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1. Introduction

The aim of this paper is to explain how to use elementary submodels to prove new theorems or to simplify old proofs in
infinite combinatorics. This paper mainly addresses novices learning this technique: we introduce all the necessary concepts
and give easy examples to illustrate our method, but the paper also contains new proofs of theorems of Nash-Williams on
decomposition of infinite graphs, and an improvement of a decomposition theorem of Laviolette concerning bond-faithful
decompositions.

The first known application of this method is due to Stephen G. Simpson (see [16] and the proof of [3, Theorem 7.2.1])
who proved the Erdés-Rado Theorem using this technique, and indicated that “one can give similar proofs for several other
known theorems of combinatorial set theory....”

Our aim is to popularize a method instead of giving just “black box” theorems.

In Section 2 we recall and summarize all necessary preliminaries from set theory, combinatorics and logic.

In Section 3 we give the first application of elementary submodels, and we explain why it is natural to consider X-
elementary submodels for some large enough finite family X of formulas.

In Section 4 we use elementary submodels to prove some classical theorems in combinatorial set theory. All these
theorems have the following Ramsey-like flavor: every large enough structure contains large enough “nice” substructures.

In Section 5 we prove structure theorems of a different kind: every large structure having certain properties can be
partitioned into small “nice” pieces. A typical example is Nash-Williams’s theorem on cycle decomposition of graphs without
odd cuts. To prove these structure theorems it is not enough to consider just one elementary submodel but we should
introduce the concept of chains of elementary submodels.
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Finally, in Section 6, we give a more elaborate application of chains of elementary submodels to eliminate GCH from a
theorem concerning bond-faithful decomposition of graphs.

This paper addresses persons who are interested in infinite combinatorics, but who are not set theory specialists. If you
want to study more elaborate applications of these methods, see the survey papers of Dow [5] and Geschke [6], or the book
of Just and Weese [10, Chapter 24]. These papers are much more technical than the current one, but they also contain many
applications in set theoretic topology.

For applications of these methods in infinite combinatorics, see also [2,7,8,11]. Chains of elementary submodels also play
a crucial role in the proof of some key results of the celebrated pcf theory of Shelah; see [15] or [1].

2. Preliminaries
2.1. Set theory

We use the standard notions and notation of set theory; see [9] or [12]. If  is a cardinal and A is a set, let
[AlI™ ={acA:|al <k}; [A={aCA:la =k} (1)

IfXandY aresetslet[X,Y] = {{x,y} :x € X,y e Y}.
We denote by V the class of all sets, and by On the class of all ordinals. The cumulative hierarchy (V,, : « € On) is defined
by transfinite induction on « as follows:

(1) Vo = 4.
(2) Vo1 = P (Vo).
(3) Vg = U{V, : @ < B} if B is alimit ordinal.

Fact 2.1. V = U{V,, : a € On}, i.e. for each set x there is an ordinal @ such that x € V,,.

2.2. Combinatorics

We use the standard notions and notation of combinatorics; see e.g. [4]. A graph G is a pair (V(G), E(G)), where
E(G) C [V(G)]?. V(G) and E(G) are the sets of vertices and edges, respectively, of G. We always assume that V(G) NE(G) = ¢.

A «-cover of a graph G is a family § of subgraphs of G such that every edge of G belongs to exactly k members of the
family g. A decomposition is a 1-cover, i.e. a family § such that {E(G') : G’ € §} is a partition of E(G).

If M is a set then let

G[M] = (V(G) N M, E(G) N [M]?); G\ M = (V(G), E(G) \ M).

So G \\ M denotes the graph obtained from G by removing all edges in M. If Vx, y(x,y € M <> {x, y} € M), then the graphs
GIM] and G \ M form a decomposition of G. _

If G is fixed, and A C V(G) then we write A for V(G) \ A. A cut of G is a set of edges of the form E(G) N [A, A] for some
A C V(G). A bond is a non-empty cut which is minimal among the cuts with respect to inclusion.

Fact22. () £ F C E(G) is a bond in G iff there are two distinct connected components C; and C, of G\ F such that
F=E(G) N[C, G]

The following statement will be used later several times.
Proposition 2.3. Assume that H is a subgraph of G, F is a bond in H. If F is not a bond in G then F C [D]? for some connected
component D of G\ F.

Proof. By Fact 2.2 there are two distinct connected components C; and C, of H \F such that F = E(H) N [Cq, G]. If Cy and
G, are subsets of different connected components of G, C; C Dy and C, C D,, then

F =[G, GINEMH) C [Dy, D] NE(G) C FU([D1, D] NE(G\F)) =F,

i.e. F = [Dy, D,]NE(G) and so F is a bond in G by Fact 2.2 above, which contradicts the assumptions. So C; and G, are subsets
of the same connected component D of G\ F. Thus F C [Cy, C;] C [D]2. O

Given a graph G for x # y € V(G) denote by y¢(x, ¥) the edge connectivity of x and y in G, i.e.
yc(x,y) = min{|F| : F C E(G) : F separates x and y in G}.
By the weak Erd6s-Menger Theorem there are y;(x, y) many edge disjoint paths between x and y in G.

2.3. Logic

The language of set theory is the first order language £ containing only one binary relation symbol €. So the formulas of
L are over the alphabet {V, —, (, )3, =, €} U Var, where Var is an infinite set of variables. To simplify our formulas we often
use abbreviations like Vx, —,x C y,3x, 3x € y ¢, etc.



L. Soukup / Discrete Mathematics 311 (2011) 1585-1598 1587
An L-structure is a pair (M, E), where E C M x M. In this paper we will consider only structures of the form (M, €| M)
where €] M is the restriction of the usual membership relation to M, i.e.
elM={x,y)eMxM:xey}.
We usually write (M, €) or simply M for (M, €| M).

If o(xq,...,xy) is a formula, a4, ..., a, are sets, then let ¢(ay, ..., a,;) be the formula obtained from ¢ (x4, ..., x,) by
replacing each free occurrence of x; with a;. [An occurrence of x; is free if it is not within the scope of a quantifier 3x;.]
If o(x,xq,...,%y) is a formula, aq, ..., a, are sets, then C = {a : ¢(a, ay, ..., a,)} is a class. Especially, every set b is a

class: b = {a : a € b}. Moreover, all sets form the class V: V = {a : a = a}. In this paper we will consider just these classes:
the sets and the “universal” class V.

