Note

The edge-Wiener index of a graph

P. Dankelmann ${ }^{\text {a,* }}$, I. Gutman ${ }^{\text {b }}$, S. Mukwembi ${ }^{\text {a }}$, H.C. Swart ${ }^{\text {a }}$
${ }^{\text {a }}$ University of KwaZulu-Natal, Durban, South Africa
${ }^{\text {b }}$ University of Kragujevac, Kragujevac, Serbia

A R T I C L E I N F O

Article history:

Received 18 June 2008
Received in revised form 19 September 2008
Accepted 19 September 2008
Available online 28 October 2008

Keywords:

Distance
Wiener index
Line graph

Abstract

If G is a connected graph, then the distance between two edges is, by definition, the distance between the corresponding vertices of the line graph of G. The edge-Wiener index W_{e} of G is then equal to the sum of distances between all pairs of edges of G. We give bounds on W_{e} in terms of order and size. In particular we prove the asymptotically sharp upper bound $W_{e}(G) \leq \frac{2^{5}}{5^{5}} n^{5}+O\left(n^{9 / 2}\right)$ for graphs of order n. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

The Wiener index, the sum of distances between all pairs of vertices in a connected graph, is a graph invariant much studied in both mathematical and chemical literature; for details see the reviews $[6,7,10,16]$ and the references cited therein. In this paper we are concerned with a quantity closely analogous to the Wiener index, namely the sum of all distances between all pairs of edges in a connected graph. Whereas the Wiener index was conceived (by chemists) as early as in 1947, and its mathematical investigation started already in the 1970s [11], it is remarkable that until now, its edge-version eluded the attention of both "pure" and applied graph theoreticians.

The aim of the present paper is to contribute towards filling this gap.
Definition 1. Let G be a connected graph. Then the edge-Wiener index of G is defined as the sum of the distances (in the line graph) between all pairs of edges of G, i.e.,

$$
W_{e}(G)=\sum_{\{e, f\} \subseteq E(G)} d(e, f),
$$

where the distance between two edges is the distance between the corresponding vertices in the line graph of G.
In view of the above definition, the edge-Wiener index of a graph equals the ordinary Wiener index of its line graph. Only a few results on this latter quantity are known. These can now be re-stated in terms of the edge-Wiener index.

The following result is due to Buckley [2]. We rephrase his result, originally stated in terms of average distance of the line graph of a tree, as:

Theorem 1 (Buckley [2]). Let T be a tree of order n. Then

$$
W_{e}(T)=W(T)-\binom{n}{2} .
$$

[^0]As a corollary we obtain that there exists no tree whose Wiener index equals its edge-Wiener index.
Buckley's equality was extended to graphs containing cycles [13,15]. In terms of edge-Wiener indices the respective results read:

Theorem 2 (Gutman [13]). If G is a connected graph of order n and size q, then

$$
W_{e}(G) \geq W(G)-n(n-1)+\frac{1}{2} q(q+1)
$$

Theorem 3 (Gutman \& Pavlović [15]). If G is a connected unicyclic graph of order n, then $W_{e}(G) \leq W(G)$, with equality if and only if $G \cong C_{n}$.

In connected bicyclic graphs all the three cases $W_{e}<W, W_{e}=W$, and $W_{e}>W$ may occur [15]. The smallest bicyclic graph with the property $W_{e}=W$ has 9 vertices and is unique. There are already 26 ten-vertex bicyclic graphs with the same property [14]. For further work along these lines see [5,8,9].

Two graph parameters that are closely related to the Wiener index also feature in this paper. The average distance is defined as the average (or arithmetic mean) of the distances between all pairs of vertices of a graph. It is denoted by $\mu(G)$. Clearly, $W(G)=\binom{n}{2} \mu(G)$. We also consider a variant of the Wiener index, put forward in [12] and called there the Schultz index of the second kind, but for which the name Gutman index has also sometimes been used [19]. It is defined as

$$
\operatorname{Gut}(G):=\sum_{\{x, y\} \subseteq V(G)} \operatorname{deg}(x) \operatorname{deg}(y) d(x, y)
$$

As observed in [3], the average distance of a regular graph does not differ significantly from the average distance of its line graph.

