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Abstract 

Semistability at infinity is a geometric invariant for finitely presented groups. If G is a finitely 
presented group then the semistability of G can give information about the fundamental group 
at infinity for G, the cohomology of G, and the shape of the boundary of G. In [6], M. Davis 
exhibits Coxeter groups with somewhat pathological behavior at infinity. Our main theorems are 
that all Artin and all Coxeter groups are semistable at infinity. 

1991 Math. Subj. Class.: 20F32 

1. Introduction 

Semistability at infinity is a geometric invariant of finitely presented groups. If a 

finitely presented group G is semistable at co, then one can define @‘(G), the fun- 

damental group at infinity for G (see for example [lo] or [l 11). If G acts properly 

discontinuously, cocompactly and by isometries on a CAT(O) space X, then the bound- 

ary of X, ax, is well defined. Geoghegan [8] has pointed out that a one-ended CAT(O) 

group G is semistable at infinity iff aX has the shape of a locally connected contin- 

uum ‘. All Coxeter groups are CAT(O) groups and while (by Theorem 1 .l ) a boundary 

of a Coxeter group must have the shape of a locally connected continuum, there are 

Coxeter groups with non-locally connected boundaries (see Remark 4.2 for more on 

this). 

It is conjectured that if G is a finitely presented group then H2(G; ZG) is free 

abelian, but this is currently unknown, even for 2-dimensional duality groups (where 
one is discussing the dualizing module (see [2]). If G is semistable at infinity then 

H’(G;ZG) is free abelian (see [9]). 

* E-mail: mihalikm@ctrvax.vanderbilt.edu. 
’ A continuum is a compact connected metric space. 

0022-4049/96/$15.00 @ 1996 Elsevier Science B.V. All rights reserved 

SSDI 0022-4049(95)00117-4 



206 M. L. Mihalikl Journal of Pure and Applied Algebra 111 (1996) 205-211 

It is unknown if all finitely presented groups are semistable at infinity. 

In [6] Davis constructs, in every dimension 2 4, closed aspherical manifolds not 

covered by Euclidean space. The fundamental group of each of these manifolds is a 

subgroup of finite index of a Coxeter group, and in Section. 16 of [6], these particular 

Coxeter groups are shown to be semistable at infinity, but not simply connected at 

infinity. The non-simple connectivity at infinity implies that Davis’ manifolds are not 

covered by Euclidean space. These Coxeter groups are the first observed examples for 

which the mndamental group at infinity is not either trivial, Z or an infinite rank free 

group. In fact, Davis shows that the fundamental groups at infinity of his constructions 

are inverse limits of free products of more and more copies of rci(H), where H is 

a homology 3-sphere (the bonding maps kill the last xl(H) factor). While Coxeter 

groups indeed provide exotic behavior at infinity they are semistable at infinity. 

Theorem 1.1. All Coxeter groups are semistable at in.nity. 

Corollary 1.2. If G is a Coxeter group then H2(G; ZG) is free abelian. 

Corollary 1.3. If G is a one-ended Coxeter group, acting by isometries, properly 
discontinuously and cocompactly on the CAT(O) space X, then the boundary of X 
has the shape of a locally connected continuum. 

We observe that our main theorem and results in [4] imply that if M is a closed 

irreducible 3-manifold and ni(M) is a subgroup of finite index of an infinite Coxeter 

group, then the universal cover of A4 is Euclidean 3-space. This can also be seen using 

[7, 171. 
We also consider a related type of group - Artin groups. We show 

Theorem 1.4. All Artin groups are semistable at inftnity. 

Remark 1.5. In Section 2 we define Coxeter groups and Artin groups through certain 

presentations. A third type of group, with similar presentation, can be studied. In the 

case of 3 generators these groups have presentation of the form (x, y,z : (xy)” = 
(xz)n = (yz)( = 1, m,n,/ > 2). The Tietze moves u = xy giving (u, y,z : urn = 

(uy-‘z)” = (yz)! = I), u = uy-‘z giving (u,v, y : urn = v” = (Y~u-‘v)~ = 1) and 

w = y2u-‘v giving (u, v, w, y : urn = v” = we = y2u-'uw- ’ = 1) show these groups 

are Fuchsian (see Section 4.6) of [19]). Hence they contain a surface group of finite 

index. This implies that they are semistable at co and 7~;” is Z, for such a group. 

