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INTRODUCTION

Let & be a finite-dimensional real Lae algebra and let x be an element of Q.
The horispherical subalgebra of & relative to x is defined as

3 = (=0 2| lim exp(z ad(x))(®) = O}.

This definition was first given by Maruyama [13], when he showed that if 8 is
semisimple and if G is a Lie group with Lie algebra £, then H defined by

H={findG| 1t1—)12 exp(tx) h exp(—itx) = ¢},

¢ the identity of G, 1s closed and connected and has Lae algebra 3. H s called
the horispherical subgroup relative to the one-parameter subgroup P(f) =
exp(fx). Maruyama [14] pursued the subject of horispherical subalgebras of real
semusimple Lie algebras and showed that there 1s a one-to-one correspondence
between the classes of conjugate horispherical subalgebras and the set of faces
of a Weyl chamber of (£, &), where & is a maximal compactly embedded
subalgebra of the Lie algebra 2.

Gel’fand and Graev [4], and Gel’fand and Pyateckii-Sapiro [6], had previously
used horispherical subgroups in their study of group representations. In a
related note Gel’fand and Pyateckii-Sapiro [7] showed that thetre are as many
classes of conjugate horispherical subgroups in SL{zn, R} as there are representa-~
tions of » in the form n = &, + &, + - -+ k, where each %, is positive.

The limit condition which defines horispherical subgroups appears in several
instances in which neither horispherical subgroups or horispheres (orbits of
horispherical subgroups) are mentioned. Auslander [1, p. 14] gives a proof
which effectively shows that if G 1s a group with G = P(f) H, where H is
horispherical relative to P(£), and if U 1s a unitary representation of G in a
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separable Hilbert space W, then the patr (G, P(#)) exhibits the Mautner phe-
nomenon; i e., Upl = ¢ for all £ implies Upp = i forall gin G

Horne [9, p 47] gives a construction of a semigroup on a half-space m which
horspherical subgroups play an important role Previously Horne [8] had shown
how to construct the half-space G' U G/P(t), where G is a Lie group on a Eucli-
dean space that 1s the semidirect product of its derived group G’ and a one
parameter subgroup P(#). The multiphication defined mn [9] is continuous if and
only if G’ 1s the horispherical subgroup of G relative to P(£).

In this paper, we consider honspherical subalgebras of real finite dimensional
Lie algebras. We begmn Section 1 by replacing the above definition of hor-
spherical subalgebras by an equivalent definition which has a more algebraic
flavor. We then show that a horispherical subalgebra 3 of a Lie algebra £ 18
strongly nilpotent in the sense that ad(2) 1s nulpotent on & for all zin J

The work of Auslander and Brezin [2] on almost-algebraic Lie algebras 1s
used heavily m Section 2, where it 1s shown that a Lie algebra and 1ts small
almost-algebraic hull A(2) have exactly the same set of horispherical subalgebras
This fact 1s used to obtain a statement on conjugate horispherical subalgebras.
Finally, 1t 1s shown that if 3 1s horispherical in @ then 3 = 3; 3», where 3,
is a hornspherical subalgebra of a Levi factor of £ and 3, 1s a horispherical
subalgebra of a solvable subalgebra of € which contains the radical of £ and
1s of codimension 1 with the radical of €.

In Section 3 questions concernmng conjugate horispherical subalgebras of real
solvable Lie algebras are considered. Bounds for the number of classes of
conjugate horispherical subalgebras are found. Examples show these bounds to
be the best possible in the general case considered

1. EquivaLenT DEFINITIONS AND Basic Facrts

Let 8 be a finite~-dimensional real Lie algebra and let x be an element of 8.
Let £¢ be the complexification of £ and let B be the subalgebra of 2¢ generated
by 1. ® x. Let R(a(x)) represent the real part of the eigenvalue a(x), where « is
a root.

DermnatioN 1 1. The horspherical subalgebra 3 of 2 relative to x 18 defined
as the intersection of € with the direct sum of those root spaces £, of B
L¢ for which R{a(x)) << 0.

