Horispherical Subalgebras of Real Lie Algebras

B. E. Swafford
Department of Mathematics, Muchygan State University, East Lansing, Muchigan 48824
and
Department of Mathematics, Northern Michigan Universty, Marquette, Michigan 49855
Communucated by N Jacobson

Received May 25, 1975, revised December 15, 1975

Introduction

Let \mathfrak{E} be a finite-dimensional real Lie algebra and let x be an element of \mathfrak{P}. The horispherical subalgebra of \mathcal{L} relative to x is defined as

$$
\mathcal{B}=\left\{z \text { in } \mathbb{Q} \mid \lim _{t \rightarrow \infty} \exp (t \operatorname{ad}(x))(z)=0\right\} .
$$

This definition was first given by Maruyama [13], when he showed that if \mathcal{P} is semisimple and if G is a Lie group with Lie algebra \mathfrak{P}, then H defined by

$$
H=\left\{h \text { in } G \mid \lim _{t \rightarrow \infty} \exp (t x) h \exp (-t x)=e\right\}
$$

e the identity of G, is closed and connected and has Lie algebra $3 . H$ is called the horisphencal subgroup relative to the one-parameter subgroup $P(t)=$ $\exp (t x)$. Maruyama [14] pursued the subject of horispherical subalgebras of real semisimple Lie algebras and showed that there is a one-to-one correspondence between the classes of conjugate horispherical subalgebras and the set of faces of a Weyl chamber of (\mathcal{Q}, Ω), where \mathcal{K} is a maximal compactly embedded subalgebra of the Lie algebra \mathcal{E}.

Gel'fand and Graev [4], and Gel'fand and Pyateckiì-Šapiro [6], had previously used horisphencal subgroups in their study of group representations. In a related note Gel'fand and Pyateckir-Sapiro [7] showed that there are as many classes of conjugate horispherical subgroups in $\operatorname{SL}(n, R)$ as there are representations of n in the form $n=k_{1}+k_{2}+\cdots+k_{s}$ where each k_{z} is positive.

The linit condition which defines honsphencal subgroups appears in several instances in which neither horispherical subgroups or horispheres (orbits of horispherical subgroups) are mentioned. Auslander [1, p. 14] gives a proof which effectively shows that if G is a group with $G=P(t) H$, where H is horispherical relative to $P(t)$, and if U is a unitary representation of G in a
separable Hılbert space W, then the parr $(G, P(t))$ exhıbits the Mautner phenomenon; i e., $U_{P(t)} \psi=\psi$ for all t imples $U_{g} \psi=\psi$ for all g in G

Horne [9, p 47] gives a construction of a semigroup on a half-space in which horspherical subgroups play an important role Previously Horne [8] had shown how to construct the half-space $G \cup G / P(t)$, where G is a Lie group on a Euclidean space that is the semidirect product of its derived group G^{\prime} and a one parameter subgroup $P(t)$. The multuplication defined in [9] is continuous if and only if G^{\prime} is the hornspherical subgroup of G relative to $P(t)$.

In this paper, we consider horispherical subalgebras of real finte dimensional Lie algebras. We begin Section 1 by replacing the above definition of horrspherical subalgebras by an equivalent definition which has a more algebrac flavor. We then show that a horispherical subalgebra 3 of a Lie algebra \mathbb{I} is strongly nilpotent in the sense that $\mathrm{ad}(z)$ is nilpotent on \mathbb{P} for all z in 3

The work of Auslander and Brezin [2] on almost-algebraic Lie algebras is used heavily in Section 2, where it is shown that a Lie algebra and its small almost-algebracc hull $A(\mathbb{P})$ have exactly the same set of horispherical subalgebras This fact is used to obtain a statement on conjugate horispherical subalgebras. Finally, it is shown that if \mathcal{Z} is horspherical in \mathscr{L} then $\mathcal{Z}=\mathcal{B}_{1} \quad \mathcal{Z}_{2}$, where \mathcal{Z}_{1} is a honsphenical subalgebra of a Levi factor of \mathcal{L} and \mathfrak{Z}_{2} is a horispherical subalgebra of a solvable subalgebra of \mathfrak{E} which contans the radical of \mathfrak{L} and is of codımension 1 with the radical of \mathbb{P}.

