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a b s t r a c t

The use of elementary submodels is a simple but powerful method to prove theorems, or
to simplify proofs in infinite combinatorics. First we introduce all the necessary concepts
of logic, then we prove classical theorems using elementary submodels. We also present
a new proof of Nash-Williams’s theorem on cycle decomposition of graphs, and finally we
improve a decomposition theorem of Laviolette concerning bond-faithful decompositions
of graphs.
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1. Introduction

The aim of this paper is to explain how to use elementary submodels to prove new theorems or to simplify old proofs in
infinite combinatorics. This papermainly addresses novices learning this technique:we introduce all the necessary concepts
and give easy examples to illustrate our method, but the paper also contains new proofs of theorems of Nash-Williams on
decomposition of infinite graphs, and an improvement of a decomposition theorem of Laviolette concerning bond-faithful
decompositions.

The first known application of this method is due to Stephen G. Simpson (see [16] and the proof of [3, Theorem 7.2.1])
who proved the Erdős–Rado Theorem using this technique, and indicated that ‘‘one can give similar proofs for several other
known theorems of combinatorial set theory . . . .’’

Our aim is to popularize amethod instead of giving just ‘‘black box’’ theorems.
In Section 2 we recall and summarize all necessary preliminaries from set theory, combinatorics and logic.
In Section 3 we give the first application of elementary submodels, and we explain why it is natural to consider Σ-

elementary submodels for some large enough finite familyΣ of formulas.
In Section 4 we use elementary submodels to prove some classical theorems in combinatorial set theory. All these

theorems have the following Ramsey-like flavor: every large enough structure contains large enough ‘‘nice’’ substructures.
In Section 5 we prove structure theorems of a different kind: every large structure having certain properties can be

partitioned into small ‘‘nice’’ pieces. A typical example is Nash-Williams’s theorem on cycle decomposition of graphs without
odd cuts. To prove these structure theorems it is not enough to consider just one elementary submodel but we should
introduce the concept of chains of elementary submodels.
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Finally, in Section 6, we give a more elaborate application of chains of elementary submodels to eliminate GCH from a
theorem concerning bond-faithful decomposition of graphs.

This paper addresses persons who are interested in infinite combinatorics, but who are not set theory specialists. If you
want to study more elaborate applications of these methods, see the survey papers of Dow [5] and Geschke [6], or the book
of Just andWeese [10, Chapter 24]. These papers are much more technical than the current one, but they also contain many
applications in set theoretic topology.

For applications of thesemethods in infinite combinatorics, see also [2,7,8,11]. Chains of elementary submodels also play
a crucial role in the proof of some key results of the celebrated pcf theory of Shelah; see [15] or [1].

2. Preliminaries

2.1. Set theory

We use the standard notions and notation of set theory; see [9] or [12]. If κ is a cardinal and A is a set, let

[A]
<κ

= {a ⊂ A : |a| < κ}; [A]
κ

= {a ⊂ A : |a| = κ}. (1)

If X and Y are sets let [X, Y ] = {{x, y} : x ∈ X, y ∈ Y }.
We denote by V the class of all sets, and by On the class of all ordinals. The cumulative hierarchy ⟨Vα : α ∈ On⟩ is defined

by transfinite induction on α as follows:
(1) V0 = ∅.
(2) Vα+1 = P (Vα).
(3) Vβ = ∪{Vα : α < β} if β is a limit ordinal.

Fact 2.1. V = ∪{Vα : α ∈ On}, i.e. for each set x there is an ordinal α such that x ∈ Vα .

2.2. Combinatorics

We use the standard notions and notation of combinatorics; see e.g. [4]. A graph G is a pair ⟨V (G), E(G)⟩, where
E(G) ⊂ [V (G)]2. V (G) and E(G) are the sets of vertices and edges, respectively, of G. We always assume that V (G)∩E(G) = ∅.

A κ-cover of a graph G is a family G of subgraphs of G such that every edge of G belongs to exactly κ members of the
family G. A decomposition is a 1-cover, i.e. a family G such that {E(G′) : G′

∈ G} is a partition of E(G).
If M is a set then let

G[M] = ⟨V (G) ∩ M, E(G) ∩ [M]
2
⟩; G M = ⟨V (G), E(G) \ M⟩.

So G M denotes the graph obtained from G by removing all edges in M . If ∀x, y(x, y ∈ M ↔ {x, y} ∈ M), then the graphs
G[M] and G M form a decomposition of G.

If G is fixed, and A ⊂ V (G) then we write Ā for V (G) \ A. A cut of G is a set of edges of the form E(G) ∩ [A, Ā] for some
A ⊂ V (G). A bond is a non-empty cut which is minimal among the cuts with respect to inclusion.

Fact 2.2. ∅ ≠ F ⊂ E(G) is a bond in G iff there are two distinct connected components C1 and C2 of G F such that
F = E(G) ∩ [C1, C2].

The following statement will be used later several times.

Proposition 2.3. Assume that H is a subgraph of G, F is a bond in H. If F is not a bond in G then F ⊂ [D]
2 for some connected

component D of G F .

Proof. By Fact 2.2 there are two distinct connected components C1 and C2 of H F such that F = E(H) ∩ [C1, C2]. If C1 and
C2 are subsets of different connected components of G, C1 ⊂ D1 and C2 ⊂ D2, then

F = [C1, C2] ∩ E(H) ⊂ [D1,D2] ∩ E(G) ⊂ F ∪ ([D1,D2] ∩ E(G \ F)) = F ,

i.e. F = [D1,D2]∩E(G) and so F is a bond in G by Fact 2.2 above, which contradicts the assumptions. So C1 and C2 are subsets
of the same connected component D of G F . Thus F ⊂ [C1, C2] ⊂ [D]

2. �

Given a graph G for x ≠ y ∈ V (G) denote by γG(x, y) the edge connectivity of x and y in G, i.e.

γG(x, y) = min{|F | : F ⊂ E(G) : F separates x and y in G}.

By the weak Erdős–Menger Theorem there are γG(x, y)many edge disjoint paths between x and y in G.

2.3. Logic

The language of set theory is the first order language L containing only one binary relation symbol ∈. So the formulas of
L are over the alphabet {∨,¬, (, )∃,=,∈}∪Var, where Var is an infinite set of variables. To simplify our formulas we often
use abbreviations like ∀x, →, x ⊂ y, ∃!x, ∃x ∈ y ϕ, etc.



L. Soukup / Discrete Mathematics 311 (2011) 1585–1598 1587

An L-structure is a pair ⟨M, E⟩, where E ⊂ M × M . In this paper we will consider only structures of the form ⟨M,∈� M⟩

where ∈� M is the restriction of the usual membership relation toM , i.e.

∈� M = {⟨x, y⟩ ∈ M × M : x ∈ y}.

We usually write ⟨M,∈⟩ or simply M for ⟨M,∈� M⟩.
If ϕ(x1, . . . , xn) is a formula, a1, . . . , an are sets, then let ϕ(a1, . . . , an) be the formula obtained from ϕ(x1, . . . , xn) by

replacing each free occurrence of xi with ai. [An occurrence of xi is free if it is not within the scope of a quantifier ∃xi.]
If ϕ(x, x1, . . . , xn) is a formula, a1, . . . , an are sets, then C = {a : ϕ(a, a1, . . . , an)} is a class. Especially, every set b is a

class: b = {a : a ∈ b}. Moreover, all sets form the class V : V = {a : a = a}. In this paper we will consider just these classes:
the sets and the ‘‘universal’’ class V .