Theorem 4 ([3]). Let G be a connected δ-regular graph of order n. Then

$$
\frac{\delta n-\delta}{\delta n-2} \mu(G)-1 \leq \mu(L(G)) \leq \frac{\delta n-\delta}{\delta n-2} \mu(G)+1
$$

Corollary 1. Let G be a connected δ-regular graph. Then

$$
\frac{1}{4} \delta^{2} W(G)-\binom{\delta n / 2}{2} \leq W_{e}(G) \leq \frac{1}{4} \delta^{2} W(G)+\binom{\delta n / 2}{2}
$$

2. Results

Proposition 1. Let G be a connected graph of order n. Then

$$
W_{e}(G) \geq\binom{ n-1}{2}
$$

with equality if and only if G is a star.
Proof. G has at least $n-1$ edges, and the distance between any two edges is at least 1 . Hence

$$
W_{e}(G)=\sum_{\{e, f\} \subseteq E(G)} d(e, f) \geq\binom{|E(G)|}{2} \geq\binom{ n-1}{2}
$$

If we have equality above, then G must have $n-1$ edges, so G is a tree. Moreover, the line graph of G is complete since the distance between any two edges is 1 . Hence G is a star.

We note that deletion of an edge can increase or decrease the edge-Wiener index but always increases the ordinary Wiener index. Similarly, addition of an edge can decrease or increase the edge-Wiener index. To see this, consider the star $K_{1, n}$. It follows directly from Proposition 1 that $W_{e}\left(K_{1, n}+e\right)>W_{e}\left(K_{1, n}\right)$ for any edge e not in $K_{1, n}$. As an example of a graph where addition of an edge decreases the edge-Wiener index consider the path P_{n}, and the cycle C_{n}, obtained by adding an edge between the end vertices of the path. We have $W_{e}\left(P_{n}\right)=n(n-1)(n-2) / 6>\frac{n^{3}}{8} \geq W_{e}\left(C_{n}\right)$ if $n>11$.

Definition 2. Let $G=(V, E)$ be a connected graph and c be a real valued weight function on the vertices of G. Then the Wiener index of G with respect to c is

$$
W(G, c)=\sum_{\{x, y\} \subseteq V} c(x) c(y) d(x, y) .
$$

We note that for $c \equiv 1$ this yields the usual Wiener index, while for $c(x)=\operatorname{deg}(x)$ we obtain the Gutman index.
The edge-Wiener index of a graph is connected to its Gutman index by the following inequality.
Theorem 5. Let G be a connected graph of order n. Then

$$
\left|W_{e}(G)-\frac{1}{4} \operatorname{Gut}(G)\right| \leq \frac{n^{4}}{8}
$$

Proof. Consider the graph H obtained from G by subdividing each edge once. Consider the following functions a and b on $V(H)$ defined as follows.

$$
a(v)= \begin{cases}\operatorname{deg}(v) & \text { if } v \in V(G), \\
0 & \text { if } v \in V(H)-V(G), \quad b(v)=\left\{\begin{array}{ll}
0 & \text { if } v \in V(G) \\
2 & \text { if } v \in V(H)-V(G)
\end{array} . \quad . \quad . \quad . \quad . \quad . \quad .\right.\end{cases}
$$

Since for any two vertices u, v of G we have $d_{H}(u, v)=2 d_{G}(u, v)$, it follows that

$$
\begin{align*}
W(H, a) & =\sum_{\{x, y\} \subseteq V(H)} a(x) a(y) d_{H}(x, y) \\
& =\sum_{\{x, y\} \subseteq V(G)} 2 \operatorname{deg}(x) \operatorname{deg}(y) d_{G}(x, y) \\
& =2 \operatorname{Gut}(G) \tag{1}
\end{align*}
$$

