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a b s t r a c t

IfG is a connected graph, then the distance between two edges is, by definition, the distance
between the corresponding vertices of the line graph of G. The edge-Wiener indexWe of G
is then equal to the sum of distances between all pairs of edges of G. We give bounds on
We in terms of order and size. In particular we prove the asymptotically sharp upper bound
We(G) ≤ 25

55
n5 + O(n9/2) for graphs of order n.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Wiener index, the sum of distances between all pairs of vertices in a connected graph, is a graph invariant much
studied in bothmathematical and chemical literature; for details see the reviews [6,7,10,16] and the references cited therein.
In this paper we are concerned with a quantity closely analogous to the Wiener index, namely the sum of all distances
between all pairs of edges in a connected graph. Whereas theWiener index was conceived (by chemists) as early as in 1947,
and its mathematical investigation started already in the 1970s [11], it is remarkable that until now, its edge-version eluded
the attention of both ‘‘pure’’ and applied graph theoreticians.
The aim of the present paper is to contribute towards filling this gap.

Definition 1. Let G be a connected graph. Then the edge-Wiener index of G is defined as the sum of the distances (in the
line graph) between all pairs of edges of G, i.e.,

We(G) =
∑

{e,f }⊆E(G)

d(e, f ),

where the distance between two edges is the distance between the corresponding vertices in the line graph of G.

In view of the above definition, the edge-Wiener index of a graph equals the ordinaryWiener index of its line graph. Only
a few results on this latter quantity are known. These can now be re-stated in terms of the edge-Wiener index.
The following result is due to Buckley [2]. We rephrase his result, originally stated in terms of average distance of the

line graph of a tree, as:

Theorem 1 (Buckley [2]). Let T be a tree of order n. Then

We(T ) = W (T )−
(n
2

)
.
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As a corollary we obtain that there exists no tree whose Wiener index equals its edge-Wiener index.
Buckley’s equality was extended to graphs containing cycles [13,15]. In terms of edge-Wiener indices the respective

results read:

Theorem 2 (Gutman [13]). If G is a connected graph of order n and size q, then

We(G) ≥ W (G)− n(n− 1)+
1
2
q(q+ 1).

Theorem 3 (Gutman & Pavlović [15]). If G is a connected unicyclic graph of order n, then We(G) ≤ W (G), with equality if and
only if G ∼= Cn.

In connected bicyclic graphs all the three casesWe < W ,We = W , andWe > W may occur [15]. The smallest bicyclic
graphwith the propertyWe = W has 9 vertices and is unique. There are already 26 ten-vertex bicyclic graphswith the same
property [14]. For further work along these lines see [5,8,9].
Two graph parameters that are closely related to the Wiener index also feature in this paper. The average distance is

defined as the average (or arithmetic mean) of the distances between all pairs of vertices of a graph. It is denoted by µ(G).
Clearly,W (G) =

( n
2

)
µ(G). We also consider a variant of the Wiener index, put forward in [12] and called there the Schultz

index of the second kind, but for which the name Gutman index has also sometimes been used [19]. It is defined as

Gut(G) :=
∑

{x,y}⊆V (G)

deg(x) deg(y) d(x, y).

As observed in [3], the average distance of a regular graph does not differ significantly from the average distance of its
line graph.

Theorem 4 ([3]). Let G be a connected δ-regular graph of order n. Then
δn− δ
δn− 2

µ(G)− 1 ≤ µ(L(G)) ≤
δn− δ
δn− 2

µ(G)+ 1.

Corollary 1. Let G be a connected δ-regular graph. Then

1
4
δ2W (G)−

(
δn/2
2

)
≤ We(G) ≤

1
4
δ2W (G)+

(
δn/2
2

)
.

2. Results

Proposition 1. Let G be a connected graph of order n. Then

We(G) ≥
(
n− 1
2

)
,

with equality if and only if G is a star.

Proof. G has at least n− 1 edges, and the distance between any two edges is at least 1. Hence

We(G) =
∑

{e,f }⊆E(G)

d(e, f ) ≥
(
|E(G)|
2

)
≥

(
n− 1
2

)
.