For a formula ¢ (x4, ..., x,),aclass M, and for a4, . . ., a, € M we define when
ME e, ..., a), (2)
i.e. when M satisfies ¢(ay, . . ., a,), by induction on the complexity of the formulas in the usual way:

(i) M ="q; € q;" iff g; € a;.
({fi)y M E“pvy”iff M EgporM = .
(iii) M & “—¢”iff M = ¢ fails.
(iv) M = “Ix¢p(x, aq, ..., a,) " iff thereisana € M such that M &= “p(a, ay, ..., ap)".

For a formula ¢(x1, ..., x,) let @™ (x4, ..., x,) be the formula obtained by replacing each quantifier 3x with 3x € M in ¢.
Clearly for each ay, ..., a, € M,

oMy, ... a)) iff ME o, ..., a). 3)

If o(x1, ..., x,) is a formula, M and N are classes, M C N, then we say that ¢ is absolute between M and N,

M <,N (4)
in short, iff for each a;, ..., a, € M

M E=p(ay,...,ay) iff N Eoe(a,...,a). (5)
If X is a collection of formulas then write

M<xN (6)

iff M <, N foreach ¢ € X.
M is an elementary submodel of N,

M <N (7)

iff M <, N for each formula ¢.
If ¢ is absolute between M and V, then we say that ¢ is absolute for M.

Theorem 2.4 (Lowenheim-Skolem). For each set N and infinite subset A C N there is a set M such that A C M < N and
[M] = |A].

Since ZFC }+ Con(ZFC) by Gddel’s Second Incompleteness Theorem, it is not provable in ZFC that there is a set M with
M = ZFC. So, since V |= ZFC, it is not provable in ZFC that there is a set M with M < V. Thus, in the Lowenheim-Skolem
theorem above, the assumption that N is a set was essential. However, as we will see, the following result can serve as a
substitute for the Léwenheim-Skolem theorem for classes in certain cases.

Theorem 2.5 (Reflection Principle). Let X' be a finite collection of formulas. Then for each cardinal k there is a cardinal A such
that V, <x V,and [V,]<¢ C V.

We need some corollaries of this theorem. Let us recall that the cofinality cf(«) of an ordinal « is the least of the
cardinalities of the cofinal subsets of «. A cardinal « is regular iff « = cf(k).
Corollary 2.6. Let X be a finite collection of formulas, k an infinite cardinal, and x a set.

(1) Thereisaset M <5 V withx € M and [M| = «.

(2) If « > wis regular then thereisaset M <x V withx € M, M| < k and M Nk € k.

(3) If k® = « then thereis aset M <5 V such that x € M, M| = x, M Nk € «*, and [M]® C M.
(4) If « > wis regular then the set

S={MNk:xeM=<sV,MNk €k}

contains a closed unbounded subset of «.
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Proof. Fix a cardinal u > « with x € V,,. By the Reflection Principle there is a cardinal A > u such that V, <5V and
[Vi]© C V.

(1) Straightforward from the Lowenheim-Skolem theorem: since V, is a set, |V;| > «, and x € V, thereis M < V, with
x€ Mand [M| =«.ThenM <5 V.

(2) Construct a sequence (M, : n < w) of elementary submodels of V; with |M,| < « as follows. Let My be a countable
elementary submodel of V; with x € M. If M, is constructed, let &, = sup(M, N «). Since « is regular we have
on < k. By the Lowenheim-Skolem theorem there is an elementary submodel M, of V, such that M, U oy, C Mpy4
and |M41| = |[M, U ay| < k. Finallylet M = U{M,, : n < w}.Then M < V;,andsoM <y V,and M Nk = supa, € «.
(3) Construct an increasing sequence (M, : v < w) of elementary submodels of V, with |[M,| = « as follows. Let My be an
elementary submodel of V; with x U {x} C My and |[My| = «. For limit v let M, = U{Mg : 8 < v}. If M, is constructed,
let o, = sup(M, N k™). Since [M,| = k we have o, < «*.LetX, = M, U, U[M,]?. Then |X,| < «® = «. By the
Léwenheim-Skolem theorem there is an elementary submodel M, of V; with X, C M, and |M,41| = «. Finally let
M =U[M, : v < wy).Since k > w;, MN«+ =sup{a, : v < w1} € k. IfA € [M]® then there is v < w; withA C M,, and
soAeX, C M,;1 CM.
(4) Construct a continuous increasing chain of elementary submodels (M, : v < k) of V5 with |M, | < v + w as follows. Let
My be a countable elementary submodel of V, with x € M. For limit v let M, = U{Mg : B < v}.If M, is constructed, let
a, = sup(M, N k™). Since |[M,| < k and « is regular we have o, < «.LetX, = M, U (a, + 1). Since |X,| < v + o, by the
Lowenheim-Skolem theorem there is an elementary submodel M, of V; with X, C M, and |M, | = |X,|.

Then C = {&, : v < «} is a closed unbounded subset of k and C C S, because «, € S, is witnessed by M,. O

2.4. Absoluteness

A set b is definable from parameters a1, . . ., a, iff there is a formula ¢ (x) such that
Vx(p(x,aq,...,a,) < x=Db). (8)

We say that b is definable iff we do not need any parameters, i.e. Vx(¢(x) <> x = b).

Claim 2.7. If b is definable from the parameters ay, . .., a, € M by the formula ¢(x, y), and M <{Ixex.j) 0y} V. thenb € M.

Proof. Since M <3,,xj V,d € M and so M = 3xp(x, ), there is b’ € M such that M |= @(b', @). Thus M <5 V yields
VEe®l,d),andsob=b eM. O

Given aclass N we say that a formula ¢ (x4, . . ., x,, ¥) defines the operation F(’;’ inNiffN = Vxq, ..., x3yo (X1, ..., Xn, ¥),
and for eachay, ..., a,, b € N,FN(ay,...,a,) = biff N = ¢(ay, ..., a,, b).IfV = N then we omit the superscript V.

