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A module M is called an automorphism-invariant module if every
isomorphism between two essential submodules of M extends to
an automorphism of M . This paper introduces the notion of dual
of such modules. We call a module M to be a dual automorphism-
invariant module if whenever K1 and K2 are small submodules
of M , then any epimorphism η : M/K1 → M/K2 with small kernel
lifts to an endomorphism ϕ of M . In this paper we give various
examples of dual automorphism-invariant module and study its
properties. In particular, we study abelian groups and prove that
dual automorphism-invariant abelian groups must be reduced. It is
shown that over a right perfect ring R , a lifting right R-module M
is dual automorphism-invariant if and only if M is quasi-projective.

© 2012 Elsevier Inc. All rights reserved.

All our rings have identity element and modules are right unital. A right R-module M is called
an automorphism-invariant module if every isomorphism between two essential submodules of M ex-
tends to an automorphism of M . Equivalently, M is an automorphism-invariant module if for any
automorphism σ of E(M), σ(M) ⊆ M where E(M) is the injective hull of M (see [6] and [10]).

Recall that a right R-module M is called a quasi-injective module (pseudo-injective module) if M
is invariant under any endomorphism (monomorphism) of E(M). Thus, clearly, any quasi-injective
module or pseudo-injective module is automorphism-invariant.

In this paper we introduce the notion of dual of an automorphism-invariant module.
A submodule N of a module M is called small in M (denoted as N ⊂s M) if N + K �= M for any

proper submodule K of M . The Jacobson radical of a module M is the sum of all small submodules
of M and is denoted by J (M). For any term not defined here the reader is referred to [3] and [8].
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Definition. A right R-module M is called a dual automorphism-invariant module if whenever K1 and
K2 are small submodules of M , then any epimorphism η : M/K1 → M/K2 with small kernel lifts to
an endomorphism ϕ of M .

M
ϕ

M

M/K1
η

M/K2

We will show that, in fact, the above endomorphism ϕ must be an automorphism of M . First,
we have the following

Lemma 1. Let M be a dual automorphism-invariant module. If ϕ : M → M is an epimorphism with small
kernel, then ϕ is an automorphism.

Proof. Let K = Ker(ϕ). Then ϕ induces an isomorphism ϕ̄ : M
K → M . Consider ϕ̄−1 : M → M

K . Since M
is a dual automorphism-invariant module, by definition, ϕ̄−1 lifts to an endomorphism λ : M → M .
We have λ(M) + K = M . As K ⊂s M , we get λ(M) = M . Thus λ is an epimorphism. Then for any
x ∈ M , ϕ̄−1(x) = λ(x) + K . Now x = ϕ̄ϕ̄−1(x) = ϕ̄(λ(x) + K ) = ϕλ(x). This proves that ϕλ = 1M . Thus
ϕ−1 = λ and hence ϕ is an automorphism. �

As a consequence, it follows that

Corollary 2. A right R-module M is a dual automorphism-invariant module if and only if for any two small
submodules K1 and K2 of M, any epimorphism η : M/K1 → M/K2 with small kernel lifts to an automor-
phism ϕ of M.

Proof. Let M be a dual automorphism-invariant right R-module. Let K1 and K2 be any two small
submodules of M and let η : M/K1 → M/K2 be any epimorphism with small kernel. Let ker(η) =
L/K1. Then L is small in M . If π : M → M/K1 is a canonical epimorphism, then λ = ηπ : M → M/K2
has kernel L. Thus λ : M → M/K2 is an epimorphism with small kernel. By definition, λ lifts to
an endomorphism ϕ of M . Now ϕ(M) + K2 = M . As K2 ⊂s M , we get ϕ(M) = M . Thus ϕ is an
epimorphism with small kernel, and hence by above lemma, ϕ is an automorphism. The converse is
obvious. �
Example. A module with no nonzero small submodule is easily seen to be a dual automorphism-
invariant module. Thus all the semiprimitive modules belong to the family of dual automorphism-
invariant modules. In particular, the regular modules studied by Zelmanowitz in [11] are dual
automorphism-invariant.

1. V -rings and dual automorphism-invariant modules

Recall that a ring R is called a right V -ring if every simple right R-module is injective. The class
of right V -rings was introduced by Villamayor [7]. It is a well-known unpublished result due to
Kaplansky that a commutative ring is von Neumann regular if and only if it is a V -ring. The class
of V -rings includes von Neumann regular rings with artinian primitive factors. It is well known that
if R is a right V -ring then for every right R-module M , J (M) = 0 and so M has no nonzero small
submodule. For the sake of completeness, we present the proof in the next proposition.

