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0. Introduction

In [2] Henriksen proves that if R is a unit regular ring, then every matrix over R
admits diagonal reduction. On the other hand it is well known, cf. [1, 4.12; 4.13;
4.15], that a regular ring R is unit regular if and only if R®@A=R® B implies A = B,
for all right R-modules A, B. In Theorem 5 below we complete Henriksen’s work [2]
by proving that every matrix (possibly rectangular) over a regular ring R admits
diagonal reduction if and only if R2@A =R®@ B implies R@® A =B, for all right R-
modules A, B; it is also shown that this holds if and only if R is a regular Hermite
ring. As we shall see any regular right Hermite ring is left Hermite, this will follow
from the fact, cf. [5], that the stable range of a ring coincides with the stable range
of its opposite ring. In Section 1 we also extend some results from unit regular rings
to regular rings with finite stable range.

In Section 2 we construct some regular rings with stable range 2, thus answering a
question of Handelman [1, Problem 49] and a question of Vasershtein [S, Remarks
on Theorem 4]. G. Bergman, cf. [1, 4.26], constructs a regular ring R such that
perspectivity is transitive in the lattice, L(R), of principal right ideals of R, but R is
not unit regular. The construction of our examples of rings of stable range 2 was
inspired by that example, in fact we offer a regular ring R with stable range 2 such
that L(R) = L(S), where S is a subring of R which is unit regular. We see then that R
is not unit regular, but it has the same °‘lattice’ properties as a unit regular ring, in
particular perspectivity is transitive in L(R). It can be shown, by using the methods
we shall develop here, that Bergman’s example has stable range 2, but it appears to
us that our examples are simpler than Bergman’s ones.

We prove that, unlike the case of unit regular rings, finitely generated projective
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modules over regular rings with stable range 2 need not have stable range 2.

Goodearl {1, 6.13] constructs a regular ring R satisfying comparability axiom for
which the natural pre-order on K,(R) is not a partial order (as can be seen by a
simple inspection of that ring). We shall note that such an example having, in
addition, stable range 2 can be constructed, moreover its corresponding Kj is iso-
morphic to a group of the type Z®Z/nZ. This shows that Ky(R) need not be
torsion-free whenever R is a regular ring with stable range 2. The analogue for unit
regular rings is an open question, cf. [1, Problem 27].

1. Regular rings with finite stable range and diagonal reduction

Throughout this paper R will denote an associative ring with 1.

We denote by M,(R) the ring of all n x n matrices over R and by GL,(R) its group
of unities. We write GE,(R) for the subgroup of GL,(R) generated by elementary
matrices. R is said to be a GE -ring if GL,(R) = GE ,(R).

R is said to be regular if for every a € R there exists an x € R such that axa=a.

An n-row xe R" is said to be unimodular if there exists an n-column y € "R such
that xy=1. If x=(x,,...,Xx,) € R” is unimodular, then we say that x is reducible if
there exists y=(y1,...,72_1) € R~ ! such that the (n—1)-row (x;+X,¥{, 0, Xno 1+
XnYn-1) is unimodular, in other words, the n-row

x<1n—l 0>

y 0

is unimodular. R is said to have stable range n=1 if n is the least positive integer
such that every unimodular (n + 1)-row is reducible. It is a well-known fact (and easy
to prove) that if R has stable range 1, then R is a GE,-ring for all n=2. A regular
ring is said to be unit regular if for every ae R there exists a unit u € R such that
aua =a, the unit regular rings are precisely those regular rings which have stable
range 1 [1,4.12]. In particular, since any commutative regular ring is unit regular,
we see that any commutative regular ring is a GE ,-ring, for all n=2.

The nxm matrix A =(ay), | sisn, 1=j<m, is said to be diagonal if a; =0 for
all i#j. The nxm matrix A admits diagonal reduction if there exist P GL,(R),
Qe GL,,(R) such that PAQ is a diagonal matrix. We recall [3, p. 465] that R is said
to be right (left) Hermite if every 1 x 2 (2 x 1) matrix admits diagonal reduction, and
if both, R is an Hermite ring.

The following proposition is a natural extension of results of Evans {1, 4.13] and
it also follows from Theorem 1.3 [6], however, we give an independent proof.