Given a class N we say that the operation F, is absolute for N provided ¢ defines an operation in N, and @ (X, y) is absolute
for N.

Claim 2.8. If the formula ¢ defines the operation F, in V, and we have M <(vzayeG.y).0G.y)} V. then ¢ defines an operation th” in
M, and F)! =F, | M.

Proof. Since M <vz3yuiy) V, foreach aq,...,a, € M thereisb € M such that M |= (@, b). Thus V = ¢(a, b), and so
F,(@) =b e M.IfM [= ¢(d, b) A ¢(@, b') thenV = ¢(@, b) A (@, b'),sob =b".Thus M = VxAlypX,y). O

3. First application of elementary submodels

In this section we present an example

e toillustrate our basic method,
e to indicate the main technical problem of this approach; and also
e to give a solution to that technical problem.

In [14] Nash-Williams proved that a graph G is decomposable into cycles if and only if it has no odd cut. In Section 5 we
give a new proof of this result. Let us say that a graph G is NW iff it does not have any odd cut. We will prove the Nash-
Williams Theorem by induction on |V (G)|. Since the statement is trivial for countable graphs, it is enough to decompose
an uncountable NW-graph G into NW-graphs of smaller cardinality. We will use “small” elementary submodels to cut the
graph G into the right pieces. To do so we need two lemmas, the first (and easy) one will serve as the first example of the
application of our method.

First we assume that we could work with a full elementary submodel of V, and we discuss later how to get around the
technical difficulties that arise in this naive approach.

Lemma 3.1. If G = (W, E) is an NW-graph, G € M < V, then G[M] = G[M N W] is also an NW-graph.
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Proof. Assume on the contrary that GIM] has an odd cut F = {fi, ..., fant1}. Since any cut is the disjoint union of bonds
we can assume that F is a bond. Since F cannot be a bond in G, by Proposition 2.3 there is a connected component D of G \ F
such that F C [D]?. Let bc € F.Then b and c are in D, D is connected, so there is a path bw;wy . . . wy,—1¢ between b and c in
G which avoids F.

Claim 3.2. [M]=“ C M.

Proof of the Claim. Consider the operations F;(x, y) = {x, y} and F,(z) = Uz. By Claim 2.8, there are formulas o+, 01, 03
and o} such that if N <{oi.0} V then N is closed under operation F;,i = 1, 2.

Since M < V, this yields that M is closed under F; and F. Since
{ao, ..., an} = Ul{ao, ..., an—1}, {an}} 9)
we obtain [M]<“ C M by inductiononn. O

Claim 3.3. w U {w} C M.

Proof of the Claim. ¢} and w are definable, so by Claim 2.7 there are formulas p; and p7, and p, and pj, respectively, such
thatif N <{o1.0}} Vthen® € N, and if N <{2.0%} V then w € N. Since M < V, this implies ¥, w € M.

Consider the operation F3(x) = xU{x}. By Claim 2.8, there are formulas o3 and o such that if N <{o3,0}) V then N is closed
under operation F3. Since M < V, this yields that M is closed under F5.So0 € Mandn+ 1 = F5(n) implyw C M. O

So we have F € M and m € M. Consider the following formula ¢(G, m, f, b, c, F):

Gis a graph, f is a function, dom(f) = m, ran(f) C V(G), (10)
f(@0) =b, fm—1) =cAVMi<m—1{f@(),f(i+ 1)} € E(G) \F.

Since
f ¢1(G,m,f, b, c, F), (11)

the assumption M <zy, G,mf.b,c,r) V and G, m, b, ¢, F € M imply that the same formula holds in M. So there is f € M such
that

wl(Ga m7f!b’C7F)' (12)

Since M <y, G,m.f,b,c.r) V We have

sJ,D,C,

@1(Ga m7f!b’C7F)' (13)

To complete the proof we need one more claim.

Claim 3.4. If g € M is a function, x € dom(g) N M, then g(x) € M.

Proof of the Claim. Consider the evaluation operation F4(g, y) = g(¥). By Claim 2.8, there are formulas o4 and o, such that
if N <0404} V then N is closed under operation Fy4. Since M < V, this yields that M is closed under the evaluation operation

Fy. O

By Claim 3.4 above, ran(f) C M N W, and so f(0)f(1)...f(m — 1) is a path between b and ¢ in G[M] which avoids F.
Contradiction. O

Soif M is a “small” elementary submodel of V, then G[M] is a “small” NW-subgraph of G. Unfortunately, as we explained
before the formulation of the Reflection Principle, we cannot get any set M with M < V by the Second Incompleteness
Theorem of Gédel. So we cannot apply the lemma above to prove the Nash-Williams Theorem.

Fortunately, this is just a technical problem because one can observe that in the proof above we have not used the full
power of M < V, we applied the absoluteness only for finitely many formulas between V and M. Namely, we used only the
absoluteness for the formulas from the family

2t =Aoi,0/,:1=1,2,3,4U{p, o}, j = 1,2} U {Ff¢1, o1} (14)
So actually the proof of Lemma 3.1 yields the following result.
Lemma 3.5. If G = (W, E) is an NW-graph, G € M <5 V for some large enough finite set X of formulas, then G[M] is also an
NW-graph.
In many proofs we will argue in the following way:

(I) using the Reflection Principle we can find a cardinal A such that V; resembles V in two ways:
(1) [Vi]* C V; for some large enough cardinal «, and
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(2) V5, <5 V for some large enough finite collection X of formulas.
We cannot use the model V; directly, because it is too large, but

(I) since V, is a set, we can use the Lowenheim-Skolem Theorem to find a small elementary submodel M of V; which
contains G.

Then M <5 V.
We do not fix X in advance. Instead of this we write down the proof, and after that we put all the formulas for which we
used the absoluteness into X. Actually, apart from the proof of Lemma 3.5 above, we will not construct X explicitly.

Remark. We will show later that if ¥ is large enough then G\ M is also an NW-graph, so the pair (G[M], G\\M) is a
decomposition of G into NW-graphs.

