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Progress of machine learning in geosciences: Preface
In the past two decades, artificial intelligence (AI) algorithms
have proved to be promising tools for solving several tough scien-
tific problems. As a broad subfield of AI, machine learning is con-
cerned with algorithms and techniques that allow computers to
“learn”. The machine learning approach covers main domains
such as data mining, difficult-to-program applications, and soft-
ware applications. It is a collection of a variety of algorithms that
can provide multivariate, nonlinear, nonparametric regression or
classification. The remarkable simulation capabilities of the ma-
chine learning-based methods have resulted in their extensive ap-
plications in science and engineering. Recently, the machine
learning techniques have found many applications in the geoscien-
ces and remote sensing. More specifically, these techniques are
proved to be practical for cases where the system’s deterministic
model is computationally expensive or there is no deterministic
model to solve the problem (Lary, 2010).

This special issue of Geoscience Frontiers aims to review the lat-
est development of machine learning and its key applications in
solving problems in geoscience and remote sensing domain. We
assemble a set of scientific contributions that provide a window
to a successful application of machine learning and its branches
to challenging in the field.

The opening paper of this issue by Lary et al. (2016) presents a
review of the machine learning applications in geosciences and
remote sensing. The authors outline the unique features of some
of the machine learning techniques with a specific attention to ge-
netic programming paradigm. Furthermore, nonparametric regres-
sion and classification illustrative examples are presented to
demonstrate the efficiency of machine learning. The problems
investigated by the authors are characterizing airborne particulates
and identifying dust sources.

Esmaili and Mohaghegh (2016) focus on full field reservoir
modeling of shale assets using advanced data-driven analytics.
They developed an artificial intelligence-based model that is condi-
tioned to all available field measurements (e.g. production history,
measured reservoir characterizations including geomechanical and
geochemical properties) as well as measured hydraulic fracturing
variables like slurry volume, proppant amount and sizes, injection
rate etc. Such model has the potential to provide operators with an
alternative to history-match, predict and assess reserves in oil and
gas producing shale reservoirs. The integrated framework pre-
sented by the authors enables reservoir engineers to compare
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and contrast multiple scenarios and propose field development
strategies.

Sparrow and Mercer (2016) investigate the predictability of US
tornado outbreak seasons using ENSO and northern hemisphere
geopotential height variability. Their study is focused on diagnosis
of seasonal predictability of tornado outbreak frequency in the
United States through 500-hPa, 1000-hPa, and ENSO interannual
variability indices. To this aim, authors formulate a linear stepwise
multivariate linear regression (SMLR) and a support vector regres-
sion (SVR)model using 16,500-hPa RPC score predictors, two 1000-
hPa RPC score predictors, and the Niño 3.4 indices. They conclude
that the nonlinear SVR technique reduces root mean square errors
produced by the control SMLR technique by 28% and providedmore
consistent forecasts. The results obtained from this study would be
useful to both forecasters and the general public in terms of prepar-
ing for the upcoming severe weather season.

A comprehended review of the AI applications in pile founda-
tions is carried on by Shahin (2016). The author presents the salient
features associated with the modeling development of these AI
techniques. The paper also discusses the strength and limitations
of the selected techniques compared to other available modeling
approaches. This review paper is focused on behavior of pile foun-
dations including bearing capacity prediction, settlement estima-
tion, and modeling of load-settlement response. The author
concludes that the AI techniques perform better than, or at least
as good as, the most traditional methods.

Zhang and Goh (2016) present two machine learning methods,
called multivariate adaptive regression splines (MARS) and back
propagation neural network (BPNN) for assessing pile drivability.
The main goal is to formulate maximum compressive stresses
(MCS), maximum tensile stresses (MTS), and blow per foot (BPF)
in terms of several influencing variables. The authors develop
the models upon a database of more than 4000 piles. They
conclude that BPNN and MARS models for the analyses of pile
drivability provide good predictions. MARS is found to be more
computationally efficient than BPNN as it builds flexible models.

Patel and Chatterjee (2016) present a computer vision-based
rock-type classification algorithm for fast and reliable identification
without human intervention. They develop a laboratory scale
vision-based model using probabilistic neural network (PNN)
where they use color histogram features as input. A total nine fea-
tures are used as input for the PNN classification model. The au-
thors validate the model using a test data set and conclude that
their proposed vision-based model can perform satisfactorily for
classifying limestone rock-types. Also, they prove that their
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proposed method performs substantially better than three other
classification algorithms.