Proposition 1. Let M be a right R-module such that S =Endg(M) has stable range
=n If M"®@B=M®C then

(a) B is isomorphic to a direct summand of C

(b) If in addition S"=S@® X implies S"~'=X, then M~ '@B=C (here X and S
are viewed as left S-modules).
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Proof. Set N=M"®B and P=M®C. Let ¢p:N—P and J:P—N be R-homo-
morphisms such that ¢d=1p, dp=1,. In matricial form (relative to the above
decompositions) we have

¢=<¢1| ¢n+l.l>, d=
P12 " Pn+1,2

then @10+ -+ @ns1,101,n+1=1p. Since § has stable range =<n»n there exist
ay,...,0,€ S such that

511 621

Jl,n+1 52,n+l

@1+ Pns 1,100 41Q)S+  + (@Pn 1+ Pns1,101,n+100)S=S.

Now consider the automorphism 7 of N defined by the matrix

51,n+lal 5|,n+lan 1

Thus by replacing ¢, d by ¢n, 17! respectively we may assume that (¢, ..., 9, 1) is
S-unimodular, say ¢ 8, + - + @, 8.=1 where ;€ S,i=1,...,n. Let y be the auto-
morphism of N defined by

1 0 Bipnsi,
y= ' : ,
. ﬂn¢n+l.l
0 -1

again, by replacing ¢, & by py, y !9 respectively, we may assume ¢, ., ; =0. But then
O2,n+19n+1,2=1g. This shows that B is isomorphic to ¢, ,(B) which is a direct
summand of C.

Suppose now that § satisfies the additional assumption of (b). This is to say that
every n-row S-unimodular is a row of an element of GL,(S). Then, since
(@11, ..., @n,1) is S-unimodular, there exists U e GL,(S) such that the first row of U
is (1,0, ...,0). It is then clear that we may assume

(1 0 - 0 )
9= .

0 92 Pns12

But now it is easily seen that (¢3,,...,9,41,2):M"~ '@ B—Cis an isomorphism. The
result follows. [

The following result is well known and easily proved.

Lemma 2. Let M be a right R-module. Then Endg(M) is a regular ring if and only if
Jor each xe Endz(M), Ker x and Im x are direct summands of M. T
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Now we are ready to prove a result which characterizes those regular rings which
have stable range =<n.

Theorem 3. (a) A ring R is a regular ring with stable range <n if and only if for a

aiven xe R” rhpra exists an nntmn/h:lnr column ve "R such that xyx=x.
6‘ CAIIET WIS MHRISHITEVEAIUT LU j = I\ JKaLrs 5"“‘ J\}I\

(b) Let M be a right R-module such that S =Endg(M) is a regular ring, then the
Sfollowing are equivalent:
(i) S has stable range <n.
(ii) M"@®B=M®®C implies that B is isomorphic to a direct summand of C, for

nll richt BD_mnduloe R O
aii llslll KR=moduies b, L.

(iil) For every xe S, M" @ x(M)=M ® C implies that x(M) is isomorphic to a
direct summand of C, for all right modules C.

Proof. (a) Suppose first that R is a regular ring which has stable range =n. Let
x e R”, since R is regular there exists an idempotent e € R such that x("R) =eR and so
x("R)+ (1 -e)R=R. By the stable range condition there exists y e R" such that
x+ (1 —e)y is unimodular. Hence there exists y € "R such that (x+ (1 —~e)y)y=1. By
multiplying left and right by e and x respectively, we obtain xyx=x. Because y is
unimodular the result follows.

Conversely, it is clear that R is a regular ring. In order to prove that R has stable
range <n suppos¢ we are given an unimodular row xe R"+!, Write x=(X',X,41)
where x’e€ R", x,, ; € R. By hypothesis there exists an unimodular column y € "R with
x'yx'=x', if we set e=x"y then e is an idempotent such that eR +x,.R=R. By
[2, Remark D] there exists ¢ e R such that e+ x,, ;¢ is a unit, Since y is unimodular
there exists ye R” such that t=yy. Now we obtain that (x'+Xx,,,y)y is a unit.
Therefore x is reducible and the proof is complete.

(b) By Proposition 1 (i)=(ii). Obviously (ii) = (iii).

