rr(i)
+ .

It follows that either

〈λ1
i , fi (x)〉 − 〈λ1

i , fi (αy1
i + (1 − α)y2

i , x−i )〉 = 〈λ1
i , fi (x)〉 − 〈λ1

i , fi (y
1
i , x−i )〉 − 〈λ1

i , β
1
〉 < 0
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or

〈λ2
i , fi (x)〉 − 〈λ2

i , fi (αy1
i + (1 − α)y2

i , x−i )〉 = 〈λ2
i , fi (x)〉 − 〈λ2

i , fi (y
2
i , x−i )〉 − 〈λ2

i , β
2
〉 < 0

which implies in both cases that

αy1
i + (1 − α)y2

i ∈ Ai (x),

hence Ai (x) is convex on X i .
• We prove that for all yi ∈ X i and i ∈ I , the set A−1

i (yi ) is open in X .
By hypothesis 2,

A−1
i (yi ) =

⋃
λ∈Λ

{x ∈ X, 〈λi , fi (x)〉 − 〈λi , fi (yi , x−i )〉 < 0}

is a finite union of pre-images of the open set (−∞, 0) under the continuous functions x 7→ 〈λi , fi (x)〉 −

〈λi , fi (yi , x−i )〉 and hence open.
• We prove that the set Ai = {x ∈ X : Ai (x) 6= φ} is open for all i ∈ I . We have

Ai = {x ∈ X, ∃yi ∈ X i , ∃λ ∈ Λ, 〈λi , fi (x)〉 − 〈λi , fi (yi , x−i )〉 < 0}

=

⋃
yi ∈X i

⋃
λ∈Λ

{x ∈ X, 〈λi , fi (x)〉 − 〈λi , fi (yi , x−i )〉 < 0}

=

⋃
yi ∈X i

A−1
i (yi ).

Hence, the set Ai is open as the union of open sets.
• From assumption 4 of Theorem 4.1, for all x ∈ X \ K , there exist i ∈ I and ỹi ∈ Di ⊂ X i such that

fi (x)− fi (ỹ, x−i ) < 0.
Since Λ is a representative collection, then for all i ∈ I and k ∈ {1, . . . , r(i)} there exists λ = (λ j ) j∈I with

λi = ek . It follows that

fik(x)− fik(ỹi , x−i ) = 〈λi , fi (x)〉 − 〈λi , fi (ỹi , x−i )〉 < 0,

thus ỹi ∈ Ai (x) and Ai (x) ∩ Di 6= φ.

All conditions of theorem 7 in [5] are satisfied, then there exists x̄ ∈ X such that Ai (x̄) = φ for all i ∈ I and, by
Proposition 4.1, x̄ is an ideal Nash equilibrium. �

We illustrate our result by the following example.

Example 1. Consider the game

G = 〈I, (X i )i∈I , ( fi )i∈I 〉, (4)

where I = {1, 2}, r(1) = r(2) = 2, X1 =] − 1, 1[, X2 = [0, 1], f1(x1, x2) = (−x2
1 + x2

2 , x2 cos π2 x1) and
f2(x1, x2) = ( f21(x1, x2), f22(x1, x2)) with

f21(x1, x2) =


2x2

1 x2, if x2 ∈

[
0,

1
2

]
, x1 ∈ X1

−2(x2 − 1)x2
1 , if x2 ∈

[
1
2
, 1

]
, x1 ∈ X1,

f22(x1, x2) = (x1 + 1) sinπx2.

∗ For all i ∈ I = {1, 2}, the set X i is convex.
∗ To show that the function y1 −→ f1(y1, x2) is R2

+-quasi-concave-like, we must prove that for all λ ∈ [0, 1] and
y1, z1 ∈ X1 we have

either f1(λy1 + (1 − λ)z1, x2) = f1(y1, x2)+ ε

or f1(λy1 + (1 − λ)z1, x2) = f1(z1, x2)+ ε, where ε ∈ R2
+.