Proposition 3. Let R be a right V -ring. Then every right R-module is dual automorphism-invariant.
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Proof. Let M be a nonzero right R-module. Let x (�= 0) ∈ M . By Zorn’s lemma there exists a submod-
ule N of M maximal with respect to not containing x. Then the intersection of all nonzero submodules
of M/N is (xR + N)/N and it is simple. Since R is a right V -ring, (xR + N)/N is injective. Then
(xR + N)/N being a summand of M/N gives M/N = (xR + N)/N . Thus M = xR + N . This shows that
M has no nonzero small submodule and consequently, M is dual automorphism-invariant. �

It is quite natural to ask here whether the converse of above result also holds. We proceed to
answer this in the affirmative but first, we have the following useful observation.

Lemma 4. Let M1, M2 be right R-modules. If M = M1 ⊕ M2 is dual automorphism-invariant, then any
homomorphism f : M1 → M2/K2 with K2 small in M2 and Ker( f ) small in M1 lifts to a homomorphism
g : M1 → M2 .

Proof. We have an epimorphism σ : M → M
K2

given by σ(m1 + m2) = m1 + f (m1) + (m2 + K2) for
m1 ∈ M1, m2 ∈ M2. Since K2 is small in M2 and M2 ⊂ M , we get that K2 is small in M . Now, as
M is dual automorphism-invariant, by Corollary 2, σ lifts to an automorphism η of M . Let x1 ∈ M1
and η(x1) = u1 + u2 where u1 ∈ M1, u2 ∈ M2. Then u1 + u2 + K2 = (x1 + K2) + f (x1), which gives
u2 + K2 = f (x1). Let π2 : M → M2 be the natural projection. Then g = π2η|M1 : M1 → M2 lifts f . �

Now we are ready to prove the following characterization of right V -rings in terms of dual
automorphism-invariant modules.

Theorem 5. A ring R is a right V -ring if and only if every finitely generated right R-module is dual automor-
phism-invariant.

Proof. Suppose every finitely generated right R-module is dual automorphism-invariant. We wish to
show that R is a right V -ring. Assume to the contrary that R is not a right V -ring. Then there exists
a simple right R-module S such that S is not injective. Let E(S) be the injective hull of S . Then
E(S) �= S . Choose any x ∈ E(S) \ S . Then S is small in xR and xR is uniform. Let A = annr(x). As S
is a submodule of xR ∼= R/A, we may take S = B/A for some A ⊂ B ⊂ R R . Consider M = R

A × R
B .

As M is finitely generated, by hypothesis M is dual automorphism-invariant. We have the identity
homomorphism 1R/B : R/B → R/B ∼= R/A

B/A where Ker(1R/B) = 0 is small in R/B and B/A is small
in R/A. By Lemma 4, the identity mapping on R/B can be lifted to a homomorphism η : R

B → R
A .

Thus Image(η) is a summand of R/A, which is a contradiction to the fact that R/A (∼= xR) is uniform.
Hence R is a right V -ring.

The converse is obvious from Proposition 3. �
Remark 6. It may be noted here that if we weaken the hypothesis above and assume that R is a
ring such that every cyclic right R-module is dual automorphism-invariant, then R need not be a
right V -ring. We know that every cyclic module over a commutative ring is quasi-projective and it
will be shown in Corollary 7 that every pseudo-projective and hence quasi-projective module is dual
automorphism-invariant. Thus, if we consider R to be a commutative ring which is not von Neumann
regular, then every cyclic module over R is dual automorphism-invariant but R is not a V -ring.

2. More examples of dual automorphism-invariant modules

In this section we will discuss various other examples of dual automorphism-invariant modules.
A module M is called a quasi-projective module (pseudo-projective module) if for every submod-
ule N of M , any homomorphism (epimorphism) ϕ : M → M/N can be lifted to a homomorphism
ψ : M → M , that is, the diagram below commutes.
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M
ψ

ϕ

M
π

M/N

Clearly, every quasi-projective module is pseudo-projective.

Proposition 7. Any pseudo-projective module is dual automorphism-invariant.