In Section 3 questions concerning conjugate horspherical subalgebras of real solvable Lie algebras are considered. Bounds for the number of classes of conjugate horispherical subalgebras are found. Examples show these bounds to be the best possible in the general case considered

1. Equivalent Definttions and Basic Facts

Let \mathcal{L} be a finite-dimensional real Lie algebra and let x be an element of \mathcal{P}. Let \mathfrak{P}^{c} be the complexification of \mathfrak{P} and let \mathfrak{B} be the subalgebra of \mathfrak{P}^{c} generated by $1 \otimes x$. Let $R(\alpha(x))$ represent the real part of the eigenvalue $\alpha(x)$, where α is a root.

Defintion 1 . The hornsphencal subalgebra 3 of \mathscr{E} relative to x is defined as the intersection of \mathcal{E} with the direct sum of those root spaces \mathbb{E}_{α} of $\mathfrak{B} \mathrm{m}$ \mathfrak{Q}^{c} for which $R(\alpha(x))<0$.

In [14, Proposition 1.1], Maruyama proved the equivalence of Definition 1.1 with the definition of horispherical subalgebra previously given in the introduction of this paper. In so doing, Maruyama also proved that if 3 is horispherical in \mathcal{L} relative to x and if $x=s+n$ with $\operatorname{ad}(x)=\operatorname{ad}(s)+\operatorname{ad}(n)$ the Jordan decomposition of $\operatorname{ad}(x)$, where ad (s) is the semisimple part, then 3 is horispherical in \mathscr{Q} relatıve to s In [14], Maruyama was specifically concerned with real semı-
simple Lie algebras, but it is easy to see that his Proposition 1.1 is more general. In all that follows, we will use Definition 11 for horispherical subalgebras.

Theorem 1.1. If $\mathcal{3}$ is horispherical in \mathfrak{Q} relative to x, then $\operatorname{ad}(z)$ is nilpotent on \mathfrak{Q} for all \approx in 3 .

Proof First we notice that $\operatorname{ad}(x)$ is nonsingular on 3. But any Lie algebra with a nonsingular derivation is nilpotent [10], so 3 is nilpotent

Since 3 is mulpotent, \mathscr{L}^{n} is the direct sum of the root spaces of \mathcal{S}^{d}. Supposc α is a nonzero root. Let \mathfrak{B} be the sum of all root spaces corresponding to nonzero roots β, where $\beta=k \alpha$ for some integer $k>0 . \mathfrak{B}$ is a solvable subalgebra of \mathfrak{Q}^{c} since either $\mathscr{L}_{\gamma} \mathfrak{L}_{\sigma} \subset \mathfrak{E}_{\gamma+\alpha}$ if $\gamma+\sigma$ is a root, or $\mathscr{E}_{\gamma} \mathscr{E}_{\alpha}=\{0\}$ Since x belongs to the root space corresponding to the zero root, it is further clear that $\mathcal{S} \oplus \mathcal{B}$ is a solvable subalgebra of \mathfrak{Q}^{c}, where \mathbb{S} is the subalgebra of \mathscr{Q}^{c} generated by \approx and 3^{c}. But then $\operatorname{ad}(x)(3)=3$ implies that 3 is contaned in the nil radical of $\mathfrak{S} \oplus \mathfrak{B}$. Hence all roots of $\mathfrak{3}^{c}$ in \mathfrak{L}^{c} are zero.

Dixmer and Lister [3], have given an example of a nulpotent Lie algebra for which every derivation is nilpotent. Clearly such an algebra cannot be embedded in any Lie algebra so as to be a horispherical subalgebra. It would be interesting to have a characterization of those nilpotent Lie algebras which are horispherical in some Lie algebra.

2. Hortspherical Subalgebras and

Almost-Algebraic Lie Algebras

In order that we might pursue questions of conjugacy and decomposition of horrspherical subalgebras, we need certain information about almost-algebraic Lie algebras. Such Lie algebras have been carefully studied [2, 12]. In particular, [2] contains a complete account of all the information we will need on this subject. So that we might more compactly state our results, a brief discussion of some aspects of almost-algebrace Lie algebras will be given However, particular details will be carefully referenced as needed.

