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INTRODUCTION 

The problem we consider is a nonlinear distributed control problem in a 
Hilbert space and therefore includes many problems of interest in practical 
applications. Of course the main point of an application is to construct an 
optimal control. The main tool used to construct the optimal control is the 
Pontryagin maximum principle, a set of necessary conditions which an 
optimal control must satisfy. The objective of this paper is to derive the 
Pontryagin principle for our general class of control problems of Lagrange 
type. We will prove the derived principle using dynamic programming and 
the resulting Hamilton-Jacobi-Bellman equation in infinite dimensions. 

The method of proof, first developed in [3], uses the fact that the value 
function is a viscosity subsolution of the Bellman equation. The theory of 
viscosity solutions of first-order equations has turned out to be fundamen- 
tal and has resolved many outstanding problems. This theory was 
originated by Crandall and Lions [6] and has been recently extended by 
them to infinite dimensional problems [S]. 

Despite the myriad of results concerning viscosity solutions it is very 
interesting that our proof of the maximum principle uses only the definition 
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of viscosity solution and the fact that the value function is a viscosity 
solution (actually we only use the fact that it is a subsolution). The tour de 
force uniqueness results in viscosity solutions are not needed here. Further- 
more, the assumptions of Crandall and Lions [S] on the hamiltonian 
which are needed to guarantee existence, uniqueness, etc., and which are 
not all satisfied in this paper, are not needed here. On the other hand, since 
we are working in Hilbert spaces there is sufficient smoothness of the norm 
to work with smooth test functions. 

The proof used here presents a new emphasis on the Bellman equation. 
The Bellman equation has been used in the past to formally derive a 
maximum principle for certain problems but the derivation has depended 
on the existence of a C2 solution to the equation. Of course the solution is 
almost always not C’. We do not use this assumption. 

Finally, let us just remark that the results of this paper will hold for 
much more general problems than those considered here. 

1. THE CONTROL PROBLEM IN HILBERT SPACE 

In this paper we will derive the necessary conditions for an optimal 
control for the following problem in a Hilbert space. This problem was also 
considered in Barbu [l] by a completely different method. 

dx( t)/dt + Ax(t) + Fx( 2) = Bu( t) if s<t<T (1.1) 

x(s) = y E 9(A) - domain of A (1.2) 

Subject to (1.1 )-( 1.2) find u E L*(s, T, U) which minimizes the cost 
functional 

P,,,(u) = MT; s, Y)) + /“MC s, ~))+f(u(r)) dr. 
s 

(1.3) 

The solution of (1.1) for the initial condition (5, 5)~ [0, T] x9(A) is 
denoted by x(.;; 7, <). We assume that H and U are real Hilbert spaces with 
inner products (., .) and (., .) and norms II.lI H and )I./) U, respectively. The 
following assumptions will hold throughout this paper: 

(i) A: 9(A) E H + H is a closed, densely defined linear operator; -A 
is the infinitesimal generator of an analytic C, semigroup e-A’ and Vt > 0, 
e --Al is compact. 

(ii) B: U + H is a linear, continuous operator and B* is its adjoint. 
(iii) F: H + H is (nonlinear) Frechet differentiable with a locally 

Lipschitz Frechet derivative F’: H + Y(H, H). There are constants c, and 
c2 such that (Ax+ Fx, x) 2 -cl Ilxll~-cz for every XE 9(A). 
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(iv) g: H + R’ and h: H -+ R’ are Frechet differentiable with locally 
Lipschitz derivatives Vg and Vh. There are a, a0 E H and real numbers b 
and /I0 such that 

d-4 2 (a, 4 + B VXEH 

h(x) 2 (a,, xl + PO VXE H. 

(v) f: H + (-co, + co] is convex, lower semicontinuous, and 
satisfies the condition f(u) > w ]IuI] ‘, + y VU E U, for some o > 0, y E R’. 

(vi) The conjugate function f* : U+ R’, f*(p) = sup{ (p, u) -f(u); 
u E U} is Gateaux differentiable with locally Lipschitz Gateaux derivative 
?f*. 