Proof. Suppose M is a pseudo-projective module. Let L1, L2 be two small submodules of M and
σ : M

L1
→ M

L2
be an epimorphism. Let π1 : M → M

L1
be a natural mapping. As M is pseudo-projective,

σπ1 lifts to an endomorphism η of M . Let π2 : M → M
L2

be a natural mapping. Then π2η = σπ1.
Therefore π2η(L1) = σπ1(L1) = 0 gives η(L1) ⊆ L2. Hence η is a lifting of σ . This proves that M is
dual automorphism-invariant. �

Now we will show that dual automorphism-invariant modules need not be pseudo-projective. But,
first we have the following useful observation.

Lemma 8. Let M1, M2 be right R-modules. If M = M1 ⊕ M2 is pseudo-projective, then M1 is M2-projective
and M2 is M1-projective.

Proof. Let f : M1 → M2/N be a homomorphism. It induces an epimorphism σ : M → M/N given by
σ(x1 + x2) = x1 + f (x1) + (x2 + N) for x1 ∈ M1, x2 ∈ M2. Since M is pseudo-projective, σ lifts to an
endomorphism η of M . Let x1 ∈ M1 and η(x1) = u1 + u2 where u1 ∈ M1, u2 ∈ M2. Then u1 + u2 + N =
x1 + f (x2) ∈ M1 ⊕ M2

N , u2 + N = f (x2).
Let π2 : M → M2 be the natural projection. Then π2η|M1 : M1 → M2 is such that π2η(x1) = u2.

This shows that g = π2η|M1 : M1 → M2 lifts f . Hence M1 is M2-projective. Similarly it can be shown
that M2 is M1-projective. �
Proposition 9. If every right module over a ring R is pseudo-projective, then R is semisimple artinian.

Proof. Let A be any right ideal of R . Since every right R-module is pseudo-projective, R ⊕ R
A is

pseudo-projective. By Lemma 8, R/A is R-projective. Therefore the identity mapping on R/A lifts to
a mapping from R/A to R . Thus the exact sequence 0 → A → R → R/A → 0 splits. Therefore A is
a summand of R . This shows that every right ideal of R is a summand of R . Hence R is semisimple
artinian. �
Remark 10. If R is a right V -ring which is not right artinian (for example, a non-artinian commutative
von Neumann regular ring), then by Proposition 3 and Proposition 9, it follows that R admits a dual
automorphism-invariant module which is not pseudo-projective.

3. Properties of dual automorphism-invariant modules

In this section we discuss various properties of dual automorphism-invariant modules.

Proposition 11. Any direct summand of a dual automorphism-invariant module is dual automorphism-
invariant.

Proof. Let M be a dual automorphism-invariant right R-module and let M = A ⊕ B . Let K1, K2 be
two small submodules of A and σ : A

K1
→ A

K2
be an epimorphism with Ker(σ ) ⊂s

A
K1

. Clearly, K1, K2

are small in M and σ ′ = σ ⊕ 1B : M
K → M

K is an epimorphism with Ker(σ ′) ⊂s
M
K . Since M is dual
1 2 1
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automorphism-invariant, σ ′ lifts to an endomorphism η of M . For the inclusion map i1 : A → M and
the projection π1 : M → A, the map π1ηi1 : A → A lifts σ . Hence A is dual automorphism-invariant.
This shows that any direct summand of a dual automorphism-invariant module is dual automorphism-
invariant. �
Remark 12.

(i) The direct sum of two dual automorphism-invariant modules need not be dual automorphism-
invariant. For example, Z2 and Z4 are dual automorphism-invariant Z-modules but Z2 ⊕ Z4 is
not a dual automorphism-invariant Z-module.

(ii) The submodules of a dual automorphism-invariant module need not be dual automorphism-
invariant. For example, M = Z

8Z ⊕ Z

8Z is a dual automorphism-invariant Z-module but N =
2Z
8Z ⊕ Z

8Z ⊂ M is not dual automorphism-invariant.

A module M is called a hollow module if every proper submodule of M is small in M . A module
is called local if it is hollow and has a unique maximal submodule.

For the direct sum of local modules, we have the following

Proposition 13. If M1 , M2 are two local modules such that M1 ⊕ M2 is dual automorphism-invariant, then
M1 is M2-projective and M2 is M1-projective.

Proof. Consider any diagram

M1

f

M2
g

M2/K 0

with exact row. Since M1 and M2 are local, K is a small submodule of M2 and Ker( f ) is a small
submodule of M1. Therefore, by Lemma 4, f lifts to a homomorphism h : M1 → M2. This shows that
M1 is M2-projective. Similarly it can be shown that M2 is M1-projective. �

Consider the following conditions on a module N:

(D1) For every submodule A of N , there exists a decomposition N = N1 ⊕ N2 such that N1 ⊆ A and
N2 ∩ A ⊂s N .