(iii)= (i). By (a) it suffices to find, for each x€S”, an unimodular y€”S with
xyx=x. Since S is a regular ring there exists an s € ”S such that xsx =x, hencee=xsis
an idempotent. Thus we have an onto R-homomorphism x:M —e(M). It is easily
seen that "M =Ker x® (sx)("M) and clearly the left multiplication by s gives an
isomorphism s:e(M)—(sx)("M)=7. On the other hand we have M=
(1 —-e)M)De(M) and so we get M"D(1 —e)(M)=MPKerx. By hypothesis we
conclude that there is an epimorphism f : Ker x— (1 — e)(M) and by the above there
is also an isomorphism s~!: T—e(M), that is we have an R-homomorphism

Kerx (1-e)}M)
0
<{; S_l>: @ - @
T e(M)

It is easily seen, from Lemma 2 applied to Endg(M7), that f has a right inverse, f7,

so that
(f, )
0 s
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is a right inverse of

(0 )

"I"}-. Art e mremllarm s an ibbaer e eva

aca bk . | R H. Atriaial vye AL 2 NAL th
1 1CSE NOMOIMOTrpItisIng Call 0€ WIILLCil il fliairiCidi

orm e "t‘v{_’}v’l’, Yovi v with
ey =1,,. By construction we have xy(1 —e) =0. Since when y is restricted to e(M)
coincides with s we have ye =se. From these relations we obtain xyx =x. By noting

that y is unimodular the result follows. I

We say the right R-module M has the n-weak cancellation property if i
the condition (ii) in Theorem 3.

Theorem 3(b) can be extended to those endomorphism rings S such that S/J(S)
(where J(S) is the Jacobson radical of S) is regular and idempotents modulo J(S) can
be lifted. The stable range 1 case is [6,2.4] and the general case will follow similarly
by using Theorem 3(b). More precisely we have

Corollary 4. Let S be a ring such that S/J(S) is regular and idempotents modulo
J(S) can be lifted. Then the following are equivalent
(i) S has stable range <n.
(ii) Every right module whose endomorphism ring is isomorphic to S has the n-
weak cancellation property.
(iii) There exists a ring R and a right R-module M such that Endg(M)=S and M
has the n-weak cancellation property. O

The following result is useful for checking examples, the n=1 case is due to
Bergman, cf. [1,4.16; 4.17].

Proposition 5. (i) Let I be an ideal in a regular ring S with stable range <n, and let
R be a subring of S which contains I. [f R/I is a regular ring with stable range <n,
then so is R.

(ii) Any finite subdirect product of regular rings with stable range <n has stable
range =n.

For simplicity, the notation A <B means that A is isomorphic to a submodule
of B.

Proof. (i) Suppose R"®A=R@®B where AsR and B is a right R-module, by
Theorem 3(iii) we need only to prove that A < B (notice that 4 and B are finitely
generated projective modules over the regular ring R, so A< B implies that A4 is
isomorphic to a direct summand of B). Since R/I has stable range <n we know that
A/AI=<B/BI and, by [1,2.20], we have decompositions

A=A ,®A;, B=B/®B,
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such that A;=B; and A,/ =A;.

Because A; < R we see that R"* 1@ A,= R*® B;. On the other hand A4, is a right S-
module (since A,/ = A4,) and it follows from the fact that 4, is right R-flat and I2=7
that A;®z S= A, as right S-modules. Hence we have $"*!® A4,= 5@ (B,®S). By
hypothesis § has stable range <n which implies that every unimodular (7 + 1)-row of
elements of § is a row of some element of GL,, ((S) (in fact of GE,, (S)) so
Proposition 1(b) yields S"®A4,=SP (B,®rS) again by Proposition 1(a) we obtain
A, B, ®g S that is, there is an S-module epimorphism f:B,®z$—A,. Let 7 be the
restriction of f over B, so that f:B;— A4, is an R-homomorphism. We claim that f
is onto. Since A, is cyclic let aeA, with aR=A4,, then a= f(b) for some
b=% bi®s;e€ B,QrS. We have a=Y f(b)s; and, since A,=A,l, f(b)=aa, for
some a; € /. Since R is regular we can write a; = a;7; for suitable 5, I, but then we
have a=F f(b)si=F Fb)nsi=F(E bins;) so f is onto as claimed. Because A, is
projective we have shown that 4,<B, and then A=4,0A,<B,@®B,=B as
desired.

(ii) It is an immediate consequence of (i). O

Next we study the stable range condition in regular rings satisfying general com-
parability axiom. Recall first some definitions. A regular ring is said to satisfy the
comparability axiom provided that, for any x, y€ R, either xR yR or yR<xR. It
can be shown that if A and B are finitely generated projective right R-modules and
R satisfies the comparability axiom, then either A<B or Bs A4, cf. [I, 8.2}. A
regular ring satisfies general comparability provided that for any x, y € R there exists
a central idempotent e in R such that exRseyR and (1 —e)yR<s (1 —e)xR.