The preceding assumptions guarantee that for each UEL*(S, T; U) and 
ye 9(A) there exists a unique trajectory x(.; S, y) on [s, T] which is 
absolutely continuous and dx/dt E L’(s, T; H). Furthermore, the mapping 
u H x from L*(s, T; U) to C( [s, T]; H) is continuous and compact. 
Consequently [ 1, 23, the problem (l.lk(1.3) admits at least one optimal 
control U* E L*(s, T; U) and associated trajectory x* E C( [s, T]; g(A)), 
x*=x*(.;s, y). Note that yEZ@(A)*x*(t)EGS(A) Vtas. 

Define the value function V: [s, T] x9(A) + [w’ for the problem 
(l.l)-(1.3) by 

V(z, l)=inf{PJu); uEL*(s, T; U)}. (1.4) 

By continuity (see below), we can define V on all of [s, T] x H. 
The main results of Barbu [ 1 ] are the following 

THEOREM 1. Thefunction V(T, t) is continuous on [s, T] x 9(A), locally 
Lipschitz in < for every T E [s, T], and absolutely continuous in z for every 
e E 9(A). The subdifferential DC V(r, 5) # @ for every (2, 5) E [s, T] x H 
and 

avjaz-(Ar+F5,‘I)+h(5)+~~{<B*tl,u)+f(u)}=O (1.5) 

for a.e. T E [s, T), all 5 E 9(A), and some n E DC V(z, 0; 

UT 5) = g(O, V<EH. (1.6) 

Zf g satisfies Vg(p)Eg(A*) f or all p E H, then (1.4) hola’s for every 
4 ED, f’(~5). 

Equation (1.5) is the Hamilton-Jacobi-Bellman equation associated with 
the optimal control problem (1.1 k( 1.4) 
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THEOREM 2. Every optimal control u* ,for the problem (1.1 )( 1.3) is 
given by the feedback law 

u*(t)EVf*(-BB*D,V(t, x*(t)), vt E [s, T] 

where x* is the optimal trajectory corresponding to u*. 

The purpose of the present paper is to prove, using the theory of 
viscosity solutions in Hilbert space, the following maximum principle 
result. 

THEOREM 3. Let u* E L’(s, r; U) be an optimal control and x*(.; s, y) 
the corresponding optimal trajectory for the problem (1.1 k(1.3) for the 
initial conditions (s, y)~ [0, T] x9(A). Then for a.e. t E [s, T] we have 

inf(B*D,r(t,x*(t;s, y)),u)+f(u);u~U} 

= (B*&ut, x*ct; s, Y)), u*(t)> +f(u*(t)), 

where 

D,f(t, x*(t))=Vg(x*(T)).D,x*(T;s, y) 

+ I ‘Vh(x*(r)) .DVx*(r; s, y) dr. 
I 

We have here the definition 

f(t, x*(t)) = g(x*(T))+ [‘h(x*(r)) +f(u*(r)) dr. 
I 

2. THE VALUE FUNCTION IS A VISCOSITY SOLUTION 

The proof of Theorem 3 will be based on the Hamilton-Jacobi-Bellman 
equation for the value function and the elementary theory of viscosity 
solutions to first-order equations. The equation of interest here is 

aw/at+inf{(B*D,W(t,~),~)+f(~);~Eu} 

- (Ax + Fx, D, W(t, x)) + h(x) = 0 (2.1) 

ifs< t < T, XES(A), with 

VT, x) = g(x) for every x E H. 

The following definition is an adaptation of that given in [S]. 

(2.2) 

DEFINITION. A continuous function W: [s, T] x 9(A) + OX’ is a viscosity 
solution of (2.1) if for any cp E C( [s, T] x H) 
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(i) if W- cp has a local max at (to, X~)E [s, T] x9(A) and cp is 
differentiable at (to, x,,) then 

Mb, xdl~f + inf{ (B*D,cp(t,, x,), u) +f(u); UE U} 
- wk + f&l, D,cP(kb XII)) + h(x,) 2 0 

and 
(ii) if W-cp has a local min at (to, X~)E [s, r] x g(A) and cp is 

differentiable at (to, x0) then 

@(kb xd/Jf + inf{ (B*~,db, 4, u> +f(u); u E U) 
- (&I + F&l, D,cP(to, x0)) + h(x,) d 0. 

Remark. We could take the test function cp to be continuously Frechet 
differentiable since the spaces are Hilbert spaces (see [6]). Note that we 
only require differentiability at the extreme points. Note also that cp is 
defined on all of H and not just 9(A). This is necessary because 
Ax + Fx E H, not 9(A). 