(D2) If A is a submodule of N such that N/A is isomorphic to a direct summand of N , then A is a
direct summand of N .

(D3) If A and B are direct summands of N with A + B = N , then A ∩ B is a direct summand of N .

It is well known that if a module N satisfies the condition (D2), then it also satisfies the condi-
tion (D3). If N satisfies the condition (D1), then it is called a lifting module. If N satisfies the conditions
(D1) and (D3), then it is called a quasi-discrete module. If N satisfies the conditions (D1) and (D2),
then it is called a discrete module. The following implication is well known:

discrete �⇒ quasi-discrete �⇒ lifting.

Since any quasi-projective module satisfies the property (D2) and hence the property (D3), it is nat-
ural to ask whether a dual automorphism-invariant module satisfies the property (D2). We do not
know the answer to this question, however we are able to show in the next proposition that every
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supplemented dual automorphism-invariant module satisfies the property (D3). Recall that a submod-
ule K is called a supplement of N in M if K is minimal with respect to the property that K + N = M .
As a consequence, it follows that K ∩ N is small in K and hence in M . A module M is called a
supplemented module if every submodule of M has a supplement.

Proposition 14. If M is a supplemented dual automorphism-invariant module, then M satisfies the prop-
erty (D3).

Proof. Let M be a supplemented dual automorphism-invariant module. Let A and B be direct sum-
mands of M such that A + B = M . We wish to show that A ∩ B is a direct summand of M . Since M is a
supplemented module, there exists a submodule C of M such that A ∩ B + C = M and A ∩ B ∩ C ⊂s M .
Now, clearly we have B = A ∩ B + B ∩ C and A = A ∩ B + A ∩ C . This gives M = A ∩ B + B ∩ C + A ∩ C .
Set L = A ∩ B ∩ C .

Now, as C = A ∩ C + B ∩ C , we have L = A ∩ B ∩ (A ∩ C + B ∩ C) ⊂s M . Thus,

M

L
= A ∩ B

L
⊕ A ∩ C

L
⊕ B ∩ C

L
.

Since A is a direct summand of M , we have M = A ⊕ A′ for some submodule A′ of M . Then

M

L
= A

L
⊕ A′ + L

L
= A ∩ B

L
⊕ A ∩ C

L
⊕ A′ + L

L
.

Set T = A∩B
L ⊕ A′+L

L . Let π : M/L → T be the natural projection. Let us denote the restriction of π
to T by πT . Then πT : T → T is an isomorphism. Thus we have an isomorphism

1A∩C/L ⊕ πT : M/L → M/L.

Since M is dual automorphism-invariant, this map lifts to an automorphism

η : M → M.

We have

η(B) = (A ∩ B) + (
A′ + L

) = (A ∩ B) + A′ = (A ∩ B) ⊕ A′.

This shows that A ∩ B is a direct summand of η(B). Now as η(B) is a direct summand of M , we have
that A ∩ B is a direct summand of M . Thus M satisfies the property (D3). �
4. Dual automorphism-invariant abelian groups

In this section we study dual automorphism-invariant abelian groups. We begin with the follow-
ing useful result which will help us in constructing more examples of dual automorphism-invariant
modules.

Proposition 15. Let P be a projective right R-module that has no nonzero small submodule, and M be any
quasi-projective right R-module such that HomR( M

K , P ) = 0 for any small submodule K of M. Then P ⊕ M is
dual automorphism-invariant.
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Proof. Set N = P ⊕ M . We have projections π1 : N → P , and π2 : N → M . Let K be a small submodule
of N . Then π1(K ) ⊂s P . This gives π1(K ) = 0 as P has no nonzero small submodule. Therefore K ⊂ M .
Let K1, K2 be two small submodules of N . Then

N

K1
= P ⊕ M

K1
,

N

K2
= P ⊕ M

K2
.

Let σ : N
K1

→ N
K2

be an epimorphism. Now σ may be viewed as σ =
[

σ11 σ12
σ21 σ22

]
, where σ11 : P → P ,

σ12 : M
K1

→ P , σ21 : P → M
K2

, σ22 : M
K1

→ M
K2

. Set λ11 = σ11, λ12 : M → P naturally given by σ12, and
λ21 : P → M a lifting of σ21. As M is quasi-projective, σ22 lifts to an endomorphism λ22 of M .