3.1. More on absoluteness

In Claim 3.6 below we summarize certain observations we made in the proof of Lemma 3.1 above.

Claim 3.6. There is a finite collection Xy of formulas such that if M <z, V then [M]=* C M, o U {w} C M, and f(x) € M for
each function f € M and x € dom(f) N M.

We need two more easy claims.

Claim 3.7. There is a finite collection X1 of formulas such that if M <y, V then foreach A € M if |A| C M then A C M.
Proof. Let X'y O X be a finite family of formulas such that

(1) the formulas “f is a bijection between x and y” and “3f (f is a bijection between x and y)” are in X'y,
(2) if M <5, V then M is closed under the “cardinality” operation A > |A].

Assume that |A| = k. Then k € M by (2). Since V = “Jf f is a bijection between «x and A” there is f € M such that M =
“f is a bijection from k onto A”. Then f is a bijection from « to Aby (1). Soif a € A then there is « € « such that f («) = a. We
assumed that [A| C M,so«a € M as well. Thus f, « € M implies f(«) €e Mby ¥ D Xg. ThusAC M. O
Claim 3.8. If M <5,ux, V then for each countable set A € M we have A C M.

Proof. If A is countable then |A| = @ C M by Claim 3.6 because M <5, V. Thus A C M by Claim 3.7 because M <5, V. O

4. Classical theorems

In this section we prove some classical theorems using elementary submodels. The Erdds-Rado Theorem was proved by
Stephen G. Simpson, (see [16] and [3, Theorem 7.2.1]) using this technique, and in the late seventies the method became
widely known among the set theory specialists, so the other proofs in this section are all from the folklore.

A family « is called a A-system with kernel D iff AN A" = D for each A # A’ € A. A A-system is a A-system with some
kernel.

Theorem 4.1. Every uncountable family 4 of finite sets contains an uncountable A-system.

Proof. We can assume that 4 C [w1]~“.
Let X be a large enough finite set of formulas. By Corollary 2.6(1) there is a countable set M such that 4 € M <5 V.
Since # is uncountable, we can pickA € 4 \ M. Let D = M N A. Since [M]=“ C M we have D € M by Claim 3.6. Let

B = {8 C 4 : Bisa A-system with kernel D}. (15)
Since A, D € M we have B € M as well. Moreover,

38 (B isa C -maximal element of B). (16)
Since M < x V, and the parameter B is in M, there is 8 € M such that

M E (Bisa C -maximal element of B). (17)
Since M <5 V, we have

Bisa C -maximal element of B. (18)

Claim. B is uncountable.

Assume on the contrary that 8 is countable. Then, by Claim 3.8, M <5 V implies 8 C M. Let ¢ = B U {A}. Since A ¢ M,
C 2D B.IfBe B,thenBe MandsoBC MandD CANBCANM = D.SoC 2 B isa A-system with kernel D, i.e. 8 was
not a C-maximal element of B. This contradiction proves the claim. O
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Remark. In each proof of this section we will argue in the following way. Let + be a structure of “size” k. Let M <5 V for
some large enough finite family X' of formulas with A € M and |[M| < «, i.e. M is a “small” elementary submodel which
contains, as an element, a “large” structure ». Since M has less elements than the size of 4, there is A from 4 such that
A € M. Then this A has some “trace” D on M. If M is “closed enough” then this trace D is in M. Using this trace we define, in
M, a maximal, “nice” substructure 8 of 4. Then, using the fact that A ¢ M, we try to prove that B is large “enough”.

In the above proof we could use an arbitrary countable elementary submodel M of V, with A € M. However, in the next
proof we need elementary submodels with some extra properties.

Theorem 4.2. If A is a family of finite sets such that k = || is an uncountable regular cardinal, then A contains a A-system
of size k.

Proof. We can assume that A C [«]=%.

Let X be a large enough finite set of formulas. By Corollary 2.6(2) there is a set M with |[M| < « suchthat 4# € M <5V
and M N« € k.

Since |4| = k, we can pickA € A \ M. Let D = M N A. Since [M]=® C M we have D € M by Claim 3.6. Then

A8 (B C Ais C -maximal among the A-systems with kernel D). (19)
Since M < x V, and the parameters + and D are in M, there is 8 € M such that

M = (8 C 4 is C -maximal among the A-systems with kernel D). (20)
Since M <5V,
B C Ais C -maximal among the A-systems with kernel D. (21)

Claim. |8| = «.

Assume on the contrary that |B| < k. Since 8 € M we have |B| € M N k. Thus |8| C M and so 8 C M by Claim 3.7.
LetC = BU{ALIfBe B,thenBe MandsoB C MbyM <5 V.ThusBNA = D.So C 2 B isa A-system with kernel
D. Contradiction. O

To prove the next theorem we need elementary submodels with one more additional property.
Theorem 4.3. If k“ = « then every family A = {A, : @ < kT} C [kT]? contains a A-system of size «k+. Especially, every
family A = {Ay : @ < ¢} C [c¢T]? contains a A-system of size ¢*.

Proof. Let X be alarge enough finite set of formulas. By Corollary 2.6(3) there is a set M with |[M| = « suchthatA € M <3 V,
MNk* ek and [M]® C M.

Since || = kT > |M|, we can pickA € A\ M.LetD = M NA.Then D € [M]=?. Since [M]=® C M by Claim 3.6, and we
assumed [M]® C M, we have D € M.

Then

A8 (B C A is C -maximal among the A-systems with kernel D). (22)
Since M <5 V and [M]“ C M, the parameters 4 and D are in M, so there is 8 € M such that

M = (8 C 4 is C -maximal among the A-systems with kernel D). (23)
Since M <5 V,

B C A is C -maximal among the A-systems with kernel D. (24)

Claim. |8| = «™.

Assume on the contrary that | 8| < k. Thus |8] C ¥k C M and so 8 C M by Claim 3.7.
LetC = BU{A}.IfBe B,thenBe MandsoBC MandANB=DbyM <5 V.So C 2 B isa A-system with kernel D.
Contradiction. O

Next we prove two classical partition theorems. First we recall (a special case of) the arrow notation of Erdés and Rado.
Assume that «, 8 and y ordinals. We write

a—(B,y) (25)

iff given any function f : [@]> — 2 there is a subset B C « of order type 8 with f”[B]*> = {0}, or there is a subset C C « of
order type y with f’[C]> = {1}.