Denote the vertex of degree 2 in $V(H)-V(G)$ that subdivides the edge $e \in E(G)$ by v_{e}. Then $b(x) \neq 0$ only if $x=v_{e}$ for some edge e of G. For any two edges e, f of G we have $d_{H}\left(v_{e}, v_{f}\right)=2 d_{G}(e, f)$, and so

$$
\begin{align*}
W(H, b) & =\sum_{\{x, y\} \subseteq V(H)-V(G)} b(x) b(y) d_{H}(x, y) \\
& =\sum_{\{e, f\} \subseteq E(G)} 8 d_{G}(e, f) \\
& =8 W_{e}(G) \tag{2}
\end{align*}
$$

We now compare $W(H, a)$ and $W(H, b)$. Clearly, the weight function a is obtained from the weight function b by moving one weight unit of a vertex $v_{u w}$ to vertex u and the other weight unit to vertex w for all $u w \in E(G)$. Hence no weight has been moved over a distance of more than one, so no distance between two weights has been changed by more than 2 . Since we have $2|E(G)|$ weight units in total, the sum of the distances between the weight units has changed by at most $2\binom{2|E(G)|}{2}$. Hence

$$
|W(H, a)-W(H, b)| \leq 2\binom{2|E(G)|}{2} \leq n^{4}
$$

which, with (1) and (2), completes the proof.
We now consider the problem of finding a lower bound on the edge-Wiener index of a graph of given order and size. We make use of the following well-known lower bound on the regular Wiener index.

Proposition 2 (Entringer, Jackson, and Snyder [11]). Let G be a connected graph of order n and size q. Then

$$
W(G) \geq n(n-1)-q
$$

with equality if and only if $\operatorname{diam}(G) \leq 2$.
For the edge-Wiener index we obtain

$$
W_{e}(G)=W(L(G)) \geq q(q-1)-|E(L(G))|
$$

with equality if and only if $\operatorname{diam}(L(G)) \leq 2$. Since

$$
|E(L(G))|=\sum_{v \in V(G)}\binom{\operatorname{deg}(v)}{2}=\frac{1}{2} \sum_{v \in V(G)}(\operatorname{deg}(v))^{2}-q
$$

the problem essentially reduces to finding the graphs of given order n and size q that maximise the sum of the squares of the vertex degrees. A good, but not sharp, upper bound,

$$
\sum_{v \in V(G)}(\operatorname{deg}(v))^{2} \leq \frac{2 q^{2}}{n-1}+q(n-2)
$$

was given by de Caen [4]. This yields

$$
W_{e}(G) \geq q^{2} \frac{n-2}{n-1}-\frac{1}{2} q(n-2)
$$

In [1], it was shown that for each value of n there exists an extremal graph which is either of the form $K_{a}+\left(b K_{1} \cup K_{1, c}\right)$ or of the form $b K_{1} \cup\left(K_{a}+\overline{K_{1, c}}\right)$. (All extremal graphs were determined in [18].) These extremal graphs maximise the edge-Wiener index among all graphs of given order and size. An exact expression for the edge-Wiener index of these graphs would be rather unpleasant. But if $q \gg n$, then their edge-Wiener index is approximately

$$
W_{e}(G)=(1+o(1))\left(q^{2} \frac{n-3}{n-1}-q(n-1)\right)
$$

In order to determine an asymptotically sharp upper bound on the edge-Wiener index of a graph of given order, we first find a bound on the Gutman index. We will make use of the following Lemma. The i th distance layer of a vertex v is the set of vertices at distances i from v.

Lemma 1. Let v be a vertex of eccentricity d, and let $k>2$ be a positive real. Let A_{k} be the number of distance layers of v that contain only vertices of degree less than k. Then

$$
A_{k} \geq(d+1) \frac{k+1}{k-2}-\frac{3 n}{k-2}
$$

Proof. Let V_{i} be the i th distance layer of v, and let $n_{i}=\left|V_{i}\right|$. Then, with $n_{-1}=n_{d+1}=0$,

$$
\begin{equation*}
\sum_{i=0}^{d}\left(n_{i-1}+n_{i}+n_{i+1}-1\right)=3 n-d-2-n_{d} \tag{3}
\end{equation*}
$$