Proposition 6. Let R+ 0 be a regular ring satisfying the comparability axiom. Then
the following are equivalent
(i) R has finite stable range.
(i) R" does not contain a submodule isomorphic to R"*', foralln=1.
(iii) R? does not contain a submodule isomorphic to R3.
(iv) R has stable range <2.

Proof. For arbitrary regular rings (i) = (ii). Suppose R"*! <R" for some n=1, then
R"*+%< R" for all k= 1. By Proposition 1(a) we get R =0.

Obviously (ii) = (iii).

(iii)= (iv). If R?® A =R@® B where A <R then we will obtain that A < B and thus
the result will follow from Theorem 3. If this is not the case we may assume, since R
satisfies the comparability axiom, that B< A4, but then we have decompositions
A=B®C and R=B®D for suitable right R-modules C,D. Hence R3@C=
R:®BA®D®C=R*®A®D=R@®B®D=R*and so R’<sR%. [J

Corollary 7. Let R be a regular ring satisfying general comparability axiom, then its
stable range is either 1, 2 or o,
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Proof. Suppose that R has finite stable range. Let R be an indecomposable factor
ring of R, then R satisfies the comparability axiom. It follows from Proposition 6
that R has stable range <2, so every indecomposable factor ring of R has stable
range <2. If R does not have stable range <2 there exists an unimodular row x € R?
which is not reducible, but then by a simple application of Zorn’s lemma we can
choose an ideal 7 of R such that R=R/I is indecomposable and e R’ is not
reducible, and this is a contradiction. O

In order to obtain our characterization of regular Hermite rings we need some
previous results. A ring R is said to be right (left) Bezout if every finitely generated
right (left) ideal is principal. For example, any right Hermite ring is right Bezout and
any regular ring is both right and left Bezout. Note that the definition of right
Hermite is not left-right symmetric, for if it suffices to consider any right principal
ideal domain which is not left principal. However we shall see that a right Hermite
ring is left Hermite provided that it is left Bezout. This yields, in particular, that any
regular right Hermite ring is left Hermite,

Proposition 8. (i) If R is a right or left Hermite ring then R has stable range <2.
(ii) If R is left Hermite and right Bezout then R is right Hermite.

Proof. (i) Suppose x€ R3 is reducible, then we claim that

, (U 0
X' =x R
(0 1)

where Ue GL,(R), is also reducible. Since x is reducible there exists y € R? such that
a= (‘ 0>€M3(R) )
y 0

and xA is unimodular. It is immediately seen that

o=(o DG )

is a matrix of the form (*). But then x’B is unimodular and so x’ is reducible as
claimed.

Suppose now that R is a right Hermite ring and let x = (x|, x;,x3;) an unimodular
row. Then there exists U/ e GL,(R) such that (x,,x2)U is of the form (d,0). Hence

<U 0

x

0 1

is an unimodular row with 0 as an entry, therefore it is clearly reducible. Now the
result follows from the above paragraph.

Because the stable range of a ring coincides with the stable range of its opposite
ring, cf. [5, Theorem 2], the result also follows if R is left Hermite.
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(ii) Assume R is right Bezout and left Hermite. It follows immediately from the
definition of left Hermite that every unimodular 2-column is a column of an
invertible 2 x 2 matrix over R. Under our hypotheses we first prove the analogous
result for rows. For if (x, y)€ R? is an unimodular 2-row, say xx’+ yy’=1, there
exists an invertible 2 X 2 matrix of the form

U= (X’ )
y o=

Clearly (x, yU=(1,2) for some zeR. If

V=U(l —-z>
"\0 1

then ¥'e GL,(R) and (x, y)V'=(1,0), that is (x, ) is the first row of the matrix V-,

Now we prove that R is right Hermite. Suppose we are given x, y € R, then, since
R is right Bezout, xR+ yR=dR say x=dx’,y=dy,d=xa+ yp. From these
relations we get d(x’a+ y’8—1)=0 so that x’R+ y’R +zR =R for some ze€ R such
that dz=0. By (i) R has stable range =<2, thus (x'+2z¢,)R + (¥'+ 2¢;)R =R, where
), t€ R. By the above we can find an invertible matrix of the form

"+zt "+ 2t
U= (x iy zz>.

* *

Clearly (x, »))U~'=(d,0) so R is right Hermite. O

In {2, p. 134] it is claimed that if each 2 X 2 matrix over a ring R admits diagonal
reduction then each n x n matrix admits diagonal reduction. This is said to be an
application of Kaplansky’s result [3, 5.1], but it is unjustified because the term
‘diagonal reduction’ is used by Kaplansky, cf. [3, p. 465], in a different meaning. If
each 2 x2 matrix over an arbitrary ring admits diagonal reduction then we have
been unable to prove by induction on » that each nxn matrix admits diagonal
reduction. Fortunately, if R is an Hermite regular ring this induction works since the
peculiar diagonal reduction of the 2x2 matrices. More precisely, we have the
following.