Theorem 4.4 (Erdés-Dushnik-Miller). If k = cf(k) > w thenk — (k, w + 1)%
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Fig. 1. Erdés-Dushnik-Miller Theorem.

Proof. Fix a coloring f : [x]*> — 2.

Let X be a large enough finite set of formulas. By Corollary 2.6(2) there is a set M with |[M| < « such thatf e M <z V
and M N« € k.

Fix & € k \ M. Let A be a C-maximal subset of M N « such that A U {£} is 1-homogeneous. If A is infinite, then we are
done (see Fig. 1).

Assume that A is finite. Let

B={Bex\A: YaeAf(B,a)=1}. (26)

Clearly & € B.Since f,A € M we have B € M. Let C C B be a C-maximal 0-homogeneous subset.

Claim. |C| = «.

Assume on the contrary that |C| < «.Then |[C| € M N« and so |[C|] C M because M Nk € «.Thus C C M by Claim 3.7.
Lety € C.Since y € M \ A we have that AU {y} U {£} is not 1-homogeneous. But A U {£} is 1-homogeneous and y € B,
so f(y,&) = 0. Thus C U {£} is 0-homogeneous. Since £ € B, we have £ € C by the maximality of C, which contradicts
BCM. O

Theorem 4.5 (Erdés-Rado). ¢t — (¢t, w1 + 1)%

Proof. Fix a functionf : [¢T]? — 2.

Let X be a large enough finite set of formulas. By Corollary 2.6(3) there is a set M with |[M| = c¢such thatf € M <5V,
MNe¢t et and [M]? C M.

Pick & € ¢\ M.

Let A be a C-maximal subset of M N « such that AU {£} is 1-homogeneous. If A is uncountable, then we are done.

Assume that A is countable. Since [M]® C M, we have A € M.

Let

B={Bek\A:YVaeAf(B,a) =1}. (27)

Since f,A € M we have B € M. Let C C B be a C-maximal 0-homogeneous subset.

Claim. |C| = ¢t

Assume on the contrary that |C| < ¢. Then |C| C ¢ C M andsoC C M by Claim 3.7.Lety € C.Sincey € M \ A we
have that AU {y} U {£} is not 1-homogeneous. But A U {£} is 1-homogeneous and y € B,sof(y,&) = 0.Thus C U {&} is
0-homogeneous. Since £ € B, we have & € C by the maximality of C, which contradictsBC M. O

Given a set-mapping F : X — £ (X) we say thata subset Y C X is F-freeiffy’ & F(y) fory #y €Y.

Theorem 4.6. If x = cf(k) > wand F : k — [k]=“ then there is an F-free subset C of size k.

Proof. Let X be alarge enough finite set of formulas. By Corollary 2.6(2) there is a set M with |[M| < k suchthatF e M <5 V
andM Nk € k.
Leté € k \MandA = F(§) N M. Let C be a C-maximal F-free subset of x \ A. Since F, A € M we can assume that C € M.

Claim. |C| = «.

Assume on the contrary that |C| < «. Then C € M by Claim 3.7. Since F(y) C Mfory €e CandF(§)NC CANC = @ we
have that C U {£} is also F-free. So C was not C-maximal. Contradiction. O

First we prove a weak form of Fodor’s Pressing Down Lemma. A function f mapping a set of ordinals into the ordinals is
called regressive iff f (o) < « for each @ € dom(f).

Theorem 4.7. If k = cf(k) > w, f : kK — « is a regressive function then there is n < « such that f~1{n} is unbounded in k.
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Proof. Let X be alarge enough finite set of formulas. By Corollary 2.6(2) there is a set M with [M| < « suchthatf e M <5 V
and M N« € k.

Let £ = sup(M N«) and consider n = f(£). We claim that T = f~!{5} is unbounded in «. Since n € £ = M N« we have
T € N.IfT is bounded, then supT € M Nk = &. However £ € T, so T should be unbounded. O

Theorem 4.8 (Fodor’s Pressing Down Lemma). If k = cf(x) > w, S C « is stationary, and f : S — « is a regressive function
then there is an ordinal n < « such that f ~'{n} is stationary.

Proof. Let X be a large enough finite set of formulas. By Corollary 2.6(4) there is a set M with |M| < &« such that
S,feM=<gVandé =MNk €8S.

Letn = f(&). We show that T = f~!{n}is stationary. Clearly T € M.IfT is not stationary then there is a closed unbounded
setC € Msuchthat CNT = @.

Claim. sup(M N«) € Cif C € M is a closed unbounded subset of «.

Since C is closed, if sup(M N«) ¢ C then there is @ < sup(M N«) such that (C\ o) "M = #.Then M = “C \ @ = #”. Thus
VE“C\a=0"ie C C «, which contradicts the assumption that C is unbounded.
So by the claim & € C N T. Contradiction. O

5. Decomposition theorems

In the previous section we proved theorems which claimed that “Given a large enough structure A we can find a large
enough nice substructure of A”. In this section we prove results which have a different flavor: every large structure having
certain properties can be partitioned into “nice” small pieces.

In [14] the following statements were proved.

Theorem 5.1 (Nash-Williams). G is decomposable into cycles if and only if it has no odd cut.

We give a new proof which illustrates how one can use “chains of elementary submodels”. To do so we need two lemmas.
The first one was proved in Section 3.

Lemma 3.5. If G = (W, E) is an NW-graph, G € M <5 V for some large enough finite set X of formulas, then G[M] is also an
NW-graph.

The second one is the following statement.

Lemma5.2. If G = (W, E) is an NW-graph, G € M <5 V for some large enough finite set X of formulas, then G \ M is also an
NW-graph.

Lemma 5.2 above follows easily from the next one.