We begin by establishing that the value function defined in the previous 
section is a viscosity solution of (2.1). 

THEOREM 4. The value function I/ is a viscosity solution of (2.1). 

Theorem 4 was proved in Barbu [ 11. The proof presented there, 
however, used the maximum principle stated in Theorem 3. Our interest 
here is to use the fact that V is a viscosity solution of the Bellman equation 
to prove the maximum principle. Therefore we prove Theorem 4 by a 
method based on the Bellman principle of optimality and which is standard 
in the connection between optimal control theory and viscosity solutions. 
We will use C’ test functions cp to simplify the discussion but this is not 
necessary. 

Proof: That V is at least continuous is established in Theorem 1. 
Therefore we need only establish the two remaining conditions in the 
definition of viscosity solution. 

Suppose first that V- cp has a local min at (to, x0) E [s, T] x 9(A) with 
cp E C’( [s, T] x H). Let u E L2( [to, T]; U) be any control and let x(.; to, x0) 
be the corresponding trajectory. Then, for small E > 0 we have 

uhl+ 6 x(&l + &)) - Ub, x0) 

2 dkl+ 4 X(b + El) - 4463, -4 
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f 

10 + r 
= dcp(r, x(r))/dr dr 

10 

=I 

1” + L 
vl(r, x(r)) + (B*D,cp(r, -$r)), u(r)) 

fll 

- (Ax(r) + Wr), D,cp(r, x(r))) dr. (2.3) 

Note that x(r) E 9(A) if r 2 t,. Now suppose that 

acP(b xdl~t+ inf{ (B*D,cp(h, 4, u> +f(u); UE U} 

- (&I + hzl, D,xdto, x0)) + h(x,) 2 1> 0. 

Then for every u E U, 

%J(b> -%)/a~ + (B*~,cp(kl, x0), u> +f(u) 
- w, + %, D,cP(b, x0)) + h&l) 2 II. 

For sufficiently small E this implies that if to < r < t, + E, 

a&r, x(r)W + (B*D,cp(r, x(r)), u(r)) +f(u(r)) 

- (Ax(r) + Wr), D,cp(r, x(r))) + h(x(r)) 2 l/2. 

Using this in (2.3) we get 

Consequently, 

- (Ax(r) + Mr), D,cp(r, x(r))) dr 

> EL/2 - j’” + ’ W(r)) +f(u(r)) dr. 
10 

V(1,+c,x(t,+E))+fIO+& h(x(r)) +f(u(r)) dr 2 ~42 + V(to, x0) 
10 

and this contradicts the optimality principle: 

inf V(to + E, x(t, + 6)) + Jr’+’ h(x(r)) +f(u(r)) dr; 
10 

uELZ([t,, t,+c]; U) 
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Now we suppose that I/- cp has a local max at (to, x0) E [s, T] x 9(A). 
We must show that 

Mb, x,)Pf + inf{ (B*&cp(b, -4, u> +ftu); UE u> 

- (A% + Fx,, mP(4l, x0)) + WCJ 2 0. 

For sufficiently small E > 0, we have for any control u E L2( [to, T]; V) 
and associated trajectory x(.; t,, x,), 

- (Ax(r) + Mr), D,W, x(r))) dr. (2.4) 

If 

Mb, xd/~t + inf{ (B*D,cp(t,, x0), U) +f(u); UE u} 

- (Ax0 + f&h D,cp(to, x0)) + h(x,) Q -I. <o 

then for t, d r < t, + E with sufficiently small E, we have 

%tr, x(r))ldt + inf{ (B*D,cp(r, x(r)), u) +f(u); UE U} 
- (Ax(r) + Fx(r), D,cp(r, x(r))) + h(x(r)) < -A/2. 

Now, there exists a control o(r) so that 

inf( (B*D,cptr, x(r)), u) +f(u); 24 E U} + A/4 

3 <B*D,cptr, x(r)), w(r)> +f(w(r)), 

where x(.) is the trajectory corresponding to o(.). Using this control and 
trajectory in the preceding we get 

acp(r, xtr))Pt + (B*D,cptr, x(r)), m(r)) +ftdr)) 

- (Ax(r) + Wr), D,dr, x(r))) + h(x(r)) < -A/4. 