2. Groups 

A Coxeter group is a group with a presentation of the following form: (si, . . . ,s, : 
Sf = 1 for i E {l,...,n},(si~j)mfJ = 1 where i < j ranges over some subset of 

{l,..., n} x {l,..., n} and mii > 2). 
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Suppose G is a finitely generated group with finite generating set A. The Cayley 
graph of G with respect to A, Z(G,A), has as vertex set G. There is a directed edge 

labeled a, from g to ga for each g E G and a E A. Hence if w is a word in A, then for 

any vertex v E G, there is a unique edge path beginning at v with edge labels defined 

by w. Conversely, any edge path in r defines a unique element in G x F where F is 

the free group on A. 

Define a metric d on r by defining each edge to be isometric to a unit interval and 

d(g, h) to be the length of a shortest edge path from g to h. Define the length of g, 

e(g), to be d(g, 1). 
We need the following basic facts: 

Lemma 2.1. If [v, w] is an edge of Z, then e(v) # e(w). 

Proof. There is a homomorphism f : G - {-1,l) where S(Si) = -1 for all i. 

Hence if c1 is any edge path from 1 to v then f(v) = (-l)lal where lcl\ is the number 

of edges in CI. Let e be the edge of r from v to w. Then f(w) = (-l)l’l+l. Now 
(-l)O) = (-l)lUI # (_l)l,l+t = (_l)“(“). 

Lemma 2.2. Zf v is a vertex of Z, si and sj are generators of G, d(vsi) = [(vsj) > 
f(v) and sisj has order mij # CO, then consider the edge loop (sisj)“‘” at V. Zf 0: is a 
shortest path from 1 to v, then (LX, h) is geodesic when h is either of the two edge paths 
of length mij, beginning at v and alternating between edges with labels si and sj. 

Proof. This follows easily from Lemma 3 of [7]. 

Theorem 2.3 (Brown [5]). Zf G is a Coxeter group with presentation as above, then 
the subgroup of G generated by the subset S c{q,. . . ,s,} has presentation (S : s’ = 

1 for all si E S, (sisj)m” = 1 if si,sj E S and (sisj)“‘” is a relation of the above 
presentation of G). 

In the free group on {x, y}, let (x, y),,, be the word of length m that begins with x 

and the letters alternate between x and y. 

An Artin group is a group with presentation (~1,. . . ,s, : (si,sj)m,, = (sj,si),,, where 

i < j ranges over some subset of { 1,. . . , n} x { 1,. . . , n} and mu >_ 2 for all such i, j). 
In [12] (Theorem 4.13) van der Lek shows 

Theorem 2.4. Zf G is the Artin group with presentation as above, then the subgroup 
of G generated by the subset S c{s~, . . . ,s,} has presentation (S : (Si,Sj)ml, = (Sj,Si)m, 

if si7s.i E S and (si,sj)m, = (sj,si)m,, is a relator of the above presentation of G). 

3. Semistability 

We use [14] as a basic reference on semistability. In this paper all spaces are locally 

finite (X-complexes. If A is subset of a space then St(A) is the union of all cells that 
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intersect A. Define St”(A) f St(St”-l(A)) for n 4 1 (here St’(A) E A). A continuous 

function f mapping the space X to the space Y is proper if for each compact set 

C c Y, f-‘(C) is compact in X. A ray in X is a proper map r : ([O,oo)) --+ X. 
Two rays, r and s, converge to the same end of X if for any compact set C CX 

there is an N > 0 such that r([N, 00)) and s([N, 00)) lie in the same component of 

X - C. “Converges to the same end” is an equivalence relation on the set of all proper 

maps r : [0, oc) - X and the set of all such equivalence classes is called the set of 

ends of X. 

An end of X is semistable if any two rays of X converging to that end are properly 

homotopic. This is equivalent to the following: An end [r] of X is semistable if for 

some (equivalently any) ray s E [Y] and subset Sp(*) of X (* a vertex of X) there 

is an integer A4 > N such that for any T > A4 and loop CI, based on r with image 

in X - St”(*), c( is homotopic rel. r, to a loop in X - St’(*) by a homotopy in 

X - StN(*). A space X is semistable at 00 if each end of X is semistable. 