In [14, Proposition 1.1], Maruyama proved the equivalence of Definition 1.1
with the definition of horispherical subalgebra previously given 1n the introduc-
tion of this paper. In so doing, Maruyama also proved that if 3 1s horispherical
in £ relative to x and f x = s -+ # with ad(x) = ad(s) + ad(n) the Jordan
decomposition of ad(x), where ad(s) 1s the semusimple part, then 3 is horispherical
m £ relative to s In [14], Maruyama was specifically concerned with real serni-
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simple Lie algebras, but it is easy to see that his Proposition 1.1 is more general.
In all that follows, we will use Defimition 11 for horispherical subalgebras.

Tueorem 1.1, If 3 is horispherical in 2 relative to x, then ad(z) is nilpotent
on 8 for all zin 3.

Proof First we notice that ad(x) 1s nonsingular on 3. But any Lie algebra
with a nonsmgular derivation is nilpotent [10], so 3 is nulpotent

Smce 3 1s nilpotent, 8¢ is the direct sum of the root spaces of 3¢ Suppose « is
a nonzero root. Let B be the sum of all root spaces corresponding to nonzero
roots B, where B = ka for some integer & > 0. B 15 a solvable subalgebra of £°
since either 2,8 CLQ,, 1f y + o is a root, or & 8, = {0} Since x belongs to
the root space corresponding to the zero root, it is further clear that & @ B is
a solvable subalgebra of 8¢, where & 1s the subalgebra of 2¢ generated by #
and 3¢ But then ad(x)(3) = J3 implies that 3 is contamed in the nil radical
of © @ B. Hence all roots of 3¢ 1n 8¢ are zero,

Dixmier and Lister [3], have given an example of a nilpotent Lie algebra
for which every derivation is nilpotent, Clearly such an algebra cannot be
embedded 1n any Lie algebra so as to be a horispherical subalgebra. It would be
mnteresting to have a characterization of those nilpotent Lie algebras which are
horispherical i some Lie algebra.

2. HORISPHERICAL SUBALGEBRAS AND
ArLMOST-ALGEBRAIC LIE ALGEBRAS

In order that we might pursue questions of conjugacy and decomposition
of honspherical subalgebras, we need certain information about almost-algebraic
Lie algebras. Such Lie algebras have been carefully studied {2, 12]. In particular,
[2] contams a complete account of all the information we will need on this
subject. So that we might more compactly state our results, a brief discussion
of some aspects of almost-algebraic Lie algebras will be given However, particular
details will be carefully referenced as needed.

Let 9 be a Lie algebra with nilradical ® U is called almosi-algebraic f N is
complemented m W by an W-reductive subalgebra € € 15 called a Malcev
factor for W, and the semidirect product decomposition U == € - RN 15 called
a Malcev decompositzon of . Let € be a subalgebra of the almost-algebraic
Lie algebra . W is called a small almost-algebraic hull for £ 1f 2 is an ideal in U
and no almost-algebraic proper subalgebra of % contains 8. Every Lie algebra
admits one and, up to 1somorphism, only one small almost-algebraic hull
{2, p. 299]. Hereafter, we will denote by 4(f), the small almost-algebraic huil
of &.

TaeoreM 2.1 Let € be a Lie algebra and let A(R) be its small almost-algebraic
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hull The set of horispherical subalgebras of A(Q) is exactly the set of horispherical
subalgebras of L.

Proof 1If 3 1s horispherical m £ relative to x, then since & 1s an ideal m
A(L), 3 1s clearly horispherical in A(L) relative to x.