For a formula ϕ(x1, . . . , xn), a classM , and for a1, . . . , an ∈ M we define when

M |H ϕ(a1, . . . , an), (2)

i.e. whenM satisfies ϕ(a1, . . . , an), by induction on the complexity of the formulas in the usual way:

(i) M |H ‘‘ai ∈ aj’’ iff ai ∈ aj.
(ii) M |H ‘‘ϕ ∨ ψ ’’ iffM |H ϕ orM |H ψ .
(iii) M |H ‘‘¬ϕ’’ iff M |H ϕ fails.
(iv) M |H ‘‘∃xϕ(x, a1, . . . , an)’’ iff there is an a ∈ M such that M |H ‘‘ϕ(a, a1, . . . , an)’’.

For a formula ϕ(x1, . . . , xn) let ϕM(x1, . . . , xn) be the formula obtained by replacing each quantifier ∃x with ∃x ∈ M in ϕ.
Clearly for each a1, . . . , an ∈ M ,

ϕM(a1, . . . , an) iff M |H ϕ(a1, . . . , an). (3)

If ϕ(x1, . . . , xn) is a formula,M and N are classes,M ⊂ N , then we say that ϕ is absolute between M and N ,

M ≺ϕ N (4)

in short, iff for each a1, . . . , an ∈ M

M |H ϕ(a1, . . . , an) iff N |H ϕ(a1, . . . , an). (5)

IfΣ is a collection of formulas then write

M ≺Σ N (6)

iffM ≺ϕ N for each ϕ ∈ Σ .
M is an elementary submodel of N ,

M ≺ N (7)

iffM ≺ϕ N for each formula ϕ.
If ϕ is absolute between M and V , then we say that ϕ is absolute for M .

Theorem 2.4 (Löwenheim–Skolem). For each set N and infinite subset A ⊂ N there is a set M such that A ⊂ M ≺ N and
|M| = |A|.

Since ZFC ̸ ⊢ Con(ZFC) by Gödel’s Second Incompleteness Theorem, it is not provable in ZFC that there is a set M with
M |H ZFC . So, since V |H ZFC , it is not provable in ZFC that there is a set M with M ≺ V . Thus, in the Löwenheim–Skolem
theorem above, the assumption that N is a set was essential. However, as we will see, the following result can serve as a
substitute for the Löwenheim–Skolem theorem for classes in certain cases.

Theorem 2.5 (Reflection Principle). Let Σ be a finite collection of formulas. Then for each cardinal κ there is a cardinal λ such
that Vλ ≺Σ V , and [Vλ]<κ ⊂ Vλ.

We need some corollaries of this theorem. Let us recall that the cofinality cf(α) of an ordinal α is the least of the
cardinalities of the cofinal subsets of α. A cardinal κ is regular iff κ = cf(κ).

Corollary 2.6. Let Σ be a finite collection of formulas, κ an infinite cardinal, and x a set.

(1) There is a set M ≺Σ V with x ∈ M and |M| = κ .
(2) If κ > ω is regular then there is a set M ≺Σ V with x ∈ M, |M| < κ and M ∩ κ ∈ κ .
(3) If κω = κ then there is a set M ≺Σ V such that x ∈ M, |M| = κ , M ∩ κ+

∈ κ+, and [M]
ω

⊂ M.
(4) If κ > ω is regular then the set

Sx = {M ∩ κ : x ∈ M ≺Σ V ,M ∩ κ ∈ κ}

contains a closed unbounded subset of κ .
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Proof. Fix a cardinal µ ≥ κ with x ∈ Vµ. By the Reflection Principle there is a cardinal λ > µ such that Vλ ≺Σ V and
[Vλ]κ ⊂ Vλ.
(1) Straightforward from the Löwenheim–Skolem theorem: since Vλ is a set, |Vλ| ≥ κ , and x ∈ Vλ there is M ≺ Vλ with
x ∈ M and |M| = κ . Then M ≺Σ V .
(2) Construct a sequence ⟨Mn : n < ω⟩ of elementary submodels of Vλ with |Mn| < κ as follows. Let M0 be a countable
elementary submodel of Vλ with x ∈ M . If Mn is constructed, let αn = sup(Mn ∩ κ). Since κ is regular we have
αn < κ . By the Löwenheim–Skolem theorem there is an elementary submodel Mn+1 of Vλ such that Mn ∪ αn ⊂ Mn+1
and |Mn+1| = |Mn ∪ αn| < κ . Finally letM = ∪{Mn : n < ω}. ThenM ≺ Vλ, and soM ≺Σ V , andM ∩ κ = supαn ∈ κ .
(3) Construct an increasing sequence ⟨Mν : ν < ω1⟩ of elementary submodels of Vλ with |Mν | = κ as follows. Let M0 be an
elementary submodel of Vλ with κ ∪ {x} ⊂ M0 and |M0| = κ . For limit ν let Mν = ∪{Mβ : β < ν}. If Mν is constructed,
let αν = sup(Mν ∩ κ+). Since |Mν | = κ we have αν < κ+. Let Xν = Mν ∪ αν ∪ [Mν]

ω . Then |Xν | ≤ κω = κ . By the
Löwenheim–Skolem theorem there is an elementary submodel Mν+1 of Vλ with Xν ⊂ Mν+1 and |Mν+1| = κ . Finally let
M = ∪{Mν : ν < ω1}. Since κ ≥ ω1,M ∩ κ+

= sup{αν : ν < ω1} ∈ κ+. If A ∈ [M]
ω then there is ν < ω1 with A ⊂ Mν , and

so A ∈ Xν ⊂ Mν+1 ⊂ M .
(4) Construct a continuous increasing chain of elementary submodels ⟨Mν : ν < κ⟩ of Vλ with |Mν | ≤ ν + ω as follows. Let
M0 be a countable elementary submodel of Vλ with x ∈ M . For limit ν let Mν = ∪{Mβ : β < ν}. If Mν is constructed, let
αν = sup(Mν ∩ κ+). Since |Mν | < κ and κ is regular we have αν < κ . Let Xν = Mν ∪ (αν + 1). Since |Xν | ≤ ν + ω, by the
Löwenheim–Skolem theorem there is an elementary submodelMν of Vλ with Xν ⊂ Mν and |Mν | = |Xν |.

Then C = {αν : ν < κ} is a closed unbounded subset of κ and C ⊂ Sx because αν ∈ Sx is witnessed byMν . �

2.4. Absoluteness

A set b is definable from parameters a1, . . . , an iff there is a formula ϕ(x) such that

∀x(ϕ(x, a1, . . . , an) ↔ x = b). (8)

We say that b is definable iff we do not need any parameters, i.e. ∀x(ϕ(x) ↔ x = b).

Claim 2.7. If b is definable from the parameters a1, . . . , an ∈ M by the formula ϕ(x, y⃗), and M ≺{∃xϕ(x,y⃗),ϕ(x,y⃗)} V , then b ∈ M.