Lemma 5.3. Assume that M <x V with [M| C M for some large enough finite set X of formulas. If G € M is a graph,
x#yeV(G) andF C E(G\ M), such that

Fl<IMl, v\, &y > 0 and F separates x and y in G \ M (28)
then

F separates x and y in G. (29)

Proof of Lemma 5.2 from Lemma 5.3. Assume on the contrary that G \ M has an odd cut F. Since any cut is the disjoint
union of bonds we can assume that F is a bond.
Pick cic; € F. Then clearly yc\\M(cl, c;) > 0. Moreover F separates c¢; and c; in G\M,soF separates them in G by

Lemma 5.3, i.e. ¢y and ¢, are in different connected components of G \F.
However F cannot be a bond in G, so by Proposition 2.3 there is a connected component D of G \ F such that F C [D]2.
i.e. ¢ and c; are in the same connected component of G \ F. This contradiction proves the lemma. O

Proof of Lemma 5.3. Assume that G, M, x, y and F form a counterexample (see Fig. 2).

Fix a path P = pop; . ..pn from x to y in G\ M which witnesses that yG\\M(x,y) > 0,ie.pp = x,pn = y and
piPiv1 € E(G) \ M fori < n.

We assumed that F does not separate x and y in G, so there is a path Q = qq...q, from x to y witnessing this fact,
i.e.qo = X, qm =y and gjqj;1 € E(G) \ F for j < m. Since F separatesx and y in G \'M there is at least one j* < m such that
gj<gj++1 € M.

Letj, = min{j : ¢ € M} and j, = max{j : g; € M}. Since j, < j* andj, > j* + 1 we have j; < j,.Letx' =g, andy’ = qj,-
Let Q« = ¢, Gjy—1- - - 9190 and Qy = GmQm—1 - - - gj,- Then Q,PQy is a walk from X' to y" in G \ M. Hence Y\ M(x/, y) > 0.
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Fig. 2. F does not separate x and y in G.

Claim. y;(x',y") > |M|.

Indeed, assume that A = y;(x',y") < |M|.Since M <5y V andx’,y’ € M thereis A € M N [V(G)]* such that A separates
X and y’ in G. Since |A| = A C M we have A C M. So M separates x’ and y/, i.e. Y\ M(x/, y") = 0. This contradiction proves
the claim.

By the weak Erdds-Menger Theorem there are y;(x’, y') many edge disjoint paths between x’ and ¥’ in G. Since M UF| =
IM| < y6(x',y') there is a path R = ro ... 1y from X' to y’ which avoids M U F. Then Q;'RQ, " is walk from x to y in G \Mm
which avoids F. Contradiction. O

Proof of Theorem 5.1. We prove the theorem by induction on |V (G)|.

If G is countably infinite then for each e € E(G) there is a cycle C in G with e € E(C) because e is not a cut in G. Moreover,
G\ C is also an NW-graph, i.e. it does not have odd cuts. Using this observation we can construct a sequence {C; : i < w} of
edge disjoint cycles in G with E(G) = U{E(G) : i < w}.

Assume now that k = V(G) > w and we have proved the statement for graphs of cardinality < «.

Let X be a large enough finite set of formulas. By the Reflection Principle 2.5 there is a cardinal A such that V; < V and
[VA]K c V. Then G € V.

We will construct a sequence (M, : @ < «) C V; of elementary submodels of V, with

My| =+ |a|, o CMyandM, € My11q (*q)
as follows:
(i) let My be a countable elementary submodel of V, with G € My;
(ii) if B < « is a limit then let Mg = U{M,, : o < B}.Since [Mg| < w + |B| < k and Mg C V, we have Mg € V;;
(iii) if B = a + 1 then [M, U {My} U B| = o + |B] so by the Léwenhein-Skolem Theorem there is Mg < Vj with
My U {My} U B C Mg and [Mg| = w + |B].
The construction clearly guarantees (). Using the chain (M, : « < x) decompose G as follows:
o fora <k let G, = (G \ My)[Myi1].

By Lemma 5.2 the graph G, = G \ M, is NW. Moreover, since M, € M1 we have G\M, € Mgy11. So we can apply
Lemma 3.5 for M, 11 and G,, to deduce that G, is NW.

So we have decomposed the graph G into NW-graphs {G,, : @ < «}. Moreover, |V (G,)| < |[My+1| < ® + |¢| < «, so by
the inductive hypothesis, every G, is the union of disjoint cycles. So G itself is the union of disjoint cycles which was to be
proved. O

5.1. General framework

If @ is a graph property then we write G € @ to mean that the graph G has property ®.
We say that a graph property @ is well-reflecting iff for each graph G € @ whenever G € M <5 V with |[M| C M for some
large enough finite set X of formulas, we have both GIM] € ® and G\ M € &.

Theorem 5.4. Let @ be a well-reflecting graph property. Then every graph G € @ can be decomposed into a family {G; : i €
I} C @ of countable graphs.

To prove this theorem we need to introduce the following notion. Let x and X be cardinals. We say that (M,, : @ < «) is
a k-chain of submodels of V; iff
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(1) the sequence (M, : o < k) C V, N [V,]=¥ is strictly increasing and continuous (i.e. Mg = U{M, : o« < B} for limit 8);
(2) My < V,,a C My and M, € My for o < «.

Fact 5.5. If [V, ]=* C V,, then for each x € V,, there is a x-chain of elementary submodels (M,, : @ < «) of V, withx € My and
o C M, for a < k.
Proof. Actually such a chain was constructed in the proof of Theorem 5.1. O

Proof of Theorem 5.4. By induction on |G|. If |G| is countable then there is nothing to prove.

Assume that G = (k, E) and k > w. By the Reflection Principle 2.5 there is a cardinal A such that V; <s V and [V, ]* C V,.
Then, by Fact 5.5 there is a k-chain of elementary submodels of V;, with G € My. Fora < « let G, = (G \ My )[My1]. Since
@ is well-reflecting, the graph G, = G \ M, is in ®. Moreover, since M,, € M1 we have G \M, € M, +1. So applying once
more the fact that @ is well-reflecting for My, and G, we obtain that G, is in @.