Consequently, for small E, using (2.4) we obtain 

V(t,+~,x(t~+~))- V(t,,x,)< -h/4-{ro+Eh(x(r))+f(~(r))dr 
Gl 

409/133/l-11 
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V(t, + E, x(to + E)) + J,::- ’ h(.~(r)) +,f(w(r)) dr 

< V( f,, X”) - k/4 < V( t,,, x0). 

This is a contradiction of the principle of optimality, so the proof is 
complete. 

3. PROOF OF THE MAXIMUM PRINCIPLE 

Define the function r: [s, T] x 9(A) -+ [w’ by 

T(r, O= g(x(T;T, il))+/rWr; 7, S))+f(u*(r))dr, 
7 

where 

dx/dt +Ax(t)+Fx(t) =Bu*(t) if s<z<t,<T, 

x(z; z, 5) = r E 9(A). 

Note that f(T, t)= g(5). 
Recall that u* is the optimal control on [s, T] and x*(.: s, JJ) is the 

corresponding optimal trajectory (x #x*, in general). 

LEMMA 5. The function f(z, t) is absolutely continuous in t E [s, T] and 
continuously (Frechet) differentiable in 5 E 9(A). 

Proof The proof of the lemma depends on the properties of the 
function q(t) = ax(t; t, [)/az and the function $(t) = D,x(t; r, 5). Under 
our assumptions on the operators A, B, and F it is true that the function 
$(t) is the unique absolutely continuous solution of the evolution system 

d$/dt+A$+F’xo$=O with 1+4(t) = lBCA). 

A reference for this fact is, for example, Smoller [6]. 
Similarly, q(t) is the unique absolutely continuous solution of the 

problem dq/dt + Aq + F’x 0 cp = 0, with cp(z) = At + Ft. 
Using the assumptions on A, F, g, f; and h the conclusion of the lemma 

now follows directly from the definition of r. 
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Remark. From the formula 

and the preceding linear equation for $(t) = DCx(t; z, g) we see that D,T 
may be extended using continuity to all of H* = H and not just g(A)*. 
From this point on we assume this extension. 

COROLLARY 6. For almost every s < z d t Q T, the function r is differen- 
tiable at (t, x(t; T, <))E [z, T] x9(A) andfor a.e. t E [r, T] we have 

J-At, x(t; 7, 5)) - (D.J(t, x(t; 7, 511, Mt; 7, 5) + Wt; 7, 5)) 

+ (B*D.J(t, x(t; 7, 01, u*(t)> + W(t; 7, 5)) +f(u*(t)) = 0 

with 

T(T, x(T; 7, 5))= MT; 7,5)). 

Proof. The fact that f is differentiable at (t, x(t; 7, 5)) for a.e. t E [T, T] 
follows from the fact that Tr exists for a.e. t E [r, T] and D,T exists 
everywhere and (see the preceding remark) is a continuous linear operator 
on H. Notice that this is a simple generalization of the classical result that 
a function is differentiable if it has continuous partial derivatives. That is, a 
function is differentiable at a point when the partials exist there and at least 
one of the partials is continuous. 

The second assertion of the corollary follows from the chain rule and the 
fact that 

dT(t, x(t; 7, t)Ydt= -h(x(t; 7,5))-f(u*(t)) 

for a.e. t E [T, T]. This completes the proof. 

We are now prepared to complete the proof of Theorem 3. 
Notice that from the definitions of r, V, and P we have T(s, y) = 

P,,,(u*) = V(s, y) and T(7, t) 2 V(7, r) if 7 E [s, T] and 4 E L@(A). Further, 
the principle of dynamic programming states that if a control is optimal on 
[s, T], then it is also optimal on any subinterval of [s, T]. Consequently, 

ut> x*tt; s, Y)) = qt, x*tt; s, Y)) for s< t< T. 