Let λ =
[

λ11 λ12
λ21 λ22

]
. Then λ is an endomorphism of N . As λ12 = 0 by the hypothesis, for any x ∈ K1,

[
λ11 λ12
λ21 λ22

][
0
x

]
=

[
λ12(x)
λ22(x)

]
=

[
0

λ22(x)

]
.

As λ22 is a lifting of σ22, λ22(K1) ⊆ K2. Hence λ lifts σ . This proves that P ⊕ M is dual automorphism-
invariant. �

In particular, for abelian groups we have the following

Corollary 16. Let P be a projective abelian group and let M be any torsion quasi-projective abelian group.
Then P ⊕ M is dual automorphism-invariant.

Proof. As P is a direct sum of copies of Z and Z has no nonzero small subgroup, P has no
nonzero small subgroup. For any small submodule K of M , since M/K is a torsion abelian group,
HomZ( M

K ,Z) = 0 and hence HomZ( M
K , P ) = 0. Thus the result follows from the above lemma. �

The above result gives us plenty of examples of dual automorphism-invariant modules.

Example. Let M = Z⊕ C , where C is a finite cyclic group. By Corollary 16, M is dual automorphism-
invariant but M is not pseudo-projective unless C = 0.

We recall here some useful facts about abelian groups. For details we refer the reader to Fuchs [4].
Let G be an abelian group. An element x ∈ G is said to be of finite height, if there exists an upper bound
on all positive integers k such that pk y = x for some prime number p and some y ∈ G . An abelian
group is said to be bounded, if there is an upper bound on the orders of its elements. A bounded
abelian group is a direct sum of cyclic groups [4, Theorem 17.2]. A subgroup H of G is said to be pure
in G , if nG ∩ H = nH for every integer n. If an element x ∈ G is of order a prime number p and has
finite height, then there exists a summand H of G of finite order such that x ∈ H [4, Corollary 27.2].
If a pure subgroup H of G is bounded, then H is a summand of G [4, Theorem 27.5]. The torsion
subgroup of an abelian group is a pure subgroup. It follows that if the torsion subgroup T of G is
bounded, then T is a summand of G . An abelian group G is called a divisible group if for each positive
integer n and every element g ∈ G , there exists h ∈ G such that nh = g . An abelian group G is called
a reduced group if G has no proper divisible subgroup.

Theorem 17. (See [4].) If G is an abelian group, then G = D ⊕ K , where D is divisible and K is reduced.
Furthermore, the structure of divisible abelian group is given as

D ∼=
(⊕

mp

Z
(

p∞)) ⊕
(⊕

n

Q

)
.
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We have the following observation for a torsion abelian group.

Lemma 18. Let G be a torsion abelian group such that G is dual automorphism-invariant. Then G is reduced.

Proof. Assume to the contrary that G is not reduced. Then in view of Theorem 17, we have G ∼=⊕
mp

Z(p∞). For a prime number p, consider H = Z(p∞). Its every proper subgroup is small. Let

A � B be two proper subgroups of H . There exists an isomorphism σ : H
A → H

B . Since every summand
of a dual automorphism-invariant module is dual automorphism-invariant, H is dual automorphism-
invariant. Therefore σ lifts to an endomorphism η of H . Then σ(A) = B . This gives a contradiction as
order of A is less than the order of B . Hence G is reduced. �

Next, we recall the characterization of quasi-projective abelian groups due to Fuchs and Ran-
gaswamy [5].

Theorem 19. (See Fuchs and Rangaswamy [5].) An abelian group G is quasi-projective if and only if it is either
free or a torsion group such that every p-component G p is a direct sum of cyclic groups of the same order pn.

Now we are ready to prove the following for a torsion abelian group.

Theorem 20. Let G be a torsion abelian group. Then the following are equivalent:

(i) G is dual automorphism-invariant.
(ii) G is quasi-projective.

(iii) G is discrete.

Proof. (i) �⇒ (ii). Since any abelian group is a direct sum of a divisible group and a reduced group, in
view of Lemma 18, it follows that G is reduced. Let p be a prime number. Consider the p-component
G p of G . Suppose G p �= 0. As G p is reduced, G p = A1 ⊕ L, where A1 is a nonzero cyclic p-group.
Now o(A1) = pn for some n > 0. If L = 0, we get that G p is quasi-projective. Suppose L �= 0. Then
L = A2 ⊕ L1, where A2 is a nonzero cyclic p-group. By Proposition 11, A1 ⊕ A2 is dual automorphism-
invariant. As every subgroup of A1 or A2 is small, it follows that A1 is A2-projective and A2 is
A1-projective. Hence A1 ⊕ A2 is quasi-projective. This gives A1 ∼= A2. By above theorem, we get G p is
a direct sum of copies of A1. Hence G p is quasi-projective. This proves that G itself is quasi-projective.