A vertex in V_{i} has degree at most $n_{i-1}+n_{i}+n_{i+1}-1$. So each of the $d+1-A_{k}$ distance layers V_{i} containing a vertex of degree at least k satisfies $n_{i-1}+n_{i}+n_{i+1}-1 \geq k$. Each of the remaining A_{k} distance layers V_{i} satisfies $n_{i-1}+n_{i}+n_{i+1}-1 \geq 2$, unless $i \in\{0, d\}$, in which case $n_{i-1}+n_{i}+n_{i+1}-1 \geq 1$. Hence, by $n_{d} \geq 1$,

$$
2 A_{k}-2+\left(d+1-A_{k}\right) k \leq 3 n-d-3
$$

and the statement of the lemma follows after simplification.
Theorem 6. Let G be a connected graph of order n. Then

$$
\operatorname{Gut}(G) \leq \frac{2^{4}}{5^{5}} n^{5}+O\left(n^{9 / 2}\right)
$$

and the coefficient of n^{5} is best possible.
Proof. Let $d=\operatorname{diam}(G)$. Fix a vertex v of eccentricity d. Let u_{1}, u_{2} be two vertices that, among all pairs of vertices at distance at least 3, have maximum degree sum, say B.

By Lemma 1, vertex v has at least $(d+1)(k+1) /(k-2)-(3 n) /(k-2)$ distance layers that contain only vertices of degree less than k. Since $N\left[u_{1}\right] \cup N\left[u_{2}\right]$ has vertices in at most 6 distance layers of v, there exists a set R of $\left\lfloor(d+1) \frac{k+1}{k-2}-\frac{3 n}{k-2}-6\right\rfloor$ vertices of degree less than k, that is disjoint from $N\left[u_{1}\right] \cup N\left[u_{2}\right]$. Let $k=\sqrt{n}$. Then R is a set containing $d-O(\sqrt{n})$ vertices, all of degree less than \sqrt{n}. Let \mathcal{R} be the set of all unordered pairs of vertices that have at least one vertex in R. Then $|\mathcal{R}|=\binom{n}{2}-\binom{n-|R|}{2}$ and

$$
\begin{equation*}
\sum_{\{x, y\} \in \mathcal{R}} \operatorname{deg}(x) \operatorname{deg}(y) d(x, y) \leq|\mathcal{R}| k(n-1) d \leq\binom{ n}{2} \sqrt{n}(n-1)^{2}=O\left(n^{9 / 2}\right) \tag{4}
\end{equation*}
$$

Let U be the set of pairs of vertices that are either both in $N\left[u_{1}\right]$ or both in $N\left[u_{2}\right]$. Then the distance between any two such vertices is at most 2 , hence

$$
\begin{equation*}
\sum_{\{x, y\} \in \mathcal{U}} \operatorname{deg}(x) \operatorname{deg}(y) d(x, y) \leq|U| 2(n-1)^{2} \leq\binom{ n}{2} 2(n-1)^{2}=O\left(n^{4}\right) \tag{5}
\end{equation*}
$$

 of all unordered pairs of vertices of G then

$$
\operatorname{Gut}(G)=\left(\sum_{\{x, y\} \in \mathcal{V}-(u \cup \mathcal{R})} \operatorname{deg}(x) \operatorname{deg}(y) d(x, y)\right)+O\left(n^{9 / 2}\right)
$$

Let $\{x, y\} \in \mathcal{V}-(\mathcal{U} \cup \mathcal{R})$. If x, y are at distance at least 3, then we have

$$
\operatorname{deg}(x) \operatorname{deg}(y) \leq \frac{1}{4}(\operatorname{deg}(x)+\operatorname{deg}(y))^{2} \leq \frac{1}{4} B^{2}
$$

Hence $\operatorname{deg}(x) \operatorname{deg}(y) d(x, y) \leq \frac{1}{4} B^{2} d$. If $d(x, y) \leq 2$, then we have $\operatorname{deg}(x) \operatorname{deg}(y) d(x, y) \leq 2(n-1)^{2}$. We distinguish two cases, depending on which of the two upper bounds is greater.