So we have decomposed the graph G into graphs {G, : « < x} C @. However |V(G,)| < [My+1] < w + || < k, so by
the inductive hypothesis, every G, has a decomposition 4, into countable elements of @. Then § = U{4, : @ < «} is the
desired decomposition of G. O

Theorem 5.6. Let @ and ¥ be graph properties. Assume that

(1) @ is well-reflecting;
(2) if H € @ is a countable graph thenH € ¥;
(3) if G has a decomposition {G; : i € I} with G; € ¥ then G € V.

Then G € @ implies G € ¥.

Proof. Theorem 5.4 and (1) yield that G has a decomposition into countable graphs {G; : i € I} C ®.By(2),{G;:i eI} C V.
Finally, by (3), this implies G € ¥ which was to be proved. O

In Lemmas 3.5 and 5.2 we proved that the graph property “there is no odd cut” is well-reflecting.
As we will see, Theorem 5.6 can be applied as a “black box” principle in many proofs.

5.2. Applications of Theorem 5.6
First we give a new proof of a result of Laviolette.

Theorem 5.7 ([13, Corollary 1]). Every bridgeless graph can be partitioned into countable bridgeless graphs.

Proof. We need the following lemma.

Lemma 5.8. The “bridgeless” property is well-reflecting.

Proof of Lemma 5.8. Assume that G is a graph and G € M <5 V for some large enough finite family X of formulas.
(1) Assume that an edge e = xy is a bridge in G[M]. Then

M k= e separates x and y, (30)
so,byM <5V
V |= e separates x and y, (31)

i.e. eis abridge in G.

(2) Assume that an edge e = xy is a bridge in G \ M. Then e separates x and y in G \ M, so by Lemma 5.3, e separates x and y
inG,i.e.eisabridgeinG. O

By Lemma 5.8, we can apply Theorem 5.4 to get the statement of this theorem. O

Let us formulate two corollaries.

Corollary 5.9 (Laviolette, [13, Theorem 1]). Every bridgeless graph has a cycle w-cover.

Proof. Every countable bridgeless graph clearly has a cycle w-cover, and by the previous theorem every bridgeless graph
can be partitioned into countable bridgeless graphs. O

It is worth mentioning that in [ 13] Theorem 5.7 was a corollary of Corollary 5.9.
Before formulation of the second corollary let us recall the following conjecture of Seymour and Szekeres.

Cycle Double Cover Conjecture. Every bridgeless graph has a cycle double cover.

Since every bridgeless graph can be partitioned into countable bridgeless graphs, we obtain.
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Corollary 5.10 (Laviolette, [13]). If the Cycle Double Cover Conjecture holds for all countable graphs then it holds for all graphs.
Next we sketch two more applications.
In [14] the following statements were also proved.

Theorem 5.11 (Nash-Williams). (1) A graph G can be decomposed into cycles and endless chains if and only if it has no vertex
of odd valency. (2) G is decomposable into endless chains if and only if it has no vertex of odd valency and no finite non-trivial
component.

Let us recall that a connected component is non-trivial if it has at least two elements.
Proof of 5.11. For j = 1, 2 we say that a graph G is NW; iff G satisfies the assumption of statement (j) from 5.11.

Lemma 5.12. The statements of Theorem 5.11 hold for countable graphs.
The proof of Lemma 5.12 is left to the reader.

Lemma 5.13. The following graph properties are well-reflecting:

(1) there is no vertex of odd valency
(2) there is no finite non-trivial component.

Proof of Lemma 5.13. (1) Assume that in G there is no vertex of odd valency. Let G € M <5 V with |M| C M for some large
enough finite set X of formulas.
Claim. There is no vertex of odd valency in G[M].

Indeed, let x € V(G[M]) = V N M be arbitrary, and assume that the set A = {v € V(G[M]) : vx € E(G[M])} is finite.
Since A C M, we have A € M by Claim 3.6, and for each v € V(G[M]) we have v € A iff vx € E(G) N M. Thus

MEA={veV(@):uvxeE®G), (32)
so, by M <5 V, we have
ViEA={veV(G):vxeE®G) (33)

ie.A={v € V(G) : vx € E(G)}. Thus d¢(x) = dgm;(x), which proves the claim.

Claim. There is no vertex of odd valency in G \ M.

Let x € V be arbitrary. If x ¢ M, then G(x) = (G \ M)(x) because E(G) \ E(G\ M) C [M]> C M, so dG\\M(X) = d¢g(x)
cannot be odd.

Assume x € M. If dg(x) < |M| then {v € V(G) : vx € E(G)} € M implies {v € V(G) : vx € E(G)} C M by Claim 3.7
because |M| C M, and so dG\\ M(x) = 0.If dg(x) > |M| then dg(x) = dG\\M(x). So dG\\ M(x) cannot be an odd natural
number.

(2) Assume that in G there is no finite component. Let G € M <5 V with |M| C M for some large enough finite set X of

formulas.
Claim. There is no finite non-trivial component in G[M .
Let x € V(G) N M and assume that x has a finite component C in G[M]. Then C € M and
M = C is the component of x, (34)
o)
V = C is the component of x, (35)

i.e. G has finite component.

Claim. There is no finite non-empty component in G \ M.

Assume that there is a finite non-trivial component C in G\ M. Since C is not a component in M there is an edge
cd € E(G) N M with ¢ € C. Since C is non-trivial there is ¢’ € C such that cc’ is an edge in G\M. Then ¢ € M and
¢ € M.

Since dg(c) < |M| would imply ¢’ € {c* : cc* € E(G)} C M we have dg(x) > |M|. However {c* : cc* € E(G)} \M C C,
and so |C| > |M|. Contradiction. O

We want to apply Theorem 5.6. Let ®; be the property NW; fori = 1, 2, and ¥ be “decomposable into cycles and endless
chains”, and ¥, be “decomposable into endless chains”.

Then condition 5.6.(1) holds by Lemma 5.13, 5.6.(2) is true by Lemma 5.12. 5.6.(3) is trivial from the definition. Putting
these things together we obtain the theorem. 0O
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6. Bond-faithful decompositions
In this section we prove a decomposition theorem in which we cannot apply Theorem 5.6.

Definition 6.1. Let « be an infinite cardinal. A decomposition # of a graph G is «-bond faithful iff [E(H)| < « foreachH € #,

(i) any bond of G of cardinality < « is contained in some member of the decomposition,
(ii) any bond of cardinality < « of a member of the decomposition is a bond of G.