Let \mathfrak{A} be a Lie algebra with nulradical $\mathfrak{N} \mathfrak{Y}$ is called almost-algebraic of \mathfrak{H} is complemented in \mathfrak{N} by an \mathfrak{H}-reductive subalgebra $\mathbb{C} \mathfrak{C}$ is called a Malcev factor for \mathfrak{M}, and the semidirect product decomposition $\mathfrak{H}=\mathfrak{C} \cdot \mathfrak{M}$ is called a Malcev decompasttion of \mathfrak{P}. Let \mathcal{E} be a subalgebra of the almost-algebraic. Lie algebra \mathfrak{X}. \mathfrak{P} is called a small almost-algebraic hull for \mathcal{L} if \mathcal{Q} is an ideal in \mathfrak{y} and no almost-algebraic proper subalgebra of \mathfrak{A} contains \mathfrak{L}. Every Lie algebra admits one and, up to isomorphism, only one small almost-algebraic hull [2, p. 299]. Hereafter, we will denote by $A(\mathbb{L})$, the small almost-algebraic hull of \mathcal{L}.

Theorem $2.1 \quad$ Let \mathbb{Q} be a Lie algebra and let $A(\mathbb{Q})$ be its small almost-algebraic
hull The set of horuspherucal subalgebras of $A(\mathscr{I})$ is exactly the set of horispherical subalgebras of \mathbf{L}.

Proof If \mathcal{Z} is horispherical in \mathcal{L} relative to x, then since \mathcal{L} is an ideal in $A(\mathscr{L}), \mathcal{Z}$ is clearly horispherical in $A(\mathscr{L})$ relative to x.

Let 3 be horispherical in $A(\mathbb{I})$ relative to x. Let $x=h+n$ be a decomposition for x for which ad $(x)=\operatorname{ad}(h)+\operatorname{ad}(n)$ is the Jordan decomposition of $\operatorname{ad}(x)$, with ad (h) semisimple [2, p. 301]. We recall that 3 is horispherical in $A(\mathscr{L})$ relative to h Let \mathbb{C} be a maximal $A(\mathbb{L})$-reductive subalgebra of $A(\mathcal{I})$ contanıng h and let $\mathbb{C}=\mathfrak{S} \oplus \mathfrak{I}$ be a decomposition of \mathfrak{C} with \mathfrak{S} a Levi factor and \mathfrak{I} the center of \mathbb{C}. \mathfrak{S} is a Levi factor of \mathcal{E} [2, p. 303], and $\operatorname{ad}(t)$ is semisimple for each t in \mathfrak{I} [11, p 47]. There are elements s in \mathfrak{S} and t in \mathfrak{I} such that $h=s+t$. Now $\operatorname{ad}(h)$ and $\operatorname{ad}(t)$ are semisimple and commute so that ad (s) is semisimple also

Let \mathfrak{B} be the subalgebra of \mathfrak{C} generated by s and \mathfrak{I}. Let \mathfrak{R} be the radical of \mathfrak{Z} and let \mathfrak{R}_{0} and \Re_{1} be the Fitting Null and Fitting one components, respectively, of \mathfrak{R} with respect to $\operatorname{ad}(\mathfrak{B})$ [11, p. 39] Since \mathfrak{R} and \mathfrak{M} generate $\mathfrak{T} \mathfrak{M}$ [2, p. 305], there is an x in \mathfrak{R} and an n in \mathfrak{N} such that $t=x+n$. Let $x=x_{0}+x_{1}$ with x_{0} in \mathfrak{R}_{0} and x_{1} in \Re_{1}. Since \Re is solvable it is clear that \Re_{1} is a subset of \mathfrak{M}. Now ad(s) both nilpotent and semisumple on $\mathfrak{R}_{\mathbf{0}}$ implies that ad (s) is zero on $\mathfrak{R}_{\mathbf{0}}$. Hence

$$
\left[s, x_{1}+n\right]=\left[s, x_{0}+x_{1}+n\right]=[s, t]=0
$$

Similarly, $\left[t, x_{1}+n\right]=0$ so that

$$
s+x_{0}=(s+t)-\left(x_{1}+n\right)
$$

is a decomposition of $s+x_{0}$ with $\operatorname{ad}(s+t)$ the semisimple part of $\operatorname{ad}\left(s+x_{0}\right)$. Thus $\operatorname{ad}(h)=\operatorname{ad}(s+t)$ is the semisimple part of $\operatorname{ad}\left(s+x_{0}\right)$ and 3 is horispherical relative to $s+x_{0}$ Hence $\mathcal{3}$ is horispherical in \mathscr{Q} since both s and x_{0} belong to \mathbb{L}.