If we have equality above, then Gmust have n− 1 edges, so G is a tree. Moreover, the line graph of G is complete since the
distance between any two edges is 1. Hence G is a star. �

We note that deletion of an edge can increase or decrease the edge-Wiener index but always increases the ordinary
Wiener index. Similarly, addition of an edge can decrease or increase the edge-Wiener index. To see this, consider the star
K1,n. It follows directly from Proposition 1 thatWe(K1,n + e) > We(K1,n) for any edge e not in K1,n. As an example of a graph
where addition of an edge decreases the edge-Wiener index consider the path Pn, and the cycle Cn, obtained by adding an
edge between the end vertices of the path. We haveWe(Pn) = n(n− 1)(n− 2)/6 > n3

8 ≥ We(Cn) if n > 11.

Definition 2. Let G = (V , E) be a connected graph and c be a real valued weight function on the vertices of G. Then the
Wiener index of Gwith respect to c is

W (G, c) =
∑
{x,y}⊆V

c(x) c(y) d(x, y).
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We note that for c ≡ 1 this yields the usual Wiener index, while for c(x) = deg(x)we obtain the Gutman index.
The edge-Wiener index of a graph is connected to its Gutman index by the following inequality.

Theorem 5. Let G be a connected graph of order n. Then∣∣∣∣We(G)− 14 Gut(G)
∣∣∣∣ ≤ n48 .

Proof. Consider the graph H obtained from G by subdividing each edge once. Consider the following functions a and b on
V (H) defined as follows.

a(v) =
{
deg(v) if v ∈ V (G),
0 if v ∈ V (H)− V (G), b(v) =

{
0 if v ∈ V (G),
2 if v ∈ V (H)− V (G).

Since for any two vertices u, v of Gwe have dH(u, v) = 2dG(u, v), it follows that

W (H, a) =
∑

{x,y}⊆V (H)

a(x) a(y) dH(x, y)

=

∑
{x,y}⊆V (G)

2 deg(x) deg(y)dG(x, y)

= 2Gut(G). (1)

Denote the vertex of degree 2 in V (H)−V (G) that subdivides the edge e ∈ E(G) by ve. Then b(x) 6= 0 only if x = ve for some
edge e of G. For any two edges e, f of Gwe have dH(ve, vf ) = 2 dG(e, f ), and so

W (H, b) =
∑

{x,y}⊆V (H)−V (G)

b(x) b(y) dH(x, y)

=

∑
{e,f }⊆E(G)

8 dG(e, f )

= 8We(G). (2)

We now compareW (H, a) andW (H, b). Clearly, the weight function a is obtained from the weight function b by moving
one weight unit of a vertex vuw to vertex u and the other weight unit to vertex w for all uw ∈ E(G). Hence no weight has
been moved over a distance of more than one, so no distance between two weights has been changed by more than 2. Since
we have 2|E(G)|weight units in total, the sum of the distances between the weight units has changed by at most 2

(
2|E(G)|
2

)
.

Hence

|W (H, a)−W (H, b)| ≤ 2
(
2|E(G)|
2

)
≤ n4,

which, with (1) and (2), completes the proof. �

We now consider the problem of finding a lower bound on the edge-Wiener index of a graph of given order and size. We
make use of the following well-known lower bound on the regular Wiener index.

Proposition 2 (Entringer, Jackson, and Snyder [11]). Let G be a connected graph of order n and size q. Then

W (G) ≥ n(n− 1)− q,

with equality if and only if diam(G) ≤ 2.

For the edge-Wiener index we obtain

We(G) = W (L(G)) ≥ q(q− 1)− |E(L(G))|,

with equality if and only if diam(L(G)) ≤ 2. Since

|E(L(G))| =
∑
v∈V (G)

(
deg(v)
2

)
=
1
2

∑
v∈V (G)

(deg(v))2 − q,

the problem essentially reduces to finding the graphs of given order n and size q that maximise the sum of the squares of
the vertex degrees. A good, but not sharp, upper bound,∑

v∈V (G)

(deg(v))2 ≤
2 q2

n− 1
+ q(n− 2),
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was given by de Caen [4]. This yields

We(G) ≥ q2
n− 2
n− 1

−
1
2
q(n− 2).