Theorem 9. Let M be a right R-module such that S=Endg(M) is a regular ring.
Then the following statements are equivalent
(i) S is left Hermite.
(ii) S is right Hermite.
(iii) M2*@B=M@C implies M®B=C, for all right R-modules B, C.
(iv) For every xe S,M?*@x(M)=M® C implies M®x(M)=C for all right R-
module C.
(v) Every matrix over S admits diagonal reduction.

Proof. By Proposition 8(ii), (i) ¢ (ii).
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(ii)= (iii). If S is an Hermite ring then, by Proposition 8(i), it has stable range <2.
Since every unimodular 2-row is a column of an invertible 2 X 2 matrix the result
follows from Proposition 1(b).

Trivially (iii) = (iv).

(iv) = (ii). First we shall show that every unimodular 2-column x € %S is a column
of some element of GL,(S). Since x is unimodular there exists y € S? such that
yx=1u. Clearly M =Ker y@®x(M)=Ker y®M and by hypothesis there is an
isomorphism M —Ker y. Therefore we can construct an automorphism of %M, say
U, such that U(%)=x(m) for all me M. That is U~'x= (?) as required.

Now we prove that S is right Hermite. Let x € §?, since § is regular it follows from
Theorem 3(a) that there exists an unimodular y € %S such that xyx=x. By the above
paragraph y is the first column of some Ue GL,(S) such that xU= (e, ef), where
e=xy and teS. Then

1 -t
V=U<O l)eGLz(S)

and xV is of the form (x,0). The result follows.

() # (v). Obviously we need only to prove (i)= (v). Let 4 be an n X /m matrix over
S. In order to prove that 4 admits diagonal reduction we proceed by induction on
the minimum of n and m. If either n=1 or m =1 the result follows from [3, 3.5]. So
assume n,m=2, by symmetry we may suppose without loss of generality, that
m=n. Since S is left Hermite we need only to consider the case of a matrix A of the

form
B 0
a b
where B is an (n—1)x(m—1) matrix, aeS"~ !, beS. By induction there exist

UeGL,_(8), VeGL,,_(S) such that UBV is a diagonal matrix. Thus A4 is
equivalent to

C—(U 0> B O\/V O
0 1/\a b/\0 1/
C is of the form

cC=10 X 0
Y Y2 VYm-1 %

where X is a diagonal (n —2) X (m — 2) matrix (the case m=2 is also included if we
think of X as an (7 — 2) x 0 matrix, that is

C=

< O %
N OO
N
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Let ee S be an idempotent such that xS=eS, then xt=¢, x=eu for some t,ue S. Set

t 0 1—tu
W= 10 1,,_, 0 € GL ,(S),
1 0 —-u

then CW is of the same form than C, but its (1, 1)-entry is e, an idempotent. Hence
we may assume that x=e.

Let z’€ S such that zz’z=z. By adding to the first column of C its m-th column
right multiplied by —z’y, we may assume that zz’y =0. Set

z 0 z'-1
Z= 0 | S 0 e GL.(S),
1+z2z O 7'z’
then
Ze-y * 0
ZC= 0 X 0

(1+z'2)e 2'22y; *+ 2'22Ym-1 22

By elementary column transformations we see that ZC, and so 4, can be reduced to
a matrix of the form

c = 0
0 X 0
e 0 2z

Hence we may identify A with the above matrix. Set f=2z'z, so that f is an idem-
potent. Let & € § such that (1 — f)ed(1 - fle=(1 — f)e, then g=(1 - fled(1 - f) is an
idempotent satisfying

(f+8)S=/fS+eS,
gf=fg=0, ge=(1-/f)e.

If we add to the first row of A the n-th row left multiplied by —cd(1 — f) we obtaina
matrix

c(1-8(1-1) = 0
A= 0 X 0
e o f

On the other hand we have:

(%7 DE D6 ) alne )6 )

_ c(1-6(1-1)) 0 )
'( 0 f+e)’
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This shows that

<c(1—5(1—f)) 0>
e S

can be reduced to diagonal form by using column transformations only. Hence it is
clear that A is equivalent to

(c(l—é(l—f)) « 0 1
L ; I(; f:gJ '
Since
(c(l -5(1-1)) *>
0 X

is an (n—1) X (m — 1) matrix the result follows by induction.
Notice that the above arguments show that any triangular » X n matrix, over a
regular ring, admits diagonal reduction. [

Corollary 10. Let M=M,@ ---@® M, be an R-module such that S=Endg(M) is a
regular ring. Then

(i) If Endg(M,) is an Hermite ring, i=1,...,k, then S is an Hermite ring.