CASE 1: $\frac{1}{4} B^{2} d \leq 2(n-1)^{2}$.
Then $\operatorname{deg}(x) \operatorname{deg}(y) d(x, y) \leq 2(n-1)^{2}$ for all $\{x, y\} \in \mathcal{V}-(\mathcal{R} \cup \mathcal{U})$. So

$$
\begin{aligned}
\operatorname{Gut}(G) & =\left(\sum_{\{x, y\} \in \mathcal{V}-(u \cup \mathcal{R})} \operatorname{deg}(x) \operatorname{deg}(y) d(x, y)\right)+O\left(n^{9 / 2}\right) \\
& \leq\binom{ n}{2} 2(n-1)^{2}+O\left(n^{9 / 2}\right)=O\left(n^{9 / 2}\right)
\end{aligned}
$$

as desired.
CASE 2: $\frac{1}{4} B^{2} d>2(n-1)^{2}$.

$$
\begin{align*}
\operatorname{Gut}(G) & =\left(\sum_{\{x, y\} \in \mathcal{V}-(\mathcal{R} \cup u)} \operatorname{deg}(x) \operatorname{deg}(y) d(x, y)\right)+O\left(n^{9 / 2}\right) \\
& \leq(|\mathcal{V}|-|\mathcal{R}|-|\mathcal{U}|) \frac{B^{2} d}{4}+O\left(n^{9 / 2}\right) \tag{6}
\end{align*}
$$

Now, $|\mathcal{R}|=\binom{n}{2}-\binom{n-|R|}{2}$, where $|R|=d-O(\sqrt{n})$, and so $(|\mathcal{V}|-|\mathcal{R}|)=\binom{n-|R|}{2}=\binom{n-d+O(\sqrt{n})}{2}=\frac{1}{2}(n-d)^{2}+O\left(n^{3 / 2}\right)$. We now find a lower bound on $|U|$. It follows from $|U|=\binom{\operatorname{deg}\left(u_{1}\right)+1}{2}+\binom{\operatorname{deg}\left(u_{2}\right)+1}{2}$ and $\operatorname{deg}\left(u_{1}\right)+\operatorname{deg}\left(u_{2}\right)=B$ that $|U|$ attains its minimum value if $\operatorname{deg}\left(u_{1}\right)=\operatorname{deg}\left(u_{2}\right)=\frac{B}{2}$. Hence $|U| \geq \frac{B^{2}}{4}+\frac{B}{2}>\frac{B^{2}}{4}$. Therefore,

$$
|\mathcal{V}|-|\mathcal{R}|-|\mathcal{U}| \leq \frac{1}{2}(n-d)^{2}-\frac{B^{2}}{4}+O\left(n^{3 / 2}\right)
$$

This, in conjunction with (6) yields

$$
\begin{aligned}
\operatorname{Gut}(G) & \leq\left(\frac{1}{2}(n-d)^{2}-\frac{B^{2}}{4}+O\left(n^{3 / 2}\right)\right) \frac{B^{2} d}{4}+O\left(n^{9 / 2}\right) \\
& =d\left(\frac{1}{2}(n-d)^{2}-\frac{B^{2}}{4}\right) \frac{B^{2}}{4}+O\left(n^{9 / 2}\right)
\end{aligned}
$$

Since $N\left(u_{i}\right)$ has at most 3 vertices on any geodesic, in particular a geodesic of length d, we have that $d+B \leq n+5$, so that $B \leq n-d+O(1)$. A simple differentiation shows that the term $d\left(\frac{1}{2}(n-d)^{2}-\frac{B^{2}}{4}\right) \frac{B^{2}}{4}$ is maximised for $B=n-d$. Substituting back yields

$$
\operatorname{Gut}(G) \leq \frac{1}{16} d(n-d)^{4}+O\left(n^{9 / 2}\right)
$$

A simple differentiation now shows that $d(n-d)^{4}$ is maximised for $d=\frac{1}{5} n$. Substituting back yields the upper bound in the theorem.