Proof. Since M ≺∃xϕ(x,y⃗) V , a⃗ ∈ M and so M |H ∃xϕ(x, a⃗), there is b′
∈ M such that M |H ϕ(b′, a⃗). Thus M ≺ϕ(x,y⃗) V yields

V |H ϕ(b′, a⃗), and so b = b′
∈ M . �

Given a classN we say that a formulaϕ(x1, . . . , xn, y) defines the operation FN
ϕ in N iffN |H ∀x1, . . . , xn∃!yϕ(x1, . . . , xn, y),

and for each a1, . . . , an, b ∈ N , FN
ϕ (a1, . . . , an) = b iff N |H ϕ(a1, . . . , an, b). If V = N then we omit the superscript V .

Given a class N we say that the operation Fϕ is absolute for N provided ϕ defines an operation in N , and ϕ(x⃗, y) is absolute
for N .

Claim 2.8. If the formula ϕ defines the operation Fϕ in V , and we have M ≺{∀x⃗∃yϕ(x⃗,y),ϕ(x⃗,y)} V , then ϕ defines an operation FM
ϕ in

M, and FM
ϕ = Fϕ � M.

Proof. Since M ≺∀x⃗∃yϕ(x⃗,y) V , for each a1, . . . , an ∈ M there is b ∈ M such that M |H ϕ(a⃗, b). Thus V |H ϕ(a⃗, b), and so
Fϕ(a⃗) = b ∈ M . IfM |H ϕ(a⃗, b) ∧ ϕ(a⃗, b′) then V |H ϕ(a⃗, b) ∧ ϕ(a⃗, b′), so b = b′. ThusM |H ∀x⃗∃!yϕ(x⃗, y). �

3. First application of elementary submodels

In this section we present an example

• to illustrate our basic method,
• to indicate the main technical problem of this approach; and also
• to give a solution to that technical problem.

In [14] Nash-Williams proved that a graph G is decomposable into cycles if and only if it has no odd cut. In Section 5 we
give a new proof of this result. Let us say that a graph G is NW iff it does not have any odd cut. We will prove the Nash-
Williams Theorem by induction on |V (G)|. Since the statement is trivial for countable graphs, it is enough to decompose
an uncountable NW-graph G into NW-graphs of smaller cardinality. We will use ‘‘small’’ elementary submodels to cut the
graph G into the right pieces. To do so we need two lemmas, the first (and easy) one will serve as the first example of the
application of our method.

First we assume that we could work with a full elementary submodel of V , and we discuss later how to get around the
technical difficulties that arise in this naive approach.

Lemma 3.1. If G = ⟨W , E⟩ is an NW-graph, G ∈ M ≺ V , then G[M] = G[M ∩ W ] is also an NW-graph.
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Proof. Assume on the contrary that G[M] has an odd cut F = {f1, . . . , f2n+1}. Since any cut is the disjoint union of bonds
we can assume that F is a bond. Since F cannot be a bond in G, by Proposition 2.3 there is a connected component D of G F
such that F ⊂ [D]

2. Let bc ∈ F . Then b and c are in D, D is connected, so there is a path bw1w2 . . . wm−1c between b and c in
Gwhich avoids F .

Claim 3.2. [M]
<ω

⊂ M.

Proof of the Claim. Consider the operations F1(x, y) = {x, y} and F2(z) = ∪z. By Claim 2.8, there are formulas σ1, σ ′

1, σ2
and σ ′

2 such that if N ≺{σi,σ
′
i }
V then N is closed under operation Fi, i = 1, 2.

SinceM ≺ V , this yields thatM is closed under F1 and F2. Since

{a0, . . . , an} = ∪{{a0, . . . , an−1}, {an}} (9)

we obtain [M]
<ω

⊂ M by induction on n. �

Claim 3.3. ω ∪ {ω} ⊂ M.

Proof of the Claim. ∅ and ω are definable, so by Claim 2.7 there are formulas ρ1 and ρ ′

1, and ρ2 and ρ ′

2, respectively, such
that if N ≺{ρ1,ρ

′
1}
V then ∅ ∈ N , and if N ≺{ρ2,ρ

′
2}
V then ω ∈ N . SinceM ≺ V , this implies ∅, ω ∈ M .

Consider the operation F3(x) = x∪{x}. By Claim 2.8, there are formulas σ3 and σ ′

3 such that ifN ≺{σ3,σ
′
3}
V thenN is closed

under operation F3. SinceM ≺ V , this yields thatM is closed under F3. So 0 ∈ M and n + 1 = F3(n) imply ω ⊂ M . �

So we have F ∈ M and m ∈ M . Consider the following formula ϕ1(G,m, f , b, c, F):

G is a graph, f is a function, dom(f ) = m, ran(f ) ⊂ V (G), (10)
f (0) = b, f (m − 1) = c ∧ (∀i < m − 1) {f (i), f (i + 1)} ∈ E(G) \ F .

Since

∃f ϕ1(G,m, f , b, c, F), (11)

the assumption M ≺∃f ϕ1(G,m,f ,b,c,F) V and G,m, b, c, F ∈ M imply that the same formula holds in M . So there is f ∈ M such
that

ϕ1(G,m, f , b, c, F). (12)

SinceM ≺ϕ1(G,m,f ,b,c,F) V we have

ϕ1(G,m, f , b, c, F). (13)

To complete the proof we need one more claim.

Claim 3.4. If g ∈ M is a function, x ∈ dom(g) ∩ M, then g(x) ∈ M.

Proof of the Claim. Consider the evaluation operation F4(g, y) = g(y). By Claim 2.8, there are formulas σ4 and σ ′

4 such that
if N ≺{σ4,σ

′
4}
V then N is closed under operation F4. SinceM ≺ V , this yields thatM is closed under the evaluation operation

F4. �

By Claim 3.4 above, ran(f ) ⊂ M ∩ W , and so f (0)f (1) . . . f (m − 1) is a path between b and c in G[M] which avoids F .
Contradiction. �

So ifM is a ‘‘small’’ elementary submodel of V , then G[M] is a ‘‘small’’ NW-subgraph of G. Unfortunately, as we explained
before the formulation of the Reflection Principle, we cannot get any set M with M ≺ V by the Second Incompleteness
Theorem of Gödel. So we cannot apply the lemma above to prove the Nash-Williams Theorem.

Fortunately, this is just a technical problem because one can observe that in the proof above we have not used the full
power ofM ≺ V , we applied the absoluteness only for finitely many formulas between V andM . Namely, we used only the
absoluteness for the formulas from the family

Σ∗
= {σi, σ

′

i , : i = 1, 2, 3, 4} ∪ {ρj, ρ
′

j , : j = 1, 2} ∪ {∃f ϕ1, ϕ1}. (14)

So actually the proof of Lemma 3.1 yields the following result.

Lemma 3.5. If G = ⟨W , E⟩ is an NW-graph, G ∈ M ≺Σ V for some large enough finite set Σ of formulas, then G[M] is also an
NW-graph.

In many proofs we will argue in the following way:

(I) using the Reflection Principle we can find a cardinal λ such that Vλ resembles V in two ways:
(1) [Vλ]κ ⊂ Vλ for some large enough cardinal κ , and
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(2) Vλ ≺Σ V for some large enough finite collectionΣ of formulas.

We cannot use the model Vλ directly, because it is too large, but
(II) since Vλ is a set, we can use the Löwenheim–Skolem Theorem to find a small elementary submodel M of Vλ which

contains G.