In [1], it was shown that for each value of n there exists an extremal graph which is either of the form Ka+ (bK1 ∪K1,c) or of
the form bK1∪(Ka+K1,c). (All extremal graphswere determined in [18].) These extremal graphsmaximise the edge-Wiener
index among all graphs of given order and size. An exact expression for the edge-Wiener index of these graphs would be
rather unpleasant. But if q� n, then their edge-Wiener index is approximately

We(G) = (1+ o(1))
(
q2
n− 3
n− 1

− q(n− 1)
)
.

In order to determine an asymptotically sharp upper bound on the edge-Wiener index of a graph of given order, we first
find a bound on the Gutman index. We will make use of the following Lemma. The ith distance layer of a vertex v is the set
of vertices at distances i from v.

Lemma 1. Let v be a vertex of eccentricity d, and let k > 2 be a positive real. Let Ak be the number of distance layers of v that
contain only vertices of degree less than k. Then

Ak ≥ (d+ 1)
k+ 1
k− 2

−
3n
k− 2

.

Proof. Let Vi be the ith distance layer of v, and let ni = |Vi|. Then, with n−1 = nd+1 = 0,

d∑
i=0

(ni−1 + ni + ni+1 − 1) = 3n− d− 2− nd. (3)

A vertex in Vi has degree atmost ni−1+ni+ni+1−1. So each of the d+1−Ak distance layers Vi containing a vertex of degree
at least k satisfies ni−1 + ni + ni+1 − 1 ≥ k. Each of the remaining Ak distance layers Vi satisfies ni−1 + ni + ni+1 − 1 ≥ 2,
unless i ∈ {0, d}, in which case ni−1 + ni + ni+1 − 1 ≥ 1. Hence, by nd ≥ 1,

2Ak − 2+ (d+ 1− Ak)k ≤ 3n− d− 3,

and the statement of the lemma follows after simplification. �

Theorem 6. Let G be a connected graph of order n. Then

Gut(G) ≤
24

55
n5 + O(n9/2),

and the coefficient of n5 is best possible.

Proof. Let d = diam(G). Fix a vertex v of eccentricity d. Let u1, u2 be two vertices that, among all pairs of vertices at distance
at least 3, have maximum degree sum, say B.
By Lemma 1, vertex v has at least (d+1)(k+1)/(k−2)−(3n)/(k−2) distance layers that contain only vertices of degree

less than k. Since N[u1] ∪ N[u2] has vertices in at most 6 distance layers of v, there exists a set R of b(d+ 1) k+1k−2 −
3n
k−2 − 6c

vertices of degree less than k, that is disjoint from N[u1] ∪ N[u2]. Let k =
√
n. Then R is a set containing d − O(

√
n)

vertices, all of degree less than
√
n. LetR be the set of all unordered pairs of vertices that have at least one vertex in R. Then

|R| =
( n
2

)
−

(
n−|R|
2

)
and∑

{x,y}∈R

deg(x) deg(y) d(x, y) ≤ |R|k(n− 1)d ≤
(n
2

)√
n(n− 1)2 = O(n9/2). (4)

LetU be the set of pairs of vertices that are either both in N[u1] or both in N[u2]. Then the distance between any two such
vertices is at most 2, hence∑

{x,y}∈U

deg(x) deg(y) d(x, y) ≤ |U| 2(n− 1)2 ≤
(n
2

)
2(n− 1)2 = O(n4). (5)

From the above it follows that the pairs inU∪R do not contribute any term of order greater than n9/2. IfV denotes the set
of all unordered pairs of vertices of G then

Gut(G) =

( ∑
{x,y}∈V−(U∪R)

deg(x) deg(y) d(x, y)

)
+ O(n9/2).
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Let {x, y} ∈ V − (U ∪R). If x, y are at distance at least 3, then we have

deg(x) deg(y) ≤
1
4
(deg(x)+ deg(y))2 ≤

1
4
B2.