(ii) �⇒ (i). This follows from Proposition 7.
This shows that (i) and (ii) are equivalent. For the equivalence of (ii) and (iii), see [9, Theo-

rem 5.5]. �
Lemma 21. Let G be a torsion-free, uniform abelian group which is not finitely generated. Let H be a nontrivial
cyclic subgroup of G. For any prime number p, let G p = {x ∈ G: pnx ∈ H for some n � 0}. Then J (G) �= 0 if
and only if the number of prime numbers p for which G p = H is finite.

Proof. Observe that H ⊆ G p for any prime number p. Without loss of generality we take G ⊆ Q
and H = Z. Let M be a maximal subgroup of G . For some prime number p, G/M is of order p. Thus
pG p ⊆ M . Now G p is generated by some powers 1

pn , n � 0.

Case 1. Assume Z ⊂ G p . Then Z ⊆ pG p ⊆ M , M/Z is a maximal subgroup of G/Z. As G/Z is a torsion
group such that for each prime number q, Gq/Z is the q-torsion component of G/Z, we get Gq ⊆ M ,
whenever q �= p. Then M = (G p ∩ M) + A p , where A p is the sum of all Gq , q �= p.

Case 2. Assume Z = G p . If Z ⊆ M , the arguments of Case 1 show that M = G , which is a contradiction.
Thus Z� M , and we get M ∩Z = pZ.
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We know that the intersection of infinitely many sets pZ is zero. Thus it follows that J (G) �= 0 if
and only if the number of primes p for which G p = Z is finite. �
Theorem 22. Let G be a subgroup of Q containing Z. Then the following conditions are equivalent:

(i) G is dual automorphism-invariant.
(ii) The number of primes p for which G p = {x ∈ G: pnx ∈ Z} = Z is not finite.

(iii) J (G) = 0.

Proof. (i) �⇒ (ii). Let G be a subgroup of Q containing Z and suppose G is dual automorphism-
invariant. Assume to the contrary that the number of primes p for which G p = {x ∈ G: pnx ∈ Z} = Z
is not finite. Then by Lemma 21, J (G) �= 0. Therefore we can find a cyclic subgroup H that is small.
We take H = Z. By using Lemma 21, we see that G/Z is an infinite direct sum of its p-components.
For any prime number p �= 2 for which the p-component G p/Z is nonzero, its group of automor-
phisms is of order more than one. This proves that Aut(G/Z) is uncountable. As Q is countable, it
follows that some automorphism of G/Z cannot be lifted to endomorphism of G . Hence G is not dual
automorphism-invariant, which is a contradiction. This proves that the number of primes p for which
G p = {x ∈ G: pnx ∈ Z} = Z is not finite.

(ii) �⇒ (iii). It follows from Lemma 21.
(iii) �⇒ (i) is trivial. �

Corollary 23. If a torsion-free abelian group G is dual automorphism-invariant, then it is reduced.

Proof. Let G be a torsion-free dual automorphism-invariant abelian group. Assume that G is not
reduced. Then G ∼= ⊕

n Q. As Q is a summand of G , it must be dual automorphism-invariant by
Proposition 11. However, we know that Q is not dual automorphism-invariant (see Theorem 22). This
yields a contradiction. Hence G is reduced. �

From Theorem 17, Lemma 18 and Corollary 23, we conclude the following

Theorem 24. Let G be a dual automorphism-invariant abelian group. Then G must be reduced.

5. Dual automorphism-invariant modules over right perfect rings

Bass [1] defined a projective cover of a module A to be an epimorphism μ : P → A such that P is a
projective module and Ker(μ) is a small submodule of P . Thus modules having projective covers are,
up to isomorphism, of the form P/K , where P is a projective module and K is a small submodule
of P . A ring R is said to be a right perfect ring if every right R-module has a projective cover.

Next, we proceed to provide an equivalent characterization for a module with projective cover to
be a dual automorphism-invariant module. We begin with a lemma which will be used at several
places throughout this paper.

Lemma 25. Let A, B be right R-modules and let C be a small submodule of A. Let f : A → B, and g : A → B
be homomorphisms such that g(C) = 0. Consider induced homomorphisms f ′ : A → B/ f (C) and g′ : A →
B/ f (C). If f ′ = g′ , then f = g.