ThenM ≺Σ V .
We do not fixΣ in advance. Instead of this we write down the proof, and after that we put all the formulas for which we

used the absoluteness intoΣ . Actually, apart from the proof of Lemma 3.5 above, we will not constructΣ explicitly.

Remark. We will show later that if Σ is large enough then G M is also an NW-graph, so the pair ⟨G[M],G M⟩ is a
decomposition of G into NW-graphs.

3.1. More on absoluteness

In Claim 3.6 below we summarize certain observations we made in the proof of Lemma 3.1 above.

Claim 3.6. There is a finite collection Σ0 of formulas such that if M ≺Σ0 V then [M]
<ω

⊂ M, ω ∪ {ω} ⊂ M, and f (x) ∈ M for
each function f ∈ M and x ∈ dom(f ) ∩ M.

We need two more easy claims.

Claim 3.7. There is a finite collectionΣ1 of formulas such that if M ≺Σ1 V then for each A ∈ M if |A| ⊂ M then A ⊂ M.

Proof. LetΣ1 ⊃ Σ0 be a finite family of formulas such that
(1) the formulas ‘‘f is a bijection between x and y’’ and ‘‘∃f (f is a bijection between x and y)’’ are inΣ1,
(2) ifM ≺Σ1 V thenM is closed under the ‘‘cardinality’’ operation A → |A|.

Assume that |A| = κ . Then κ ∈ M by (2). Since V |H ‘‘∃f f is a bijection between κ and A’’ there is f ∈ M such that M |H

‘‘f is a bijection from κ onto A’’. Then f is a bijection from κ to A by (1). So if a ∈ A then there is α ∈ κ such that f (α) = a. We
assumed that |A| ⊂ M , so α ∈ M as well. Thus f , α ∈ M implies f (α) ∈ M byΣ1 ⊃ Σ0. Thus A ⊂ M . �

Claim 3.8. If M ≺Σ0∪Σ1 V then for each countable set A ∈ M we have A ⊂ M.

Proof. If A is countable then |A| = ω ⊂ M by Claim 3.6 because M ≺Σ0 V . Thus A ⊂ M by Claim 3.7 because M ≺Σ1 V . �

4. Classical theorems

In this section we prove some classical theorems using elementary submodels. The Erdős–Rado Theorem was proved by
Stephen G. Simpson, (see [16] and [3, Theorem 7.2.1]) using this technique, and in the late seventies the method became
widely known among the set theory specialists, so the other proofs in this section are all from the folklore.

A family A is called a ∆-system with kernel D iff A ∩ A′
= D for each A ≠ A′

∈ A. A ∆-system is a ∆-system with some
kernel.

Theorem 4.1. Every uncountable family A of finite sets contains an uncountable∆-system.

Proof. We can assume that A ⊂ [ω1]
<ω .

LetΣ be a large enough finite set of formulas. By Corollary 2.6(1) there is a countable setM such that A ∈ M ≺Σ V .
Since A is uncountable, we can pick A ∈ A \ M. Let D = M ∩ A. Since [M]

<ω
⊂ M we have D ∈ M by Claim 3.6. Let

B = {B ⊂ A : B is a∆-system with kernel D}. (15)

Since A,D ∈ M we have B ∈ M as well. Moreover,

∃B (B is a ⊂ -maximal element of B). (16)

SinceM ≺Σ V , and the parameter B is in M , there is B ∈ M such that

M |H (B is a ⊂ -maximal element of B). (17)

SinceM ≺Σ V , we have

B is a ⊂ -maximal element of B. (18)

Claim. B is uncountable.

Assume on the contrary that B is countable. Then, by Claim 3.8, M ≺Σ V implies B ⊂ M . Let C = B ∪ {A}. Since A ∉ M ,
C ) B. If B ∈ B, then B ∈ M and so B ⊂ M and D ⊂ A ∩ B ⊂ A ∩ M = D. So C ) B is a∆-system with kernel D, i.e. B was
not a ⊂-maximal element of B. This contradiction proves the claim. �
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Remark. In each proof of this section we will argue in the following way. Let A be a structure of ‘‘size’’ κ . Let M ≺Σ V for
some large enough finite family Σ of formulas with A ∈ M and |M| < κ , i.e. M is a ‘‘small’’ elementary submodel which
contains, as an element, a ‘‘large’’ structure A. Since M has less elements than the size of A, there is A from A such that
A ∉ M . Then this A has some ‘‘trace’’ D onM . IfM is ‘‘closed enough’’ then this trace D is inM . Using this trace we define, in
M , a maximal, ‘‘nice’’ substructure B of A. Then, using the fact that A ∉ M , we try to prove that B is large ‘‘enough’’.

In the above proof we could use an arbitrary countable elementary submodelM of Vλ with A ∈ M . However, in the next
proof we need elementary submodels with some extra properties.

Theorem 4.2. If A is a family of finite sets such that κ = |A| is an uncountable regular cardinal, then A contains a ∆-system
of size κ .

Proof. We can assume that A ⊂ [κ]<ω .
LetΣ be a large enough finite set of formulas. By Corollary 2.6(2) there is a set M with |M| < κ such that A ∈ M ≺Σ V

and M ∩ κ ∈ κ .
Since |A| = κ , we can pick A ∈ A \ M. Let D = M ∩ A. Since [M]

<ω
⊂ M we have D ∈ M by Claim 3.6. Then

∃B (B ⊂ A is ⊂ -maximal among the∆-systems with kernel D). (19)

SinceM ≺Σ V , and the parameters A and D are inM , there is B ∈ M such that

M |H (B ⊂ A is ⊂ -maximal among the∆-systems with kernel D). (20)

SinceM ≺Σ V ,

B ⊂ A is ⊂ -maximal among the∆-systems with kernel D. (21)

Claim. |B| = κ .

Assume on the contrary that |B| < κ . Since B ∈ M we have |B| ∈ M ∩ κ . Thus |B| ⊂ M and so B ⊂ M by Claim 3.7.
Let C = B ∪ {A}. If B ∈ B, then B ∈ M and so B ⊂ M by M ≺Σ V . Thus B ∩ A = D. So C ) B is a∆-system with kernel

D. Contradiction. �

To prove the next theorem we need elementary submodels with one more additional property.

Theorem 4.3. If κω = κ then every family A = {Aα : α < κ+
} ⊂ [κ+

]
ω contains a ∆-system of size κ+. Especially, every

family A = {Aα : α < c+} ⊂ [c+]
ω contains a∆-system of size c+.

Proof. LetΣ be a large enough finite set of formulas. By Corollary 2.6(3) there is a setM with |M| = κ such thatA ∈ M ≺Σ V ,
M ∩ κ+

∈ κ+ and [M]
ω

⊂ M .
Since |A| = κ+ > |M|, we can pick A ∈ A \M. Let D = M ∩ A. Then D ∈ [M]

≤ω . Since [M]
<ω

⊂ M by Claim 3.6, and we
assumed [M]

ω
⊂ M , we have D ∈ M .

Then

∃B (B ⊂ A is ⊂ -maximal among the∆-systems with kernel D). (22)

SinceM ≺Σ V and [M]
ω

⊂ M , the parameters A and D are inM , so there is B ∈ M such that

M |H (B ⊂ A is ⊂ -maximal among the∆-systems with kernel D). (23)

SinceM ≺Σ V ,

B ⊂ A is ⊂ -maximal among the∆-systems with kernel D. (24)

Claim. |B| = κ+.