The study done by Viswanathan and Samui (2016) aims at deter-
mination of rock depth using three machine learning techniques,
namely Gaussian Process Regression (GPR), Least Square Support
Vector Machine (LSSVM) and Extreme Learning Machine (ELM).
The authors use Latitude (Lx) and Longitude (Ly) to formulate the
rock depth. They conclude that the developed ELM, GPR and LSSVM
produce spatial variability of rock depth at Chennai. It showed that
the used machine learning methods are robust for prediction of
rock depth.

Khan et al. (2016) develop prediction models for residual
strength of clay based on a newmethod, called functional networks
(FN). The authors perform a comparative study between FN, SVM
and artificial neural network (ANN) based on statistical parameters
like correlation coefficient (R), Nash–Sutcliff coefficient of efficiency
(E), absolute average error (AAE), maximum average error (MAE)
and root mean square error (RMSE). It is found that FN has a better
prediction performance than ANN. They perform a sensitivity anal-
ysis to ascertain the importance of various inputs in the prediction
of the residual strength of clay. Besides, the authors provide a pre-
diction equation that can be used by the practicing geotechnical en-
gineers to calculate the residual friction angle value if the index
properties of the soil are available.

Peak ground acceleration (PGA) is a well-known engineering
parameter of an earthquake for seismic structural analysis and risk
assessment. Gandomi et al. (2016) propose a new model to predict
PGA utilizing a new method coupling ANN and simulated annealing
(SA), called SA-ANN. They formulate PGA in terms of earthquake
source to site distance, earthquake magnitude, average shear-wave
velocity, faulting mechanisms, and focal depth. The authors utilize
a huge database of strong ground-motion recordings of 36 earth-
quakes in Iran. Their proposedmodel is verified for a part of the data-
base beyond the training data domain. They compare the SA-ANN
model with the simple ANN, as well as 10 other well-knownmodels
in the field. The results show that SA-ANN is superior to the single
ANN and other existing attenuation approaches. Finally, they extract
an explicit formula that can be easily used in a spreadsheet or hand
calculations to predict PGA, especially in Iran’s tectonic regions.

Kashani et al. (2016) propose imperialistic competitive algo-
rithm (ICA) for locating the critical failure surface and computing
the factor of safety (FOS) in a slope stability analysis. The FOS
relating to each trial slip surface is calculated using a simplified al-
gorithm of the Morgenstern-Price method. The authors use four
benchmark test problems to explore the performance of the algo-
rithm. It is concluded that ICA can provide reliable, accurate and
efficient solutions for locating the critical failure surface and
relating FOS. Moreover, they prove that the ICA algorithm is the
most proficient algorithm among the other existing algorithms
because of smaller FOS with low standard deviation.

In the closing paper of this special issue, Alavi and Sadrossadat
(2016) propose new nonlinear prediction models for the ultimate
bearing capacity of shallow foundations resting on non-fractured
rock masses. The authors utilize a novel evolutionary computa-
tional approach, called linear genetic programming. They use a
comprehensive set of rock socket, centrifuge rock socket, plate
load and large-scaled footing load test results to develop the
models. The results indicate that the models proposed by the au-
thors accurately characterize the bearing capacity of shallow foun-
dations. Moreover, the derived models reach a notably better
prediction performance than the traditional equations. The authors
provide transparent programs that can be used for further analysis
of the bearing capacity, as well as optimization purposes.
We hope that the new findings and perspectives from the pa-
pers presented in this special issue will provide new insights and
guidelines for further applications of the machine learning tech-
niques in geosciences and remote sensing. We would like to ex-
press our sincere thanks to Prof. M. Santosh, Co Editor-in-Chief
of Geoscience Frontiers for his support in making this special issue
a reality. We are also grateful to Dr. Lily Wang, Editorial Assistant
of Geoscience Frontiers for her dedicated assistance during the re-
view process of manuscripts. We would like to thank all the au-
thors for providing interesting articles and patronage for the
timely submission and revision. We are also thankful to the re-
viewers for providing fast and constructive reviews for the sub-
mitted papers, including papers that did not reach the final
stage of publication.
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