Let 3 be horispherical in A(R) relative to ». Let ¥ = & + 7 be a decomposition
for x for which ad(x) = ad(k) + ad(z) 1s the Jordan decomposition of ad(x),
with ad(k) semusimple {2, p. 301]. We recall that 3 1s horispherical in A4(8)
relative to £ Let € be a maximal A(L)-reductive subalgebra of 4(L) containing
handlet € = S P T be a decomposition of € with € a Levi factor and I the
center of €. & 1s a Levi factor of & [2, p. 303], and ad(#) is semistmple for each
tin T [11, p 47]. There are elements s in € and ¢ in T such that 2 = s - ¢.
Now ad(%) and ad(z) are semisimple and commute so that ad{s) 1s semisimple
also

Let 8B be the subalgebra of € generated by s and . Let ‘R be the radical of €
and let R, and R, be the Fitting Null and Fitting one components, respectively,
of R with respect to ad(B) [11, p. 39] Simnce R and N generate T N [2, p. 303],
there 1s an & in R and an 7 1n N such that ¢ = & 4 »n. Let x = xy + x; with
x, R, and x; n R, . Since R 1s solvable it is clear that R, is a subset of N.
Now ad(s) both milpotent and semisimple on R, implies that ad(s) 1s zero on R, .
Hence

[s, % + n] =[5, 2 + %, +n] =[5, 2] = 0.
Similarly, [z, , + #] = 0 so that
by = (1) — (5 )

18 2 decomposition of s 4~ &, with ad(s + #) the serusimple part of ad(s -+ x,).
Thus ad(k) = ad(s + £) 1s the semisimple part of ad(s -+ x,) and J 1s horispherical
relative to s + x, Hence 3 1s horispherical in £ since both s and #x, belong
to .

THEOREM 2 2. Let £ be a Lie algebra and let A(R) be its small almost-algebraic
hull. Let (S ® ) N be a Malcev decomposttion of A(L) with & a Levi factor.
If 3 is horispherical in  then J is conpugate under an inner automorphism of £ to a
horispherical subalgebra 3* relative to h - t, where h is an element of S with
ad(h) semisimple and t is in .

Proof. Let 3 be honspherical in £ relative to x and let x =57 be a
decomposition for x, where ad(x) = ad(s) + ad(#) 1s the Jordan decomposition
for ad(x) with ad(s) semisimple Thus 3 1s horispherical in 4(£) relative to s.
Let B be a maximal 4(f)-reductrve subalgebra of A(L) containing s. For y
in M, let E(y) represent the inner automorphism generated by y; re, E(y) =
exp(ad(y)) Then there exists an element #* in M N [A(L), A(L)] such that
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E(#n*) (B) = (€ D I) [2, p. 306; 15] Since [4(2), A(L)] = [&, 2], »* belongs
to L so that E(n*) 1s an mner automorphism of £. There is an 2 in & and a ¢
in T such that E(n*)(s) = k + £. Smce ad(E(n*)(s)) and ad(z) are semisumple
and commute, ad(k) 1s semisimple. Clearly, 3* = E(®*)(3) is horispherical
m 8 relative to & -} ¢

In the following corollary we see that if 3 1s horisphericalin then 3 = 3, * 3,
where 3, 1s a horispherical subalgebra of a Lev: factor of £ and 3, is a honisphe-
rical subalgebra of a solvable subalgebra of & containing the radical.

CoroLrary 2.1. Let 8, C, T, M, 3, 3% &, and ¢ reman as i the previous
theorem and let R be the radical of &. Then 3* = 3, - 3o , Where 3, 1s horispherical
in & relative to h and 3, is horispherical in the subalgebra generated by h and R
relative to h - x for some x in R such that [h, x| == 0 and the semusimple part of
ad(h + x) zs ad(h + 1)

Proof. Let zbein 3* Then 2z = 2, + 2,, where 2, s 1n S @ T and 2, 18
m RN Since ad(h + )(F*) = 3* and S is an 1deal in & T 1t follows that
2, belongs to @ and 3 Let 3, = 3*N & and 3, = 3* N . Thus 3* =
31 3s - Clearly 3, is horispherical 1n & relative to . Let R = R, + R, be
the Fitting decomposition of R relative to ad(B) as described in the proof of
Theorem 2.1 and let ¢ = x, -+ #; -+ # be the representation of ¢ given by this
decomposition and by the fact that R and 9N generate T - N. Clearly, 3, 15
horispherical relative to & -+ x, m the subalgebra generated by A and R.