Assume on the contrary that |B| ≤ κ . Thus |B| ⊂ κ ⊂ M and so B ⊂ M by Claim 3.7.
Let C = B ∪ {A}. If B ∈ B, then B ∈ M and so B ⊂ M and A ∩ B = D byM ≺Σ V . So C ) B is a∆-system with kernel D.

Contradiction. �

Next we prove two classical partition theorems. First we recall (a special case of) the arrow notation of Erdős and Rado.
Assume that α, β and γ ordinals. We write

α → (β, γ )2 (25)

iff given any function f : [α]
2

→ 2 there is a subset B ⊂ α of order type β with f ′′
[B]2 = {0}, or there is a subset C ⊂ α of

order type γ with f ′′
[C]

2
= {1}.

Theorem 4.4 (Erdős–Dushnik–Miller). If κ = cf(κ) > ω then κ → (κ, ω + 1)2.
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Fig. 1. Erdős–Dushnik–Miller Theorem.

Proof. Fix a coloring f : [κ]2 → 2.
Let Σ be a large enough finite set of formulas. By Corollary 2.6(2) there is a set M with |M| < κ such that f ∈ M ≺Σ V

andM ∩ κ ∈ κ .
Fix ξ ∈ κ \ M . Let A be a ⊂-maximal subset of M ∩ κ such that A ∪ {ξ} is 1-homogeneous. If A is infinite, then we are

done (see Fig. 1).
Assume that A is finite. Let

B = {β ∈ κ \ A : ∀α ∈ A f (β, α) = 1}. (26)

Clearly ξ ∈ B. Since f , A ∈ M we have B ∈ M . Let C ⊂ B be a ⊂-maximal 0-homogeneous subset.

Claim. |C | = κ .

Assume on the contrary that |C | < κ . Then |C | ∈ M ∩ κ and so |C | ⊂ M because M ∩ κ ∈ κ . Thus C ⊂ M by Claim 3.7.
Let γ ∈ C . Since γ ∈ M \ A we have that A ∪ {γ } ∪ {ξ} is not 1-homogeneous. But A ∪ {ξ} is 1-homogeneous and γ ∈ B,
so f (γ , ξ) = 0. Thus C ∪ {ξ} is 0-homogeneous. Since ξ ∈ B, we have ξ ∈ C by the maximality of C , which contradicts
B ⊂ M . �

Theorem 4.5 (Erdős–Rado). c+ → (c+, ω1 + 1)2.

Proof. Fix a function f : [c+]
2

→ 2.
Let Σ be a large enough finite set of formulas. By Corollary 2.6(3) there is a set M with |M| = c such that f ∈ M ≺Σ V ,

M ∩ c+ ∈ c+ and [M]
ω

⊂ M .
Pick ξ ∈ c+ \ M .
Let A be a ⊂-maximal subset ofM ∩ κ such that A ∪ {ξ} is 1-homogeneous. If A is uncountable, then we are done.
Assume that A is countable. Since [M]

ω
⊂ M , we have A ∈ M .

Let

B = {β ∈ κ \ A : ∀α ∈ A f (β, α) = 1}. (27)

Since f , A ∈ M we have B ∈ M . Let C ⊂ B be a ⊂-maximal 0-homogeneous subset.

Claim. |C | = c+.

Assume on the contrary that |C | ≤ c. Then |C | ⊂ c ⊂ M and so C ⊂ M by Claim 3.7. Let γ ∈ C . Since γ ∈ M \ A we
have that A ∪ {γ } ∪ {ξ} is not 1-homogeneous. But A ∪ {ξ} is 1-homogeneous and γ ∈ B, so f (γ , ξ) = 0. Thus C ∪ {ξ} is
0-homogeneous. Since ξ ∈ B, we have ξ ∈ C by the maximality of C , which contradicts B ⊂ M . �

Given a set-mapping F : X → P (X)we say that a subset Y ⊂ X is F-free iff y′
∉ F(y) for y ≠ y′

∈ Y .

Theorem 4.6. If κ = cf(κ) > ω and F : κ → [κ]<ω then there is an F-free subset C of size κ .

Proof. LetΣ be a large enough finite set of formulas. By Corollary 2.6(2) there is a setM with |M| < κ such that F ∈ M ≺Σ V
andM ∩ κ ∈ κ .

Let ξ ∈ κ \M and A = F(ξ)∩M . Let C be a ⊂-maximal F-free subset of κ \A. Since F , A ∈ M we can assume that C ∈ M .

Claim. |C | = κ .

Assume on the contrary that |C | < κ . Then C ⊂ M by Claim 3.7. Since F(γ ) ⊂ M for γ ∈ C and F(ξ) ∩ C ⊂ A ∩ C = ∅ we
have that C ∪ {ξ} is also F-free. So C was not ⊂-maximal. Contradiction. �

First we prove a weak form of Fodor’s Pressing Down Lemma. A function f mapping a set of ordinals into the ordinals is
called regressive iff f (α) < α for each α ∈ dom(f ).

Theorem 4.7. If κ = cf(κ) > ω, f : κ → κ is a regressive function then there is η < κ such that f −1
{η} is unbounded in κ .
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Proof. LetΣ be a large enough finite set of formulas. By Corollary 2.6(2) there is a setM with |M| < κ such that f ∈ M ≺Σ V
and M ∩ κ ∈ κ .

Let ξ = sup(M ∩ κ) and consider η = f (ξ). We claim that T = f −1
{η} is unbounded in κ . Since η ∈ ξ = M ∩ κ we have

T ∈ N . If T is bounded, then sup T ∈ M ∩ κ = ξ . However ξ ∈ T , so T should be unbounded. �

Theorem 4.8 (Fodor’s Pressing Down Lemma). If κ = cf(κ) > ω, S ⊂ κ is stationary, and f : S → κ is a regressive function
then there is an ordinal η < κ such that f −1

{η} is stationary.

Proof. Let Σ be a large enough finite set of formulas. By Corollary 2.6(4) there is a set M with |M| < κ such that
S, f ∈ M ≺Σ V and ξ = M ∩ κ ∈ S.

Letη = f (ξ).We show that T = f −1
{η} is stationary. Clearly T ∈ M . If T is not stationary then there is a closed unbounded

set C ∈ M such that C ∩ T = ∅.

Claim. sup(M ∩ κ) ∈ C if C ∈ M is a closed unbounded subset of κ .

Since C is closed, if sup(M ∩ κ) ∉ C then there is α < sup(M ∩ κ) such that (C \ α)∩ M = ∅. ThenM |H ‘‘C \ α = ∅’’. Thus
V |H ‘‘C \ α = ∅’’, i.e. C ⊂ α, which contradicts the assumption that C is unbounded.

So by the claim ξ ∈ C ∩ T . Contradiction. �

5. Decomposition theorems

In the previous section we proved theorems which claimed that ‘‘Given a large enough structure A we can find a large
enough nice substructure of A’’. In this section we prove results which have a different flavor: every large structure having
certain properties can be partitioned into ‘‘nice’’ small pieces.

In [14] the following statements were proved.

Theorem 5.1 (Nash-Williams). G is decomposable into cycles if and only if it has no odd cut.