(i) If Endg(M)) has stable range <n, i=1,...,k, then S has stable range <n.

Proof. (i) By Theorem 9 it suffices to show that M@ B=M® C implies M&B=C.
We have MI@® - @®OM}®B=M,® - ®M@®C and since Endg(M)) is a regular
Hermite ring for i=1, ..., k the result follows by repeated application of Theorem 9
(iii).

(i) It follows similarly as (i) by using Theorem 3 instead of Theorem 9. (I

2. Examples

In this section we shall offer several examples of regular rings with stable range 2
some of which are of independent interest. We begin by proving some useful results
to this end.

Lemma 11. Let R be a regular ring

(i) If x € R? has an idempotent entry, then there exists U e GE,(R) such that xU is
of the form (* 0).

(i) If for each A € GL,(R) we may obtain, by elementary transformations from
A, a matrix which has an idempotent entry, then R is a GE,-ring.
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Proof. (i) Set x= (e, a) with e?=¢ and ae R. Since

1 -a
(e,a)(0 l>=(e,(l-e)a),

there is no restriction in assuming ez =0. Now choose an idempotent f € R such that
eR+aR=fR, so there exist t,ue R such that et+av=f. Because ea=0 we get
et =e¢f. Then we see that

1 0\/ f 1-£\_ _
@a, 1)(1_f J)urai-nb
for some befR. It is easily seen that (f+a(l-f))R=fR. But then
b=(f+a(l-[f))x',x'e€R. Thus

<f+a(1—f),b)<(’) "1’")=(f+a<1—f),0>.

So (i) follows.

(i) If A e GLy(R) satisfies our hypotheses it follows from (i) that VAU is a tri-
angular matrix for suitable U, Ve GEy(R). Since any invertible triangular matrix
belongs to GE,(R), the result follows. [

Lemma 12. Let I be an ideal of a regular ring R contained in a unit regular subring
of R. If R/I is an Hermite GE,-ring, then R is an Hermite GE,-ring.

Proof. We set R =R/I and we write @ for a+ 1, ae R. Let (x, y) € R2. By hypotheses
there exists Ue GE4(R) such that (%, 7)U is a diagonal matrix. Note that GE,(R) is
generated, as group, by its diagonal matrices and the subgroup, E,(R), generated by
all matrices of the form

G 6

moreover E,(R) is a normal subgroup of GE,(R). From this remark we can write
U= VD where Ve E,(R) and De GE,(R) is diagonal. Clearly (%, )V is a diagonal
matrix, thus we may assume Ue E,(R). Clearly there exists We GL,(R) such that
W= U and so (x, y) W is of the form (z,{) where z € R and i € I. Because / is contained
in a unit regular subring of R there exists a unit ueR such that e=iu is an
idempotent. Therefore

/1 0
(z,:)< >=(z.e)
0 u
and the result follows from Lemma 11. O

The next result is an abstract point of view of the methods used in Bergman’s
example [1, 5.10].
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Lemma 13. Let R be a regular ring and let K be a commutative ring. [f 9:R—K isa
ring homomorphism then:

() If Kerg is contained in a directly finite subring of R, then R is a
homomorphic image of a directly finite regular ring.

(ii) If Ker ¢ is contained in a unit regular subring of R, then R is a homomorphic
image of a directly finite regular Hermite ring.

Proof. (i) Define S= {(x, ) € R X R%: p(x) = ¢(»)}, where R® denotes the opposite
ring of R. Since K is commutative, S is a subring of R x R%. Then S is regular because
it is a subdirect product of R and R® which are both regular. We claim that § is
directly finite. For this, let (x, y)(x, »’)=1 in S. On the other hand we have the
following relations yex+Kerp, y'ex’+Kergp so that xy’el+Kergp and
yx'el+Ker ¢. By hypothesis there exists a directly finite subring, 7, of R contain-
ing Ker ¢. Hence xy’, yx'e T and clearly (xy’)(yx’)=1. But T is directly finite so
(yx)xy’)=1. From this it is easily seen that (x’, y’)(x, ¥)=1. Thus S is directly
finite.