Theorem 2 2. Let \subseteq be a Lue algebra and let $A(\mathbb{L})$ be uts small almost-algebraic hull. Let $(\mathbb{(} \subseteq \mathfrak{I}) \mathfrak{\Re}$ be a Malcev decompostion of $A(\mathbb{L})$ with \subseteq a Levi factor. If 3 is horispherical in \mathbb{L} then 3 is conjugate under an inner automorphism of \mathbb{Q} to a horspherical subalgebra 3^{*} relative to $h+t$, where h is an element of \mathfrak{S} with $\operatorname{ad}(h)$ semisimple and t is in \mathfrak{T}.

Proof. Let 3 be horispherical in \mathcal{L} relative to x and let $x=s+n$ be a decomposition for x, where $\operatorname{ad}(x)=\operatorname{ad}(s)+\operatorname{ad}(n)$ is the Jordan decomposition for ad (x) with $\operatorname{ad}(s)$ semisimple Thus 3 is horispherical in $A(\mathbb{L})$ relative to s. Let \mathfrak{B} be a maximal $A(\mathcal{I})$-reductive subalgebra of $A(\mathcal{I})$ containıng s. For y in \mathfrak{N}, let $E(y)$ represent the inner automorphism generated by y; i.e, $E(y)=$ $\exp (\operatorname{ad}(y))$ Then there exists an element n^{*} in $\mathfrak{N} \cap[A(\mathcal{I}), A(\mathcal{L})]$ such that
$E\left(n^{*}\right)(\mathfrak{B})=(\mathfrak{G} \oplus \mathfrak{I})\left[2\right.$, p. 306; 15] Since $[A(\mathcal{I}), A(\mathfrak{I})]=[\mathfrak{Q}, \mathfrak{Q}], n^{*}$ belongs to \mathscr{Z} so that $E\left(n^{*}\right)$ is an inner automorphism of \mathfrak{Q}. There is an h in \mathbb{E} and a t in \mathfrak{I} such that $E\left(n^{*}\right)(s)=h+t$. Since $\operatorname{ad}\left(E\left(n^{*}\right)(s)\right)$ and ad (t) are semismple and commute, $\operatorname{ad}(h)$ is semismple. Clearly, $3^{*}=E\left(n^{*}\right)(3)$ is horispherical in \mathfrak{Q} relative to $h+t$
In the following corollary we see that if \mathcal{Z} is horspherical in \mathfrak{Q} then $\mathcal{Z}=\mathcal{Z}_{1} \cdot \mathcal{Z}_{2}$ where \mathcal{Z}_{1} is a horispherical subalgebra of a Levi factor of \mathscr{E} and \mathcal{Z}_{2} is a horsppherical subalgebra of a solvable subalgebra of \mathcal{L} contaning the radical.

Corollary 2.1. Let $\mathfrak{Q}, \mathfrak{S}, \mathfrak{T}, \mathfrak{M}, \mathfrak{3}, \mathfrak{3}^{*}, h$, and t remain as in the prevrous theorem and let \mathfrak{R} be the radzcal of \mathfrak{Q}. Then $\mathfrak{3}^{*}=\mathcal{3}_{1} \cdot \mathcal{3}_{2}$, where $\mathcal{3}_{1}$ is horspherical in \mathfrak{G} relative to h and \mathcal{B}_{2} is horispherical in the subalgebra generated by h and \mathfrak{R} relative to $h+x$ for some x in \mathfrak{R} such that $[h, x]=0$ and the semsimple part of $\operatorname{ad}(h+x) t s \operatorname{ad}(h+t)$
Proof. Let z be in $\mathfrak{3}^{*}$. Then $z=z_{1}+z_{2}$, where z_{1} is in $\mathfrak{G} \oplus \mathfrak{I}$ and z_{2} is in \mathfrak{M} Since $\operatorname{ad}(h+t)\left(3^{*}\right)=3^{*}$ and \mathbb{S} is an rdeal in $\mathbb{S} \oplus \mathfrak{I}$ it follows that z_{1} belongs to \mathfrak{S} and 3 Let $\mathcal{B}_{1}=3^{*} \cap \mathfrak{G}$ and $\mathcal{B}_{2}=3^{*} \cap \mathfrak{N}$. Thus $3^{*}=$ $\mathcal{3}_{1} \cdot \mathcal{B}_{2}$. Clearly \mathcal{B}_{1} is horispherical in \mathfrak{S} relative to h. Let $\mathfrak{R}=\mathfrak{R}_{0}+\mathfrak{R}_{1}$ be the Fitting decomposition of \mathfrak{R} relative to $\operatorname{ad}(\mathfrak{B})$ as described in the proof of Theorem 2.1 and let $t=x_{0}+x_{1}+n$ be the representation of t given by this decomposition and by the fact that \mathfrak{R} and \mathfrak{R} generate $\mathfrak{I} \cdot \mathfrak{M}$. Clearly, \mathcal{B}_{2} is horisphencal relative to $h+x_{0}$ in the subalgebra generated by h and $\mathfrak{\Re}$.