To see that the upper bound is sharp consider the graph G_{n}, where n is a multiple of 5 , obtained from a path with $\frac{n}{5}$ vertices and two vertex disjoint cliques of order $\frac{2 n}{5}$ by adding two edges, each joining an end vertex of the path to a vertex in a clique. A simple calculation shows that

$$
\operatorname{Gut}\left(G_{n}\right)=\frac{2^{4}}{5^{5}} n^{5}+O\left(n^{4}\right)
$$

as desired.
Corollary 2. Let G be a connected graph of order n. Then

$$
W_{e}(G) \leq \frac{2^{2}}{5^{5}} n^{5}+O\left(n^{9 / 2}\right)
$$

and the coefficient of n^{5} is best possible.

In conclusion we remark that, in [17] a measure of distance $D(f, g)$ between edges f and g of a graph G is defined to be the length of a shortest path between a vertex of f and a vertex of g (clearly not a metric). For the corresponding edge-Wiener index, $W_{e}^{\prime}(G)=\sum_{\{f, g\} \subset E(G)} D(f, g)$, the inequality $W_{e}^{\prime}(G) \leq \frac{n^{5}}{8}$ is established in [17] and the problem is posed to find the maximum value of $W_{e}^{\prime}(G)$, given the order of G. As $D(f, g)=d(f, g)-1$, it follows from the definitions of $W_{e}(G)$ and $W_{e}^{\prime}(G)$ that $W_{e}^{\prime}(G) \leq W_{e}(G) \leq \frac{2^{2}}{5^{5}} n^{5}+O\left(n^{9 / 2}\right)$ and the extremal graph in Theorem 6 shows that this bound on $W_{e}^{\prime}(G)$ is sharp.

References

[1] F. Boesch, R. Brigham, S. Burr, R. Dutton, R. Tindell, Maximizing the sum of the squares of the degrees of a graph, Tech Rep. Stevens Inst Tech, Hoboken, NJ, 1990.
[2] F. Buckley, Mean distance in line graphs, Congr. Numer. 32 (1981) 153-162.
[3] P. Dankelmann, Bounds on the average distance - a survey (in preparation).
[4] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998) 245-248.
[5] A.A. Dobrynin, Distance of iterated line graphs, Graph Theory Notes N. Y. 37 (1999) 8-9.
[6] A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: Theory and applications, Acta Appl. Math. 66 (2001) 211-249.
[7] A.A. Dobrynin, I. Gutman, S. Klavžar, P. Žigert, Wiener index of hexagonal systems, Acta Appl. Math. 72 (2002) 247-294.
[8] A.A. Dobryinin, L.S. Mel'nikov, Wiener index, line graph and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) $209-214$.
[9] A.A. Dobrynin, L.S. Mel'nikov, Wiener index of graphs and their line graphs with arbitrary large cyclomatic number, Appl. Math. Lett. 18 (2005) 307-312.
[10] R.C. Entringer, Distance in graphs: Trees, J. Combin. Math. Combin. Comput. 24 (1997) 65-84.
[11] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283-296.
[12] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089.
[13] I. Gutman, Distance of line graphs, Graph Theory Notes N. Y. 31 (1996) 49-52.
[14] I. Gutman, V. Jovašević, A.A. Dobrynin, Smallest graphs for which the distance of the graph is equal to the distance of its line graph, Graph Theory Notes N. Y. 33 (1997) 19.
[15] I. Gutman, L. Pavlović, More on distance of line graphs, Graph Theory Notes New York 33 (1997) 14-18.
[16] I. Gutman, Y.N. Yeh, S.L. Lee, Y.L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993) $651-661$.
[17] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, S.G. Wagner, Some new results on distance-based graph invariants, European J. Combin. (submitted for publication).
[18] U.N. Peled, R. Petreschi, A. Sterbini, (n, e)-graphs with maximum sum of squares of degrees, J. Graph Theory 31 (1999) $283-295$.
[19] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

[^0]: * Corresponding author.

 E-mail address: dankelma@ukzn.ac.za (P. Dankelmann).