Hence deg(x) deg(y) d(x, y) ≤ 1
4B
2d. If d(x, y) ≤ 2, then we have deg(x) deg(y) d(x, y) ≤ 2(n − 1)2. We distinguish two

cases, depending on which of the two upper bounds is greater.
Case 1: 14B

2d ≤ 2(n− 1)2.
Then deg(x) deg(y) d(x, y) ≤ 2(n− 1)2 for all {x, y} ∈ V − (R ∪U). So

Gut(G) =

( ∑
{x,y}∈V−(U∪R)

deg(x) deg(y) d(x, y)

)
+ O(n9/2)

≤

(n
2

)
2(n− 1)2 + O(n9/2) = O(n9/2),

as desired.
Case 2: 14B

2d > 2(n− 1)2.

Gut(G) =

( ∑
{x,y}∈V−(R∪U)

deg(x) deg(y) d(x, y)

)
+ O(n9/2)

≤ (|V| − |R| − |U|)
B2d
4
+ O(n9/2). (6)

Now, |R| =
( n
2

)
−

(
n−|R|
2

)
, where |R| = d− O(

√
n), and so (|V| − |R|) =

(
n−|R|
2

)
=

(
n−d+O(

√
n)

2

)
=
1
2 (n− d)

2
+ O(n3/2).

We now find a lower bound on |U|. It follows from |U| =
(
deg(u1)+1

2

)
+

(
deg(u2)+1

2

)
and deg(u1) + deg(u2) = B that |U|

attains its minimum value if deg(u1) = deg(u2) = B
2 . Hence |U| ≥

B2
4 +

B
2 >

B2
4 . Therefore,

|V| − |R| − |U| ≤
1
2
(n− d)2 −

B2

4
+ O(n3/2).

This, in conjunction with (6) yields

Gut(G) ≤
(
1
2
(n− d)2 −

B2

4
+ O(n3/2)

)
B2d
4
+ O(n9/2)

= d
(
1
2
(n− d)2 −

B2

4

)
B2

4
+ O(n9/2).

Since N(ui) has at most 3 vertices on any geodesic, in particular a geodesic of length d, we have that d + B ≤ n + 5, so
that B ≤ n − d + O(1). A simple differentiation shows that the term d

(
1
2 (n− d)

2
−
B2
4

)
B2
4 is maximised for B = n − d.

Substituting back yields

Gut(G) ≤
1
16
d(n− d)4 + O(n9/2).

A simple differentiation now shows that d(n − d)4 is maximised for d = 1
5n. Substituting back yields the upper bound in

the theorem.
To see that the upper bound is sharp consider the graph Gn, where n is a multiple of 5, obtained from a path with n5

vertices and two vertex disjoint cliques of order 2n5 by adding two edges, each joining an end vertex of the path to a vertex
in a clique. A simple calculation shows that

Gut(Gn) =
24

55
n5 + O(n4),

as desired. �

Corollary 2. Let G be a connected graph of order n. Then

We(G) ≤
22

55
n5 + O(n9/2),

and the coefficient of n5 is best possible.
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In conclusionwe remark that, in [17] ameasure of distanceD(f , g) between edges f and g of a graphG is defined to be the
length of a shortest path between a vertex of f and a vertex of g (clearly not a metric). For the corresponding edge-Wiener
index,W ′e(G) =

∑
{f ,g}⊂E(G) D(f , g), the inequalityW

′
e(G) ≤

n5
8 is established in [17] and the problem is posed to find the

maximum value ofW ′e(G), given the order of G. As D(f , g) = d(f , g)− 1, it follows from the definitions ofWe(G) andW
′
e(G)

thatW ′e(G) ≤ We(G) ≤
22

55
n5 + O(n9/2) and the extremal graph in Theorem 6 shows that this bound onW ′e(G) is sharp.
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