We give a new proof which illustrates how one can use ‘‘chains of elementary submodels’’. To do so we need two lemmas.
The first one was proved in Section 3.

Lemma 3.5. If G = ⟨W , E⟩ is an NW-graph, G ∈ M ≺Σ V for some large enough finite set Σ of formulas, then G[M] is also an
NW-graph.

The second one is the following statement.

Lemma 5.2. If G = ⟨W , E⟩ is an NW-graph, G ∈ M ≺Σ V for some large enough finite set Σ of formulas, then G M is also an
NW-graph.

Lemma 5.2 above follows easily from the next one.

Lemma 5.3. Assume that M ≺Σ V with |M| ⊂ M for some large enough finite set Σ of formulas. If G ∈ M is a graph,
x ≠ y ∈ V (G) and F ⊂ E(G M), such that

|F | ≤ |M|, γ
G M

(x, y) > 0 and F separates x and y in G M (28)

then

F separates x and y in G. (29)

Proof of Lemma 5.2 from Lemma 5.3. Assume on the contrary that G M has an odd cut F . Since any cut is the disjoint
union of bonds we can assume that F is a bond.

Pick c1c2 ∈ F . Then clearly γ
G M

(c1, c2) > 0. Moreover F separates c1 and c2 in G M , so F separates them in G by

Lemma 5.3, i.e. c1 and c2 are in different connected components of G F .
However F cannot be a bond in G, so by Proposition 2.3 there is a connected component D of G F such that F ⊂ [D]

2.
i.e. c1 and c2 are in the same connected component of G F . This contradiction proves the lemma. �

Proof of Lemma 5.3. Assume that G, M , x, y and F form a counterexample (see Fig. 2).
Fix a path P = p0p1 . . . pn from x to y in G M which witnesses that γ

G M
(x, y) > 0, i.e. p0 = x, pn = y and

pipi+1 ∈ E(G) \ M for i < n.
We assumed that F does not separate x and y in G, so there is a path Q = q0 . . . qm from x to y witnessing this fact,

i.e. q0 = x, qm = y and qjqj+1 ∈ E(G) \ F for j < m. Since F separates x and y in G M there is at least one j∗ < m such that
qj∗qj∗+1 ∈ M .

Let jx = min{j : qj ∈ M} and jy = max{j : gj ∈ M}. Since jx ≤ j∗ and jy ≥ j∗ + 1 we have jx < jy. Let x′
= qjx and y′

= qjy .
Let Qx = qjxqjx−1 . . . q1q0 and Qy = qmqm−1 . . . qjy . Then QxPQy is a walk from x′ to y′ in G M . Hence γ

G M
(x′, y′) > 0.
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Fig. 2. F does not separate x and y in G.

Claim. γG(x′, y′) > |M|.

Indeed, assume that λ = γG(x′, y′) ≤ |M|. Since M ≺Σ V and x′, y′
∈ M there is A ∈ M ∩ [V (G)]λ such that A separates

x′ and y′ in G. Since |A| = λ ⊂ M we have A ⊂ M . So M separates x′ and y′, i.e. γ
G M

(x′, y′) = 0. This contradiction proves
the claim.

By the weak Erdős–Menger Theorem there are γG(x′, y′)many edge disjoint paths between x′ and y′ in G. Since |M∪F | =

|M| < γG(x′, y′) there is a path R = r0 . . . rk from x′ to y′ which avoids M ∪ F . Then Q−1
x RQ−1

y is walk from x to y in G M
which avoids F . Contradiction. �

Proof of Theorem 5.1. We prove the theorem by induction on |V (G)|.
If G is countably infinite then for each e ∈ E(G) there is a cycle C in Gwith e ∈ E(C) because e is not a cut in G. Moreover,

G C is also an NW-graph, i.e. it does not have odd cuts. Using this observation we can construct a sequence {Ci : i < ω} of
edge disjoint cycles in G with E(G) = ∪{E(Ci) : i < ω}.

Assume now that κ = V (G) > ω and we have proved the statement for graphs of cardinality< κ .
LetΣ be a large enough finite set of formulas. By the Reflection Principle 2.5 there is a cardinal λ such that Vλ ≺Σ V and

[Vλ]κ ⊂ Vλ. Then G ∈ Vλ.
We will construct a sequence ⟨Mα : α < κ⟩ ⊂ Vλ of elementary submodels of Vλ with

|Mα| = ω + |α|, α ⊂ Mα and Mα ∈ Mα+1 (∗α)

as follows:

(i) letM0 be a countable elementary submodel of Vλ with G ∈ M0;
(ii) if β < κ is a limit then letMβ = ∪{Mα : α < β}. Since |Mβ | ≤ ω + |β| < κ and Mβ ⊂ Vλ we have Mβ ∈ Vλ;
(iii) if β = α + 1 then |Mα ∪ {Mα} ∪ β| = ω + |β| so by the Löwenhein–Skolem Theorem there is Mβ ≺ Vλ with

Mα ∪ {Mα} ∪ β ⊂ Mβ and |Mβ | = ω + |β|.

The construction clearly guarantees (∗α). Using the chain ⟨Mα : α < κ⟩ decompose G as follows:

• for α < κ let Gα = (G Mα)[Mα+1].

By Lemma 5.2 the graph G′
α = G Mα is NW. Moreover, since Mα ∈ Mα+1 we have G Mα ∈ Mα+1. So we can apply

Lemma 3.5 forMα+1 and G′
α to deduce that Gα is NW.

So we have decomposed the graph G into NW-graphs {Gα : α < κ}. Moreover, |V (Gα)| ≤ |Mα+1| ≤ ω + |α| < κ , so by
the inductive hypothesis, every Gα is the union of disjoint cycles. So G itself is the union of disjoint cycles which was to be
proved. �

5.1. General framework

IfΦ is a graph property then we write G ∈ Φ to mean that the graph G has propertyΦ .
We say that a graph propertyΦ iswell-reflecting iff for each graph G ∈ Φ whenever G ∈ M ≺Σ V with |M| ⊂ M for some

large enough finite setΣ of formulas, we have both G[M] ∈ Φ and G M ∈ Φ .

Theorem 5.4. Let Φ be a well-reflecting graph property. Then every graph G ∈ Φ can be decomposed into a family {Gi : i ∈

I} ⊂ Φ of countable graphs.

To prove this theorem we need to introduce the following notion. Let κ and λ be cardinals. We say that ⟨Mα : α < κ⟩ is
a κ-chain of submodels of Vλ iff
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(1) the sequence ⟨Mα : α < κ⟩ ⊂ Vλ ∩ [Vλ]<κ is strictly increasing and continuous (i.e.Mβ = ∪{Mα : α < β} for limit β);
(2) Mα ≺ Vλ, α ⊂ Mα and Mα ∈ Mα+1 for α < κ .

Fact 5.5. If [Vλ]<κ ⊂ Vλ then for each x ∈ Vλ there is a κ-chain of elementary submodels ⟨Mα : α < κ⟩ of Vλ with x ∈ M0 and
α ⊂ Mα for α < κ .

Proof. Actually such a chain was constructed in the proof of Theorem 5.1. �

Proof of Theorem 5.4. By induction on |G|. If |G| is countable then there is nothing to prove.
Assume that G = ⟨κ, E⟩ and κ > ω. By the Reflection Principle 2.5 there is a cardinal λ such that Vλ ≺Σ V and [Vλ]κ ⊂ Vλ.