If |y1| > |z1|, then{
f11(λy1 + (1 − λ)z1, x2) = f11(y1, x2)+ ε1, ε1 ∈ R+

f12(λy1 + (1 − λ)z1, x2) = f12(y1, x2)+ ε2, ε2 ∈ R+.
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It follows that

f1(λy1 + (1 − λ)z1, x2) = f1(y1, x2)+ ε, ε = (ε1, ε2) ∈ R2
+.

If |y1| ≤ |z1|, then{
f11(λy1 + (1 − λ)z1, x2) = f11(z1, x2)+ ε1,

f12(λy1 + (1 − λ)z1, x2) = f12(z1, x2)+ ε2.

It follows that

f1(λy1 + (1 − λ)z1, x2) = f1(z1, x2)+ ε, ε ∈ (ε1, ε2) ∈ R2
+.

In the same way, we show that the function y2 −→ f2(x1, y2) is R2
+-quasi-concave-like.

To verify the last assumption of Theorem 4.1, we set K = [−
1
2 ,

1
2 ] × [0, 1], D1 = [−

1
2 ,

1
2 ], D2 = [

1
2 , 1].

(a) ∀x̃ ∈ X \ K = (] − 1,− 1
2 [∪]

1
2 , 1[)× [0, 1], with x̃2 6= 0, ∃i = 1 ∈ I and ỹ1 ∈ D1 = [−

1
2 ,

1
2 ] such that

f11(x̃)− f11(ỹ1, x̃2) = −x̃2
1 + ỹ2

1 = ỹ2
1 − x̃2

1 .

Since ỹ1 ∈ [−
1
2 ,

1
2 ] and x̃1 ∈] − 1,− 1

2 [∪]
1
2 , 1[, then

f11(x̃)− f11(ỹ1, x̃2) < 0,

and

f12(x̃)− f12(ỹ1, x̃2) = x̃2

(
cos

π

2
x̃1 − cos

π

2
ỹ1

)
< 0.

(b) ∀x̃ ∈ X \ K such that x̃ = (x̃1, 0), ∃i = 2 and ỹ2 =
1
2 ∈ D2 = [

1
2 , 1] such that

f21(x̃)− f21(x̃1, ỹ2) = −x̃2
1 < 0

and

f22(x̃)− f22(x̃1, ỹ2) = −(x̃1 + 1) < 0.

All assumptions of Theorem 4.1 are verified, then there exists an ideal Nash equilibrium x̄ ∈ X .
To find x̄ , we follow the proof of Theorem 4.1. Let Λ = {(e1, e1), (e2, e2)} be the smallest representative collection

and A1(x̄) = {y1 ∈ X1, ∃λ ∈ Λ/〈λ1, f1(x̄)〉 − 〈λ1, f1(y1, x̄2)〉 < 0}. We have

A1(x̄) = ∅ ⇐⇒ ∀y1 ∈ X1,∀λ ∈ Λ 〈λ1, f1(x̄)〉 − 〈λ1, f1(y1, x̄2)〉 = 0

⇐⇒

{
(−x̄2

1 + x̄2
2)− (−y2

1 + x̄2
2) = 0 ∀y1 ∈ X1;

x̄2 cos
π

2
x̄1 − x̄2 cos

π

2
y1 = 0, ∀y1 ∈ X1.

⇐⇒

{
(y2

1 − x̄2
1) = 0, ∀y1 ∈ X1; (a)

x̄2

(
cos

π

2
x̄1 − cos

π

2
y1

)
= 0, ∀y1 ∈ X1. (b)

(1)

1(a) H⇒ x̄1 = 0 (2)

1(b) H⇒ x̄2

(
1 − cos

π

2
y1

)
= 0, ∀y1 ∈ X1.

With A2(x̄) = ∅ and x̄1 = 0, we find x̄2 =
1
2 .

Thus x̄ = (0, 1
2 ) is the ideal Nash equilibrium for the considered game.

Following Lemma 4 and the proof of Theorem 7 in [5], we deduce:

Remark 3. If for each i ∈ I, X i is a nonempty compact convex subset, then the conclusion of Theorem 4.1 holds
without assumption 4.
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