It follows that V-f achieves a maximum of 0 along every point 
(t, x*( t; s, y)) of the optimal trajectory. Since V is a viscosity solution of 
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the Bellman equation and 1’ is differentiable at almost every point of the 
optimal trajectory we get from the definition 

ST(t,x*(t))/at+inf{(B*D.IJr,x*(r)), u)+f(u);u~ U} 

-(Ax*(t)+Fx*(t), D.,I-(t, x*(t))+h(x*(t))ao 

for a.e. tE [s, T]. 
Notice that we have previously established that D,~E H so that r is 

indeed an appropriate test function for V. 
Next, Corollary 6 for f evaluated along the optimal trajectory 

(t, x*(t; s, v)) tells us that 

ar(t, x*(t))/at + inf( (B*D,r(t, x*(r)), u) +f(u); u E U} 

- (Ax*(t)+Fx*(t), DJ(t, x*(t))+h(x*(t))dO 

for a.e. t E [s, T]. Combining these two inequalities, we must have 

ar(t, x*(t))/&+inf((B*D,T(t, x*(r)), u) -t-f(u); UE U} 

- (Ax*(t) + Fx*(t), D,T(t, x*(t)) + h(x*(t)) =0 

for a.e. TV [s, T]. Again invoking Corollary 6 for the argument 
(t, x*(t; S, y)) and comparing the equation there with the preceding 
equation we conclude that 

inf((B*D.f(t, x*(t)), u) +f(u); UE U} 

= (B*DJ(t, x*(f)), u*(t)> +f(u*(f)) 

for a.e. t E [s, T]. This concludes the proof of the maximum principle. 

We conclude by defining the function p(l) = D,YT(t, x*(r)). 

THEOREM 7. p is the solution of the adjoint problem 

p’(t)-A*p(t)-F’(x*(t))*.p(t)+Vh(x*(t))=O if s,<tdT, 

P(T) = V&*(T)), 

where x*(.; s, y) is the optimal trajectory. 

Proof: For simplicity we will take g = 0. Let y(.) E 9(A) and put t++(t) = 
D,x*(t; T, 0.7, $(.)E~(A), where d$/st+A$ +F’(x*).$ =O, $(T) =y(s). 
Then, letting p be the solution of the adjoint problem, we have 

(p’(t), y(t)) - (p(t), 4(f)) - (p(t), f”(x*) .r(t)) + Pk r(t)) =O. 
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Next, using the equation for p and integration by parts we have 

= 
i 

T (Vh(x*(r; t, x*(t))), y(r)) dr 
I 

= 
s T- (p’(r), $(r)) + (p(r), N(r)) + (p(r), F’(x*) . W)) dr 
I 

= (p(t), r(t)) (since $’ + A$ + F’ . $ = 0 and e(t) = y(t)). 

Since this is true for any y~g(A), and 9(A) is dense in H, by continuity 
we conclude that p = DT and the proof is complete. 

(The proof of this theorem is based on a suggestion of L. D. Berkovitz, 
personal communication.) 

EXAMPLE. We conclude this paper with a typical problem which falls in 
the class considered here. 

Let 52 G R” and let Q E [0, T] x Q. The Hilbert spaces under con- 
sideration here are U = H= L’(Q). Let HA(Q) be the usual Sobolev space 
of functions with one derivative which vanish on X4 (in the generalized 
sense). Let Z-Z’(Q) be the space of functions with 2 derivatives in L2(s2). 
The dynamics are given by 

y E H’(0, T; H2(Q) n H;(Q)), u E L’(Q) 

ay/at - dy + F(y) = u on (0, T) x Q, 

y=o on Z=(O, T)xaQ, 

where F is a continuously differentiable, bounded, real-valued function with 
bounded derivative. We are taking B = I and A = - A, cp and $ in 9(A ) = 
H2(Q) n H$2). 

We seek to minimize the payoff 

JW=j’j- h(y(t,x))+f(u(t,x))dxdt. 
0 R 

Applying the necessary conditions derived in this paper to this problem we 
obtain that an optimal control U* must satisfy the condition 

“;I& s, {PO, x) 4x1 +fW)H dx 

= I p(t, x) u*(t, x) +f(u*(t, x)) dx R 
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for a.e. t in [0, T] and p= p(t, x)EH’(O, T; H’(Q)n HA(Q)) is the 
solution of the problem 

~~/c-;t+dp-pdF(.v(t,.u))/~~+h(g(r,x))=O 

P(T, x)=0, XEQ. 

In [4] the techniques of this paper are also applied to the control 
problems governed by differential-difference equations and to nonlinear, 
divergence form parabolic equations with control in the coefficients. 
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