Proof. Let π : B → B/ f (C) be the natural projection. Then f ′ = π f and g′ = π g . Now, since f ′ = g′ ,
we have for each x ∈ A, f ′(x) = g′(x). Thus π f (x) = π g(x) for each x ∈ A. This gives f (x) + f (C) =
g(x) + f (C) for each x ∈ A. So, ( f − g)(x) ∈ f (C) = ( f − g)(C) for each x ∈ A. Therefore, ( f − g)(A) ⊆
( f − g)(C) and hence A ⊆ C + Ker( f − g). Now, since C is a small submodule of A, we get A =
Ker( f − g). Thus, f − g = 0 and hence f = g . �
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Lemma 26. Let M be any right R-module and L1, L2 be two small submodules of M. Let σ : M
L1

→ M
L2

be an
epimorphism and η : M → M be a lifting of σ . Then:

(i) η is an epimorphism.
(ii) If σ is an isomorphism and Ker(η) is a summand of M, then η is an automorphism.

Proof. (i) The hypothesis gives η(M) + L2 = M . Since L2 ⊂s M , we have η(M) = M . Hence η is an
epimorphism.

(ii) The hypothesis gives that Ker(η) ⊆ L1. Therefore Ker(η) ⊂s M . Also, by the hypothesis, Ker(η)

is a summand of M . Thus Ker(η) = 0 and hence η is an automorphism. �
Now we are ready to prove the following

Theorem 27. Let P be a projective module and K ⊂s P . Then M = P
K is dual automorphism-invariant if and

only if σ(K ) = K for any automorphism σ of P .

Proof. Let M = P
K be a dual automorphism invariant module. Let σ : P → P be an automorphism. The

map σ induces an epimorphism σ̄ : P
K → P

K+σ(K )
given by σ̄ (x + K ) = σ(x) + K + σ(K ). As Ker(σ̄ ) =

σ−1(K )+K
K is small in M = P/K , σ̄ lifts to an automorphism η of M and η−1(

K+σ(K )
K ) = σ−1(K )+K

K .
Now η lifts to an endomorphism λ of P . By Lemma 26, λ is an automorphism of P . Then λ(K ) ⊆ K .
If K � λ−1(K ), the mapping η which is induced by λ cannot be an automorphism. Hence λ(K ) = K .

As η(
σ−1(K )+K

K ) = K+σ(K )
K , we get λ(σ−1(K )+ K ) = K +σ(K ). Let C = σ−1(K ). Now C ⊂s P . We have

two mappings λ̄ and μ̄ given as follows:

λ̄ : P → P/K

such that λ̄(x) = λ(x) + K , and

μ̄ : P → P/K

such that μ̄(x) = σ(x) + K .

Clearly μ̄(C) = 0. Now η(
σ−1(K )+K

K ) = λ(σ−1(K ))+λ(K )
K = λ(σ−1(K ))+K

K = λ(C)+K
K . Hence λ̄(C) =

σ(K )+K
K . For P̄ = P

K , we can take P̄
λ̄(C)

= P
σ(K )+K . Let π : P

K → P
K+σ(K )

be a natural mapping. Set

λ̄′ = πλ̄, μ̄′ = πμ̄. Let x ∈ P . Then λ̄′(x) = π(λ(x) + K ) = πη(x + K ). Now η(x + K ) = y + K for
some y ∈ P . Thus λ̄′(x) = y + σ(K ) + K = σ̄ (x + K ) = σ(x) + σ(K ) + K = μ̄′(x). Hence λ̄′ = μ̄′ . By
Lemma 25, we conclude that λ̄ = μ̄. This gives μ̄(K ) = λ̄(K ) = 0̄, as λ(K ) = K , we get σ(K )+K

K = 0̄.
Hence σ(K ) ⊆ K . By considering σ−1, we get σ−1(K ) ⊆ K , therefore K ⊆ σ(K ). Hence σ(K ) = K .