Theorem 6.2 (Laviolette, [13, Theorem 3]). Every graph has an w-bond-faithful decomposition, and with the assumption of GCH,
every graph has a k-bond-faithful decomposition for any infinite cardinal .

Applying methods of elementary submodels leads more naturally to a simpler proof of the theorem above that does not
rely on GCH.

Theorem 6.3. For any cardinal k every graph has a k-bond-faithful decomposition.

The following lemma is the key to the proof.

Lemma 6.4. Let G be a graph, G € M <5 V with u = |M| C M for some large enough finite set X of formulas.
(I) If F C E(G[M]) is a bond of G[M] with |F| < |M| then F is a bond in G.
(II) If F C E(G) is a bond of G\ M with |F| < |M| then F is a bond in G.

Proof of 6.4. (I) Assume on the contrary that F is not a bond in G. Pick xx' € F. Then by Proposition 2.3 x and x’ are in the
same connected component D of G \ F, and so there is a pathP = x1x3...%,,in G \F, x; = x, x, = x. Choose the path in
such a way that the cardinality of the finite set

Ip = {i: xxiy 1 &€ M} (36)

is minimal. Since F is a cut in G[M] we have I, # . Leti = minl,. Thenx; € M. Letj = min{j > i : x; € M}.Thenj > i+ 1,
X;, Xj € M, and moreover y(c Y \ F(xi, x;) > 0.

Claim 6.5. If x,y € M, yG\\M(x,y) > 0 then ygm (%, y) = M.

Proof of the Claim. There is a vertex set A € [V (G)]*¢*¥ such that A separates x and y in G. We assumed that X is large
enough, especially it contains the formulas ¢ (A, x, y, G) and 3A ¢ (A, x, y, G), where ¢(A, x, y, G) is the following formula:

A € [V(G)]E™Y is a vertex set which separates x and y in G.

Since M <5 V, and the parameters G, x, y are in M, there is an A in M such that M = ¢(A,x,y,G).SoV &= ¢(A, x,y, G),
ie. A € [V(G)]¢™¥ N M is a vertex set which separates x and y in G.
If yo(x,y) < u C MthenA € M impliesA C M by Claim 3.7, and so M separates x and y in G. Thus yG\\M(x, y)=0.

But A M(x, y) > 0, so we have y;(x,y) > |M| > w. So, by the weak Erdés-Menger Theorem there is a family # =
{py : v < yc(x,y)} of yc(x, y) many edge disjoint paths between x and y in G. Since G, x, y € M we can find such a &# in M.
Butu C M,so{p, : v < u} C M. Thus there are u-many edge disjoint paths betweenx andy in M, i.e. ygpuy(x, y) = . O

By the claim yg (%i, X)) = . So, by the weak infinite Menger Theorem, there are 1 many edge disjoint path in G[M]
between x; and x;. Since |F| < u, thereisapath Q = x;y1 ... yxx; in GIM] which avoids F. Then P’ = X1 ... Xy1 ... YkXj ... Xn
is a path between x; and x,, in G \ F with |Ip| < |Ip|. Contradiction.

(II) Let c1c € F.Then Yo\ M(c1, cy) > 0, F separates ¢y and ¢; in G \ M, so F also separates ¢ and ¢, in G by Lemma 5.3. In

other words, c; and ¢, are in different connected components of G \ F, and so F should be a bond in G by Proposition 2.3. O

Proof of Theorem 6.3. By induction on |V (G)|.If |V(G)| < « then the one element decomposition {G} works.

Assume that G = (u, E), and u > k. Let X be a large enough finite set of formulas. By the Reflection Principle 2.5 there
is a cardinal A such that V, <x V and [V, ]* C V,.

By Fact 5.5 there is a i-chain of elementary submodels (M,, : @ < u) of V5 with G, k € Mg and o« C M, for @ < . Since
Kk < panda C M, for @ < pu, we can assume that « C Mp.

Using the chain (M,, : « < w) partition G as follows:

o foro < pulet Gy = (G\My)[Mg].
LetG, =G \ M, By Lemma 6.4(II)
e any bond of cardinality < « of G, is a bond of G.
Moreover, since M, € M,1 we have G \ Mg € My41. So we can apply Lemma 6.4(I) for M, and G, to derive that

e any bond of cardinality < « of G, is a bond of G,.
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Putting these together
o any bond of cardinality < « of G, is a bond of G.

Moreover |V (Gy)| < |My+1] < @ + || < u, so by the inductive hypothesis, every G, has a «-bond faithful decomposition
Hy. Let H = U{H, : o < p}. #H clearly satisfies 6.1(ii): if F is a bond of some H € #,, with |F| < «, then F is a bond of G,
and so F is a bond of G by (o).

Finally we show that # satisfies 6.1(i) as well. We recall one more result of Laviolette.

Theorem 6.6 ([13, Proposition 3]). For any cardinal x every graph has a decomposition X which satisfies 6.1(i) and |[E(K)| < «
foreachK € X.

Let us remark that GCH was assumed in [ 13, Proposition 3], but in the proof it was not used.
Let ¢(G', ¥/, X') be the following formula:

X' is a decomposition of G’ which satisfies6.1(i) and |E(K)| < « for each K’ € X'.

Since X was “large enough” we can assume that it contains the formulas ¢ (G, ', X’) and 3K ¢ (G, k', X’).Since My <5 V,
and G, x € My we have a X € My such that ¢(G, «, X) holds, i.e. X is a decomposition of G which witnesses 6.1(i) and
|[E(K)| < k foreach K € K. Assume that A is a bond of G with |A| < k. Then there is K € X such that A C E(K). Let « be
minimal such that E(K) N My1 # @, and pick e € E(K) N My41. Then K is definable from the parameters X, e € M, by
the formula “K € K Ae € K”.So K € My4+1 by Claim 2.7. Thus A C E(K) C E(G,). Since, by the inductive assumption, the
decomposition #,, satisfies 6.1(i) there is H € #,, withA C E(H).ButH € #, so we are done. O
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