By the local finiteness of X we have: 

Lemma 3.1. If [r] is an end of X and * a vertex of X then there is a ray s E [r] 

such that s(O) = *, for any integer N 2 0 s maps the interval [N, N + l] isometrically 
to an edge of X and in the l-skeleton of X, s is a geodesic. 

A finitely presented group G is semistable at in$nity if for some (equivalently any) 

finite, connected complex Y with rci (Y) = G, the universal cover of Y is semistable at 

infinity. A generalization of this definition to finitely generated groups is given in [14]. 

The following three results will be needed in the next section. 

Theorem 3.2 (Mihalik and Tschantz [15]). If the jnitely presented group G is the 
amalgamated product A *c B where A and B are finitely presented and semistable at 

injinity, and C is finitely generated, then G is semistable at infinity. 

Theorem 3.3 (Mihalik and Tschantz [16]). All l-relator groups are semistable at in- 
jinity. 

Theorem 3.4 (Mihalik [ 141). If G is finitely presented, A and B are finitely generated 
subgroups of G such that A U B generates G, A and B are one ended and semistable 
at infinity or two ended and if A n B contains an element of infinite order, then G is 
semistable at injinity. 

Example. If i, j E { 1,2,3} let eij be the 3 x 3 matrix whose entries are zero with the 

exception of a 1 in the ith row and jth column. Set zo = 1 + e12, zi = 1 + ei3, z2 = 

1 + e23, z3 = 1 + e21, z4 = 1 + e31, z5 = 1 + e32. Then %3(Z) is generated by 

{zo , . . . , zg }. The subgroup generated by {zi,zi+i } for i E (0, . . . ,4} is isomorphic to 

Z x Z. Hence four applications of Theorem 3.4 show %3(Z) is semistable at infinity. 

In fact, %3(Z) is known to be simply connected at infinity. 
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4. The main results 

Proof of Theorem 1.1 (All Coxeter groups are semistable at injnity). Let G = 

(Si,...,S, : $ = 1 for all i E { 1,. . . , n}, (sisj)mzJ = 1 where i < j ranges over some 

subset of { 1,. . . , n} x { 1,. . . , n} and mij 2 2). 

The proof will be presented in two parts. First we show that the problem can be 

reduced to the case where the pairs i, j in the above presentation of G range over all 

pairs i < j. This reduction is achieved through an application of Theorem 3.2. 

The second part is a geometric argument to show that groups with a presentation as 

in the above reduction are semistable at infinity. 

If in the above presentation of G there is a pair i < j such that mij is not defined 

(i.e. there is no relator (sisj) m~~ for this choice of i, j) then consider the subgroups A, B 
and C of G with respective generating sets {si,. . . ,J’i,. . . ,sn}, (~1,. . . ,ij,. . . ,s,} and 

{Si ,..., ??i ,..., 2j ,... s,}. By Theorem 2.3 a presentation for A is (~1,. . . ,$, . . .s, : si = 1 

for all k E {l,..., I ,... ,n}, (s~s~)“Q’ = 1 where k < L ranges over all pairs listed in 

the above presentation of G, except when k = i or / = i). Similarly one can obtain a 

presentation for B and C. 

IfH istheamalgamatedproduct U*wVwhere UE (uI,...,u,,wI,...,w,:R),V- 

(vi,. . . , up, WI,. . . ,w, : S) and (WI,. . . , w,,,) generates the common copy of W in both 

presentations, then (ui,. . . ,u,, ~1,. . . ,uP, WI,. . . , w, : R U S) is a presentation for H. 

This implies that G = A *C B, and by Theorem 3.1 it suffices to show A and B 
are semistable at infinity. Continued reductions of this fashion reduce the theorem to 

showing the following: 

Lemma 4.1. If G = (~1,. . . ,s, : sf = 1 for all i,(sisj)mJj = 1 where i < j range over 

allpairs in {l,..., n} x {l,..., n}) then G is semistable at infinity. 