3. Horispherical Subalgebras of Solvable Lie Algebras

Let \mathfrak{Q} be a sovable Lie algebra, $A(\mathscr{L})$ its small almost-algebraic hull, and $\mathfrak{I} \cdot \mathfrak{M}$ a Malcev decomposition for $A(\mathfrak{L})$ with \mathfrak{M} the nilradical. Consider the root space decomposition of \mathfrak{N}^{c} under the actions of \mathfrak{I}. Let \mathfrak{N}_{α} represent the root space in \mathfrak{M}^{c} corresponding to the root α

Lemma 3.1. Let n be in \mathfrak{M} and let \boldsymbol{z} be any nonzero element of \mathfrak{M}_{α} Then the projection of $E(n)(z)$ onto \Re_{α} is not 0 .

Proof. Let p represent the projection of \mathfrak{M} onto \mathfrak{M}_{α}. Suppose $p(E(n)(z))=0$. Recall that

$$
E(n)(z)=z+\operatorname{ad}(n)(z)+(\operatorname{ad}(n))^{2}(z) / 2!+\quad+(\operatorname{ad}(n))^{m}(z) / m!
$$

for some positive integer m. Thus

$$
\begin{equation*}
z=p(z-E(n)(z)) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
z=p(p(z-E(n)(z))-E(n)(p(z-E(n)(z)))) . \tag{2}
\end{equation*}
$$

Let $n=\sum x_{\beta}$ be the representation of n given by the root space decomposition. Now it is clear that $z-E(n)(z)$ consists of a sum of products each of which is of length at least 2 . Since z is in \mathfrak{N}_{α}, it is clear that $z-E(n)(z)$ is a sum of products each of which is of length at least 2 and belongs to some root space. Hence in (1), z is represented as a sum of products each of which is of length at least 2 Further, in (2), z is represented as a sum of products each of which is of length at least 3 Clearly, by continuing this substitution process, we could obtain a representation for z in which each term is a product of length at least k for $k \geqslant N$, where N is any positive integer But \mathfrak{N}_{1} s nilpotent Thus \approx must be 0 .

Theorem 3.1. Let \mathfrak{P} be a solvable Lie algebra and let $\mathfrak{T} \cdot \mathfrak{M}$ be a Malcev decompositoon of $A(\mathbb{L})$, the small almost-algebraic hull of \mathfrak{L}. Suppose that $\mathfrak{3}_{1}$ and \mathcal{B}_{2} are horispherical in \mathfrak{Q} relatwe to t_{1} and t_{2}, respectively, with both t_{1} and t_{2} in \mathfrak{I}. Then $\mathfrak{3}_{1}$ and $\mathfrak{3}_{2}$ are inner conjugates if and only if $\mathfrak{3}_{1}=\mathfrak{3}_{2}$.

Proof. Clearly $\mathfrak{Z}_{1}=\mathfrak{Z}_{2}$ implies \mathfrak{Z}_{1} and \mathfrak{Z}_{2} are inner conjugates. Suppose n is an element of \mathfrak{I} in \mathfrak{N} such that $E(n)\left(\mathcal{3}_{1}\right)=\mathcal{Z}_{2}$. By the above lemma we see that $R\left(\alpha\left(t_{1}\right)\right)<0$ implies $R\left(\alpha\left(t_{2}\right)\right)<0$ Thus $\mathfrak{3}_{1} \subset \mathfrak{3}_{2}$. Hence $\mathfrak{3}_{1}=\mathfrak{3}_{2}$.