3. HORISPHERICAL SUBALGEBRAS OF SOLVABLE LIE ALGEBRAS

Let £ be a sovable Lie algebra, A(Q) 1ts small almost-algebraic hull, and
T - N a Malcev decomposition for A(L) with N the nilradical. Consider
the root space decomposition of 9i¢ under the actions of T. Let 9, represent
the root space in ¢ corresponding to the root «

Lemma 3.1, Let n be in M and let 2 be any nonzero element of N, Then
the projection of E(n)(z) onto N, is not 0.

Proof. Let p represent the projection of %t onto N, . Suppose p(E(n)(z)) = 0.
Recall that

E(n)(2) = z + ad(n)(z) + (ad(®n)}(3))2! +  + (ad(@))"(2)/m!

for some posttive integer m. Thus
& = plx — E(n)(?) (1)

z = p(p(z — E(n)(z)) — E(n)(p(z — E()=))))- @

and
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Let # = Y 3 be the representation of # given by the root space decomposttion.
Now 1t 1s clear that ¥ — E(n)(2) consists of a sum of products each of which 1s
of length at least 2. Since z 15 1 9, , 1t 15 clear that & — E(#)(2) 1s 2 sum of
products each of which is of length at least 2 and belongs to some root space.
Hence in (1), # 1s represented as a sum of products each of which 1s of length
at least 2 Further, in (2), 2 1s represented as a sum of products each of which
1s of length at least 3 Clearly, by continuing this substitution process, we could
obtamn a representation for 2 i which each term is a product of length at least &
for & = N, where N 1s any positive imnteger But 9 1s nilpotent Thus 2 must be 0.

TueoreM 3.1. Let & be a solvable Lie algebra and let T -9 be a Malcev
decomposttion of A(L), the small almost-algebraic hull of L. Suppose that 3,
and 3, are horispherscal in L velative to t, and t, , respectively, with both t, and t,
inX. Then 3, and 3, are inner conjugates if and only if 3, = 3 .

Proof. Clearly 3; = 3, umplies 3, and 3, are inner conjugates. Suppose =
1s an element of & mn N such that E(n)(3;) = 3, . By the above lemma we
see that R(x(t,)) << 0 mmplies R(x(?,)) <0 Thus 3,C 3. Hence 3; = 35.

TreoREM 32 Let 8 be a solvable Lie algebra and let T It be a Malcew
decomposttion for A(L), the small almost-algebraic hull of 8. If k 1s the number of
roots o for T acting on N for which R(o(t)) = O for some t in T, then there are
at most 2% classes of conjugate horispherical subalgebras of 2

Proof. Let 4 be the set of roots « for T acting on N for which R(oft)) == 0
for some t 1n T Let P(«) be the null space of R o « and let P be the union of all
such null spaces with « 1n 4. Consider the components of T\P. There are at
most 2% such components, with equality in the event that no « in 4 1s a multiple
of another 81 4 If ¢ and £, belong to the same component then R(a(%;)) < 0
is equivalent to R(a(f,)) << 0 for all o 1n 4. Thus any two elements of the same
component define the same horispherical subalgebra The previous theorem
shows that any two elements from different components would define non-
conjugate horispherical subalgebras

The above theorem says that if € 1s a solvable Lie algebra with nilradical 9
and dim 9 = m, and if % 1s the number of classes of conjugate horispherical
subalgebras, then 1 <{k <{2™. It is easy to see that both upper and lower
bounds are sharp The upper tnangular matrices of trace zero provide a class
of examples in which the upper bound is achieved. The Lie algebra with basis
x, ¥, and » and multiplication given by

[x,91 =0, [%2]=yp and [y %] =—

is a solvable, nonnilpotent lie algebra with only the trivial horispherical
subalgebra.
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