Proof. If G is finite (e.g. G = (si : sf = 1)) then G is semistable at infinity. Oth- 

erwise let X be the standard 2-complex associated with the above presentation and 

2 the universal cover of X. The l-skeleton r of 2 is the Cayley graph of G with 

respect to {si,. . . , sn}. Let 1 be the vertex corresponding to the identity of G. For 

each pair i < j in {l,...,n} x (1 . . . , n} let 1, be the edge loop (~sj)ml~ (with ini- 

tial vertex 1). Observe that I, is homotopically trivial in St(l) cX. Given @(l), 

let c1 be an edge loop in 2 - Pv+‘( 1). Let u be a vertex of c1 closest to 1. Say 

sj and Si are the edge labels leading into and out of u respectively, along ~1. We 

will show the edge path (Sj,si) (with middle vertex u) is homotopic rel(0, 1) to an 

edge path, each of whose vertices are further from 1 than d(u, 1 ), by a homotopy in 

x - sty 1). 

The loop (Sisj)mlj is homotopically trivial in St(u) and so in 2 - StN( 1). Hence the 

edge Sj leading into u followed by the edge si leading out of u can be replaced by 

the edge path (SiSj)mz~-l, each of whose vertices are further from 1 than d(q 1) (by 

Lemma 2.2). Continuing we can move the loop CI as far as we like from 1. 

This process can be done relative to base ray by an elementary adjustment. 
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Aqume Y is a geodesic edge path base ray with initial vertex 1 (see Lemma 3.1) 

and a is an edge loop based at the vertex w = r(n) with im(a) CX - Wv+‘(l). If e is 

the edge r[n, n + l] then apply the above process to the loop (e-l, a, e). Repeat this as 

e-l and e are “replaced” in the above process, thus always obtaining a loop “further 

out” and still based on r. q 

Remark 4.2. F. Paulin observed that the proof of Lemma 4.1 should show that Coxeter 

groups satisfying the hypothesis of Lemma 4.1 have locally connected boundaries. To 

see this (as suggested by K. Ruane) one can easly check that a certain geometric 

condition ($M), found in [l] and implying local connectivity of the boundary of a 

space, is satisfied in the space 2 (of Lemma 4.1). This implies that if G is word 

hyperbolic and as in Lemma 4.1, then the boundary of G is locally connected. It is an 

open problem if all word hyperbolic groups have locally connected boundaries. 

If G acts by isometries, properly discontinuously and cocompactly on CAT(O) spaces 

X and Y, it is unknown if 8X and 3Y are homeomorphic. 

Let F” be the free group on n-generators. In [3], Bowers and Ruane show that 

if the group F” x Z acts by isometries, properly discontinuously and cocompactly 

on a CAT(O) space X, then the boundary of X is homeomorphic to the suspen- 

sion of the Cantor set, a non-locally connected space. If A is the group with two 

elements then (A * A) x (A * A * A) is a Coxeter group containing a subgroup of 

finite index of this form and so is a Coxeter group with non-locally connected 

boundary. 

Proof of Theorem 1.4 (All Artin groups are semistable at injinity). Let A = (S : 

(Si,Sj)m, = (Sj,Si)m,, for some distinct pairs, i < j). Let /i be the graph with vertex set 

S and an edge between si and sj if (Si,Sj)m,, = (Sj,Si)m,, for some i # j. If Al,. . . ,Ak 

are the vertex sets of the components of ,4 then A is the free product of the subgroups 

of A generated by the Ai. By Theorem 3.2 it suffices to show that the subgroups of A 

generated by such Ai are semistable at infinity. By Theorem 2.4 each such subgroup 

is an Artin group with the induced presentation. 

If s and t are generators with relation (~,t)~ = (t,s)*, then the l-relator group 

G = (s,t : (~,t)~ = (t,~>~) . 1s non-trivial and torsion free. By Stallings’ end theorem 

[ 181, if G had more than 1 end, it would decompose into a free product U * V. As 

G is torsion free with 2 generators, U and V would be infinite cyclic. (The minimal 

number of generators of a free product is the sum of the minimal number of generators 

of the factors - see [13].) But G is not free, and so must be l-ended. By Theorem 

3.3, G is semistable at infinity, and by Theorem 3.4, A is semistable at infinity. 0 
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