(ii) Construct S as in (i) so that S is directly finite. We need only to show that S is
Hermite. Since X is commutative we see that R/Ker ¢ is a regular commutative ring
and thus it is an Hermite GE,-ring. Now it follows from Lemma 12 that R is an
Hermite GE,-ring. Through the map x~ (x, 0) from Ker ¢ to S we can think of Ker ¢
as an ideal of S. Then S/Ker ¢ = R%, by Lemma 12 it suffices to prove that Ker ¢ is
contained in a unit regular subring of S. By hypothesis there exists a unit regular
subring 7 of R which contains Ker ¢ (as ideal of R). The subring of S,(Tx T%NS,
contains Ker ¢ (as ideal of S) and it is a subdirect product of unit regular rings and
so unit regular, cf. [1, 4.17], or Proposition 53ii). O

Example 1. There exists a regular ring R satisfying:
(i) R is directly infinite;
(ii) R satisfies the comparability axiom;
(iii) R contains a unit regular subring S such that L(R)=L(S) (in particular
perspectivity is transitive in L(R));
(iv) the endomorphism ring of every finitely generated projective R-module has
stable range <2.

Let T be the endomorphism ring of an infinite-countable-dimensional K-vector
space. Let M be the maximal ideal of T, that is M consists of those endomorphisms
of ¥ whose images are of finite dimension. Set 4 = 7/M and write ¥ for x+ M. Let
(e)i=o0 @ K-basis for V and define a,be T by

a(eO)':O; a(e,~+,)=e,- all i=0,
b(e,-)=e,-+| all i=0.

Clearly ab=1 and (ba— 1)(V) = Ke;, consequently 4 is a unit of A. We claim that,
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for every nonzero polynomial p(x) € K{X], the element p(a) is a unit of A. Since @ is
a unit we may assume that p(x) = ag+ -+ + @,x", a; € K and ag#0. But then p(x) has
an inverse ¥, B8:X € K[[X]]. Note that a™(e;)=0 for all m>i so that ¥,., 8.4’
defines an element of T which is a two sided inverse of p(a). Thus we have shown
that F, the field of quotients of K[d], is contained in A. Define R to be the subring
of T such that R/M=F. Then R is a directly infinite regular ring. Since T satisfies
the comparability axiom, it follows from {1, 8.4] that R satisfies the comparability
axiom. On the other hand S = M + K is a unit regular subring of R which contains all
the idempotents of R, hence the map L(R)— L(S) defined by I—~INS is a lattice
isomorphism, cf. [1, 3.15(b)].

We shall prove that the endomorphism ring of every finitely generated projective
right R-module is an Hermite ring (and so has stable range <2). As is well known
every finitely generated projective right R-module over a regular ring is isomorphic
to a direct sum of principal right ideals of R. By Corollary 10(i) we may assume that
the projective module is of the form eR, for some idempotent e€ R. Then we must
prove that eRe is Hermite. Since e € S we see that eMe is contained in the unit regular
subring eSe of eRe and either eRe =eSe or eRe/eMe=F. By Lemma 12 we see that
eRe is Hermite. []

Example 2. There exists a regular ring R which has stable range 2 and M,(R) is
directly finite for all n=1.

Construct R as in Example 1 and define $ as in the proof of Lemma 13(ii). Then
we know that S is a directly finite regular Hermite ring and so its stable range is <2.
Since R is a homomorphic image of S we see that the stable range of Sis 2. By a
theorem of Kaplansky [3, 3.9] the full matrix rings over a directly finite Hermite
ring are also directly finite. [J

In {2, Theorem 7} Henriksen notes that the full matrix rings over a unit regular
ring are unit regular, Later Handelman, cf. [1, 4.7], shows that Endg(M) is unit
regular if M is a finitely generated projective right module over the unit regular ring
R. In the following example we shall see that this result does not extend to regular
rings with stable range 2. In fact we prove that any regular ring can be embedded, as
a subring, in the endomorphism ring of a cyclic projective right module over a
regular ring with stable range 2.

Example 3. If R is a regular ring there is a regular ring S which has stable range 2
and an idempotent ee S such that R is isomorphic to a subring of eSe.