Then, by Fact 5.5 there is a κ-chain of elementary submodels of Vλ with G ∈ M0. For α < κ let Gα = (G Mα)[Mα+1]. Since
Φ is well-reflecting, the graph G′

α = G Mα is inΦ . Moreover, sinceMα ∈ Mα+1 we have G Mα ∈ Mα+1. So applying once
more the fact thatΦ is well-reflecting forMα+1 and G′

α we obtain that Gα is inΦ .
So we have decomposed the graph G into graphs {Gα : α < κ} ⊂ Φ . However |V (Gα)| ≤ |Mα+1| ≤ ω + |α| < κ , so by

the inductive hypothesis, every Gα has a decomposition Gα into countable elements of Φ . Then G = ∪{Gα : α < κ} is the
desired decomposition of G. �

Theorem 5.6. Let Φ and Ψ be graph properties. Assume that

(1) Φ is well-reflecting;
(2) if H ∈ Φ is a countable graph then H ∈ Ψ ;
(3) if G has a decomposition {Gi : i ∈ I} with Gi ∈ Ψ then G ∈ Ψ .

Then G ∈ Φ implies G ∈ Ψ .

Proof. Theorem 5.4 and (1) yield that G has a decomposition into countable graphs {Gi : i ∈ I} ⊂ Φ . By (2), {Gi : i ∈ I} ⊂ Ψ .
Finally, by (3), this implies G ∈ Ψ which was to be proved. �

In Lemmas 3.5 and 5.2 we proved that the graph property ‘‘there is no odd cut ’’ is well-reflecting.
As we will see, Theorem 5.6 can be applied as a ‘‘black box’’ principle in many proofs.

5.2. Applications of Theorem 5.6

First we give a new proof of a result of Laviolette.

Theorem 5.7 ([13, Corollary 1]). Every bridgeless graph can be partitioned into countable bridgeless graphs.

Proof. We need the following lemma.

Lemma 5.8. The ‘‘bridgeless’’ property is well-reflecting.

Proof of Lemma 5.8. Assume that G is a graph and G ∈ M ≺Σ V for some large enough finite familyΣ of formulas.
(1) Assume that an edge e = xy is a bridge in G[M]. Then

M |H e separates x and y, (30)

so, byM ≺Σ V

V |H e separates x and y, (31)

i.e. e is a bridge in G.
(2) Assume that an edge e = xy is a bridge in G M . Then e separates x and y in G M , so by Lemma 5.3, e separates x and y
in G, i.e. e is a bridge in G. �

By Lemma 5.8, we can apply Theorem 5.4 to get the statement of this theorem. �

Let us formulate two corollaries.

Corollary 5.9 (Laviolette, [13, Theorem 1]). Every bridgeless graph has a cycle ω-cover.

Proof. Every countable bridgeless graph clearly has a cycle ω-cover, and by the previous theorem every bridgeless graph
can be partitioned into countable bridgeless graphs. �

It is worth mentioning that in [13] Theorem 5.7 was a corollary of Corollary 5.9.
Before formulation of the second corollary let us recall the following conjecture of Seymour and Szekeres.

Cycle Double Cover Conjecture. Every bridgeless graph has a cycle double cover.

Since every bridgeless graph can be partitioned into countable bridgeless graphs, we obtain.
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Corollary 5.10 (Laviolette, [13]). If the Cycle Double Cover Conjecture holds for all countable graphs then it holds for all graphs.

Next we sketch two more applications.
In [14] the following statements were also proved.

Theorem 5.11 (Nash-Williams). (1) A graph G can be decomposed into cycles and endless chains if and only if it has no vertex
of odd valency. (2) G is decomposable into endless chains if and only if it has no vertex of odd valency and no finite non-trivial
component.

Let us recall that a connected component is non-trivial if it has at least two elements.
Proof of 5.11. For j = 1, 2 we say that a graph G is NWj iff G satisfies the assumption of statement (j) from 5.11.

Lemma 5.12. The statements of Theorem 5.11 hold for countable graphs.

The proof of Lemma 5.12 is left to the reader.

Lemma 5.13. The following graph properties are well-reflecting:
(1) there is no vertex of odd valency
(2) there is no finite non-trivial component.

Proof of Lemma 5.13. (1) Assume that in G there is no vertex of odd valency. Let G ∈ M ≺Σ V with |M| ⊂ M for some large
enough finite setΣ of formulas.

Claim. There is no vertex of odd valency in G[M].

Indeed, let x ∈ V (G[M]) = V ∩ M be arbitrary, and assume that the set A = {v ∈ V (G[M]) : vx ∈ E(G[M])} is finite.
Since A ⊂ M , we have A ∈ M by Claim 3.6, and for each v ∈ V (G[M])we have v ∈ A iff vx ∈ E(G) ∩ M . Thus

M |H A = {v ∈ V (G) : vx ∈ E(G)}, (32)

so, byM ≺Σ V , we have

V |H A = {v ∈ V (G) : vx ∈ E(G)}, (33)

i.e. A = {v ∈ V (G) : vx ∈ E(G)}. Thus dG(x) = dG[M](x), which proves the claim.

Claim. There is no vertex of odd valency in G M.

Let x ∈ V be arbitrary. If x ∉ M , then G(x) = (G M)(x) because E(G) \ E(G \ M) ⊂ [M]
2

⊂ M , so d
G M

(x) = dG(x)
cannot be odd.

Assume x ∈ M . If dG(x) ≤ |M| then {v ∈ V (G) : vx ∈ E(G)} ∈ M implies {v ∈ V (G) : vx ∈ E(G)} ⊂ M by Claim 3.7
because |M| ⊂ M , and so d

G M
(x) = 0. If dG(x) > |M| then dG(x) = d

G M
(x). So d

G M
(x) cannot be an odd natural

number.
(2) Assume that in G there is no finite component. Let G ∈ M ≺Σ V with |M| ⊂ M for some large enough finite set Σ of
formulas.

Claim. There is no finite non-trivial component in G[M].

Let x ∈ V (G) ∩ M and assume that x has a finite component C in G[M]. Then C ∈ M and

M |H C is the component of x, (34)

so

V |H C is the component of x, (35)

i.e. G has finite component.

Claim. There is no finite non-empty component in G M.

Assume that there is a finite non-trivial component C in G M . Since C is not a component in M there is an edge
cd ∈ E(G) ∩ M with c ∈ C . Since C is non-trivial there is c ′

∈ C such that cc ′ is an edge in G M . Then c ∈ M and
c ′

∉ M .
Since dG(c) ≤ |M| would imply c ′

∈ {c∗
: cc∗

∈ E(G)} ⊂ M we have dG(x) > |M|. However {c∗
: cc∗

∈ E(G)} \ M ⊂ C ,
and so |C | > |M|. Contradiction. �

We want to apply Theorem 5.6. Let Φi be the property NWi for i = 1, 2, and Ψ1 be ‘‘decomposable into cycles and endless
chains’’, and Ψ2 be ‘‘decomposable into endless chains’’.

Then condition 5.6.(1) holds by Lemma 5.13, 5.6.(2) is true by Lemma 5.12. 5.6.(3) is trivial from the definition. Putting
these things together we obtain the theorem. �
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6. Bond-faithful decompositions

In this section we prove a decomposition theorem in which we cannot apply Theorem 5.6.