Theorem 32 Let \mathfrak{E} be a solvable Lie algebra and let $\mathfrak{T} \mathfrak{M}$ be a Malcev decomposition for $A(\mathfrak{L})$, the small almost-algebraic hull of \mathfrak{L}. If k is the number of roots α for \mathfrak{I} actung on \mathfrak{R}^{c} for whach $R(\alpha(t)) \neq 0$ for some t in \mathfrak{T}, then there are at most 2^{k} classes of conjugate hornspherical subalgebras of \mathfrak{P}

Proof. Let Δ be the set of roots α for \mathfrak{I} acting on \mathbb{N}^{c} for which $R(\alpha(t)) \neq 0$ for some t in \mathfrak{I} Let $P(\alpha)$ be the null space of $R \circ \alpha$ and let P be the union of all such null spaces with α in Δ. Consider the components of $\mathfrak{I} \backslash P$. There are at most 2^{k} such components, with equality in the event that no α in Δ is a multiple of another β in Δ If t_{1} and t_{2} belong to the same component then $R\left(\alpha\left(t_{1}\right)\right)<0$ is equivalent to $R\left(\alpha\left(t_{2}\right)\right)<0$ for all α in Δ. Thus any two elements of the same component define the same horispherical subalgebra The previous theorem shows that any two elements from different components would define nonconjugate horrspherical subalgebras

The above theorem says that if \mathcal{L} is a solvable Lie algebra with nilradical \mathfrak{N} and $\operatorname{dim} \mathfrak{N}=m$, and if k is the number of classes of conjugate horispherical subalgebras, then $1 \leqslant k \leqslant 2^{m}$. It is easy to see that both upper and lower bounds are sharp The upper triangular matrices of trace zero provide a class of examples in which the upper bound is achieved. The Lie algebra with basis x, y, and z and multiplication given by

$$
[x, y]=0, \quad[x, z]=y, \quad \text { and } \quad[y, z]=-x
$$

is a solvable, nonnilpotent Lie algebra with only the trivial horispherical subalgebra.

References

1 L Auslander, Ergodic automorphisms, Amer Math. Monthly 77 (1970), 1-19.
2 L. Auslander and J Brezin, Almost algebranc Lie algebras, J. Algebra 8 (1968), 295-313
3. J. Dixmier and W G Lister, Dervations of mlpotent Lie algebras, Proc Amer. Math. Soc 8 (1957), 155-158.
4 I M Gel'fand and M. I Graev, Geometry of homogeneous spaces, representation of groups in homogeneous spaces, and related questions of integral geometry, Trudy Moskov. Mat Obsč. 8 (1959), 321-390 Amer Math. Soc Transl Ser 2, 37 (1964), 351-429
5 I. M. Gel'fand, M. I. Graev, and I. I. Pyatetskin̆-Šapiro, "Representation Theory and Automorphic Functions," translated by K A. Hirsch, Saunders, Philadelpha, 1969
6. I M. Gel'fand and I. I. Pyatetskiľ-Sapiro, Automorphic functions and the theory of representations, Trudy Moskov. Mat Obšc 12 (1963), 389-412, Trans Moscow Math. Soc 12 (1963), 438-464.
7 I M. Gel'fand and I. I. Pyatetskiŭ-Šapiro, Unitary representations in a space G / Γ, where G is a group of N-by- N real matrices and T is a subgroup of integer matrices, Dokl Akad Nauk SSSR 147 (1962), 275-278, Sovtet Math. Dokl. 3 (1962), 15741577.
8. J. G Horne, Jr, Flows that fiber and some semgroup questions, Notuces Amer, Math Soc. 13 (1966), 820
9 J G. Horne, Jr., Semigroups on a half space, Trans. Amer Math. Soc. 147 (1970), 1-53
10 N. Jacobson, A note on automorphisms and derivations of Lie algebras, Proc. Amer. Math. Soc. 6 (1955), 281-283.
11. N. Jacobson, "Lie Algebras," Interscience, New York, 1962.

12 A I. Malcev, On solvable Lie algebras, Izv. Akad. Nauk SSR Ser Mat. 9 (1945), 329-356; Amer Math. Soc. Transl 27 (1950)
13. S Maruyama, On orispherical subgroups of a semi-simple Lie group, Kodan Math. Sem. Rep. 20 (1968), 12-17
14. S. Maruyama, Conjugate classes of orispherical subalgebras in real semx-simple Lie algebras, Ködai Math Sem. Rep 20 (1968), 18-28.
15. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J Math 68 (1956), 200-221.