Since any regular ring is contained in a direct product of full linear rings over
commutative fields we may assume without loss of generality that R =Endg(V),
where V is a K-vector space of dimension 7. Choose a cardinal 7> r and consider a
K-vector space W of dimension =z in such a way that V is a direct summand of W.
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Now let M be the ideal of End (W) consisting of those endomorphisms ¢ with
dim Im ¢ < 7. Define S =M + K, then we claim that S is a regular Hermite ring (this
result has been also announced in [4]). We are indebted to Ken Goodearl for the
following proof. If m = R,, then S is unit regular and so it is an Hermite ring, so
assume that 7> K. It is then easily seen that (1 —)S= S for all idempotent ee M,
from this we see that S@eS = S for all idempotents e € M. It follows that any finitely
generated projective right S-module is either free or else isomorphic to eS for an
idempotent ee M. In order to prove that S is Hermite we will use Theorem 9(iv), so
assume S2@B=S@®C where B and C are finitely generated projective right S-
modules. Then S@B must be free. Since (S/M)*@(B/BM)=(S/M)PD(C/CM),
C/CM+0, so C must be free. Then S®B=S"and C= S*, for some n, k€ N. Hence

(S/MY"*'=(S2@B)/(S*@B)M=(S®C)/(S®C)M=(S/M)**!,

which implies n+ 1=k +1 so that S®@B=C.
Choose V’ such that V@® V'= W and define e Endg(W) by e| V=1, e/ V' =0.
Clearly e2=e€ S, but now we have that eSe=Endg(V). O

Let P(R) denote the class of all finitely generated projective right R-modules. Let
Ky(R) denote the Grotendieck group of the ring R, that is the abelian group
generated by Ko(R)*={[A]:Ae P(R)} subject -to the relations [A]+[B]=[C]
whenever A@ B= C. Note that Ky(R)* is a submonoid of Ky(R) so that it defines a
pre-order (the natural pre-order) on Ky(R), more precisely: x<y if and only if
y—x€Ky(R)*. If R is unit regular then the natural pre-order on Ky(R) is a partial
order, cf. [1, 15.2(d)]. In the following example we shall see that this property is not
shared for regular rings R with stable range 2, moreover the same example shows
that Ky(R) is not necessarily torsion-free whenever R has stable range 2.

Example 4. For each integer n> | there exists a regular ring S satisfying
(i) S has stable range 2;
(ii) S satisfies the comparability axiom,
(iii) the natural pre-order on Ky(S) is not a partial order;
(iv) Ko(S)=ZP Z/nZ.

Let K*< K be commutative fields such that dimg.(K) =n and let V be an infinite-
countable-dimensional K-vector space. Set Q=Endg(V), Q*=Endg«(V) and
denote by M and M* their maximal ideals. Let R be the ring in example 1, so that
R/M is a field F. Define S =R + M*, clearly S is a subring of Q*. Since M*N Q=M
we see that S/M*=R/M=F, so S is a regular ring and by Lemma 12, S is an
Hermite ring and hence has stable range <2. Because S is not unit regular its stable
range is 2.

It follows from [1, 8.4] that S satisfies the comparability axiom.

Let a, b the elements in R (so in S) defined in Example 1, then f=1-ba is an
idempotent and we have S=S® f8§. Since dimg f(V) =1, dimg. f(V)=n, thus there
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exist orthogonal idempotents fi,..., f,e M* such that @, fiS=fS. Clearly
L0O*=£,0% i=1,...,n, and, since f;e M*, we see that e= f}, ..., f, are isomorphic
idempotents in S. Hence S=S®(eS)". Likewise [1, 6.13] we can deduce that
S@(eS)* is not isomorphic to S, for k=1,...,n—1. Now we prove that the natural
pre-order on Ky(S) is not a partial order. Obviously we have [S]<[S@eS] and by
the above also [S@eS]=[S]. If [S]=[S@PeS], this would imply S@S”"=
S®eS@®S™, for some m=1. But S is an Hermite ring so S=S®eS, which is a con-
tradiction.

In order to compute Ky(S) set ¢ : S—S/M* the natural projection. Since S/M*is a
field we get, by using [1, 15.15], an exact sequence

0—Ker(Ko(9)) > Ko(S)—Z—0,

where Ker(Ky(9)) = ([xS]:xe M*). For a given xe M*, dimg.x(V) is finite, say m.
We have x(V)=e(V)®D:-@Pe(V) and from this we deduce that xS=(eS)™. This
proves that [eS] generates Ker(Ky(¢)). From S=S®(eS)"” we see that n{eS]=[0].
Suppose m[eS} = [0], that is S*@ (eS)™=S* for some m, h e N. Using again that S is
an Hermite ring we see that menN. Hence [eS] has order n and so
Ker(Ko(9))= Z/nZ. Therefore Ko(S)=Z@D Z/nZ as required.
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