Definition 6.1. Let κ be an infinite cardinal. A decompositionH of a graphG is κ-bond faithful iff |E(H)| ≤ κ for eachH ∈ H ,

(i) any bond of G of cardinality ≤ κ is contained in some member of the decomposition,
(ii) any bond of cardinality< κ of a member of the decomposition is a bond of G.

Theorem 6.2 (Laviolette, [13, Theorem 3]). Every graph has anω-bond-faithful decomposition, and with the assumption of GCH,
every graph has a κ-bond-faithful decomposition for any infinite cardinal κ .

Applying methods of elementary submodels leads more naturally to a simpler proof of the theorem above that does not
rely on GCH.

Theorem 6.3. For any cardinal κ every graph has a κ-bond-faithful decomposition.

The following lemma is the key to the proof.

Lemma 6.4. Let G be a graph, G ∈ M ≺Σ V with µ = |M| ⊂ M for some large enough finite set Σ of formulas.
(I) If F ⊂ E(G[M]) is a bond of G[M] with |F | < |M| then F is a bond in G.
(II) If F ⊂ E(G) is a bond of G M with |F | < |M| then F is a bond in G.

Proof of 6.4. (I) Assume on the contrary that F is not a bond in G. Pick xx′
∈ F . Then by Proposition 2.3 x and x′ are in the

same connected component D of G F , and so there is a path P = x1x2 . . . xn, in G F , x1 = x, xn = x′. Choose the path in
such a way that the cardinality of the finite set

IP = {i : xixi+1 ∉ M} (36)

is minimal. Since F is a cut in G[M] we have IP ≠ ∅. Let i = min Ip. Then xi ∈ M . Let j = min{j > i : xj ∈ M}. Then j > i + 1,
xi, xj ∈ M , and moreover γ

(G M) F
(xi, xj) > 0.

Claim 6.5. If x, y ∈ M, γ
G M

(x, y) > 0 then γG[M](x, y) = |M|.

Proof of the Claim. There is a vertex set A ∈ [V (G)]γG(x,y) such that A separates x and y in G. We assumed that Σ is large
enough, especially it contains the formulas ϕ(A, x, y,G) and ∃A ϕ(A, x, y,G), where ϕ(A, x, y,G) is the following formula:

A ∈ [V (G)]γG(x,y) is a vertex set which separates x and y in G.

Since M ≺Σ V , and the parameters G, x, y are in M , there is an A in M such that M |H ϕ(A, x, y,G). So V |H ϕ(A, x, y,G),
i.e. A ∈ [V (G)]γG(x,y) ∩ M is a vertex set which separates x and y in G.

If γG(x, y) ≤ µ ⊂ M then A ∈ M implies A ⊂ M by Claim 3.7, and soM separates x and y in G. Thus γ
G M

(x, y) = 0.
But γ

G M
(x, y) > 0, so we have γG(x, y) > |M| ≥ ω. So, by the weak Erdős–Menger Theorem there is a family P =

{pν : ν < γG(x, y)} of γG(x, y)many edge disjoint paths between x and y in G. Since G, x, y ∈ M we can find such a P in M .
Butµ ⊂ M , so {pν : ν < µ} ⊂ M . Thus there areµ-many edge disjoint paths between x and y inM , i.e. γG[M](x, y) = µ. �

By the claim γG[M](xi, xj) = µ. So, by the weak infinite Menger Theorem, there are µ many edge disjoint path in G[M]

between xi and xj. Since |F | < µ, there is a path Q = xiy1 . . . ykxj in G[M] which avoids F . Then P ′
= x1 . . . xjy1 . . . ykxj . . . xn

is a path between x1 and xn in G F with |IP ′ | < |IP |. Contradiction.
(II) Let c1c2 ∈ F . Then γ

G M
(c1, c2) > 0, F separates c1 and c2 in G M , so F also separates c1 and c2 in G by Lemma 5.3. In

other words, c1 and c2 are in different connected components of G F , and so F should be a bond in G by Proposition 2.3. �

Proof of Theorem 6.3. By induction on |V (G)|. If |V (G)| ≤ κ then the one element decomposition {G} works.
Assume that G = ⟨µ, E⟩, and µ > κ . LetΣ be a large enough finite set of formulas. By the Reflection Principle 2.5 there

is a cardinal λ such that Vλ ≺Σ V and [Vλ]µ ⊂ Vλ.
By Fact 5.5 there is aµ-chain of elementary submodels ⟨Mα : α < µ⟩ of Vλ with G, κ ∈ M0 and α ⊂ Mα for α < µ. Since

κ < µ and α ⊂ Mα for α < µ, we can assume that κ ⊂ M0.
Using the chain ⟨Mα : α < µ⟩ partition G as follows:

• for α < µ let Gα = (G Mα)[Mα+1].

Let G′
α = G Mα . By Lemma 6.4(II)

• any bond of cardinality< κ of G′
α is a bond of G.

Moreover, sinceMα ∈ Mα+1 we have G Mα ∈ Mα+1. So we can apply Lemma 6.4(I) for Mα+1 and G′
α to derive that

• any bond of cardinality< κ of Gα is a bond of G′
α .
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Putting these together

◦ any bond of cardinality< κ of Gα is a bond of G.

Moreover |V (Gα)| ≤ |Mα+1| ≤ ω + |α| < µ, so by the inductive hypothesis, every Gα has a κ-bond faithful decomposition
Hα . Let H = ∪{Hα : α < µ}. H clearly satisfies 6.1(ii): if F is a bond of some H ∈ Hα with |F | < κ , then F is a bond of Gα ,
and so F is a bond of G by (◦).

Finally we show that H satisfies 6.1(i) as well. We recall one more result of Laviolette.

Theorem 6.6 ([13, Proposition 3]). For any cardinal κ every graph has a decomposition K which satisfies 6.1(i) and |E(K)| ≤ κ
for each K ∈ K .

Let us remark that GCH was assumed in [13, Proposition 3], but in the proof it was not used.
Let ϕ(G′, κ ′,K ′) be the following formula:

K ′ is a decomposition of G′ which satisfies6.1(i) and |E(K)| ≤ κ for each K ′
∈ K ′.

SinceΣ was ‘‘large enough’’ we can assume that it contains the formulasϕ(G′, κ ′,K ′) and ∃K ′ϕ(G′, κ ′,K ′). SinceM0 ≺Σ V ,
and G, κ ∈ M0 we have a K ∈ M0 such that ϕ(G, κ,K) holds, i.e. K is a decomposition of G which witnesses 6.1(i) and
|E(K)| ≤ κ for each K ∈ K . Assume that A is a bond of G with |A| ≤ κ . Then there is K ∈ K such that A ⊂ E(K). Let α be
minimal such that E(K) ∩ Mα+1 ≠ ∅, and pick e ∈ E(K) ∩ Mα+1. Then K is definable from the parameters K, e ∈ Mα+1 by
the formula ‘‘K ∈ K ∧ e ∈ K ’’. So K ∈ Mα+1 by Claim 2.7. Thus A ⊂ E(K) ⊂ E(Gα). Since, by the inductive assumption, the
decomposition Hα satisfies 6.1(i) there is H ∈ Hα with A ⊂ E(H). But H ∈ H , so we are done. �
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