Conversely, let σ(K ) = K for any automorphism σ of P . Let L1 = L1
K , L2 = L2

K be two small sub-

modules of M and σ : M
L1

→ M
L2

be an epimorphism with Ker(σ ) ⊂s
M
L1

. Now Ker(σ ) = L̄
L1

, where L is

some submodule of P containing K . Then L̄ ⊂s M and hence L ⊂s P . Now σ induces an epimorphism
σ ′ : P

L1
→ P

L2
such that for any x ∈ P , σ ′(x + L1) = y + L2 if and only if σ(x̄ + L1) = ȳ + L2. Now

Ker(σ ′) = L
L1

⊂s
P
L1

, and σ ′ is an epimorphism. It lifts to an endomorphism η of P . Then Ker(η) ⊆ L,
and therefore Ker(η) ⊂s P . The above lemma gives that η is an automorphism of P . By the hypoth-
esis, η(K ) = K . Hence η induces an automorphism η̄ : M → M . This η̄ lifts σ . Hence M is dual
automorphism-invariant. �

We have already seen that if M is a supplemented dual automorphism-invariant module, then M
satisfies the property (D3). Since every module over a right perfect ring is supplemented, it follows
that every dual automorphism-invariant module over a right perfect ring satisfies the property (D3).
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Now, for a lifting module over a right perfect ring, we have the following

Proposition 28. Let R be a right perfect ring and let M be a right R-module such that M is lifting. If M is a
dual automorphism-invariant module, then M is discrete.

Proof. Let M be a dual automorphism-invariant lifting module. By Proposition 14, M satisfies the
property (D3). Thus M is a quasi-discrete module with the property that every epimorphism f ∈
End(M) with small kernel is an isomorphism. Hence, by [8, Lemma 5.1], M is a discrete module. �

Next, we proceed to establish some decomposition results for discrete modules. This will help us
in the study of dual automorphism-invariant lifting modules over right perfect rings.

Lemma 29. Let R be a right perfect ring and let M = P/K be a right R-module where P is projective and
K ⊂s P . Suppose M is a discrete module. Then

(i) If P decomposes as P = P1 ⊕ P2 , then we get M = M1 ⊕ M2 with

M1 = P1 + K

K
, M2 = P2 + K

K
;

and K = K1 ⊕ K2 with

K1 = K ∩ P1, K2 = K ∩ P2.

This shows any decomposition of P gives rise to natural decompositions of both M and K .
(ii) If σ ∈ End(P ) is an idempotent, then σ(K ) ⊆ K .

Proof. (i) Let P = P1 ⊕ P2. Then M = P1+K
K + P2+K

K . Let L1 and L2 be projections of K in P1 and P2
respectively. Then L1, L2, L1 + L2 are small in P . Now P1 ∩ (P2 + K ) ⊆ L1 + L2, so (P1 + K )∩ (P2 + K ) ⊆
K + L1 + L2. This gives that ( P1+K

K ) ∩ ( P2+K
K ) ⊂s M . Since M satisfies the property (D1), we get

that M = A
K + B

K such that A
K , B

K are summands of M contained in P1+K
K , P2+K

K respectively and are

supplements of P2+K
K , P1+K

K respectively. As M satisfies the property (D3), A
K ∩ B

K is a summand of

M . However, A
K ∩ B

K ⊆ ( P1+K
K ) ∩ ( P2+K

K ) gives that A
K ∩ B

K is small in M . Therefore M = A
K ⊕ B

K and
hence

M = P1 + K

K
⊕ P2 + K

K
.

Let K1 = K ∩ P1, K2 = K ∩ P2. We have an isomorphism ϕ : P1
K1

⊕ P2
K2

→ M given by ϕ(x1 + K1, x2 +
K2) = x1 + x2 + K where x1 ∈ P1, x2 ∈ P2. As ϕ( K

K1+K2
) = 0, we get K = K1 ⊕ K2. Hence K = (K ∩

P1) ⊕ (K ∩ P2).
(ii) Let P1 = σ P , and P2 = (1 − σ)P . Then P = P1 ⊕ P2. By (i), we have K = K1 ⊕ K2 where

K1 = K ∩ P1, K2 = K ∩ P2. Clearly then σ(K ) ⊆ K . �
A ring R is called a clean ring if each element a ∈ R can be expressed as a = e + u, where e is an

idempotent in R and u is a unit in R . A module M is called a clean module if End(M) is a clean ring.
The class of clean modules includes continuous modules, discrete modules, flat cotorsion modules,
and quasi-projective right modules over a right perfect ring.

In the next theorem we show that every dual automorphism-invariant lifting module over a right
perfect ring is quasi-projective.



S. Singh, A.K. Srivastava / Journal of Algebra 371 (2012) 262–275 273
Theorem 30. Let R be a right perfect ring and let M be a lifting right R-module. Then M is dual automorphism-
invariant if and only if M is quasi-projective.

Proof. Suppose M is dual automorphism-invariant. Since M has a projective cover, we set M = P/K ,
where P is projective and K ⊂s P . Let σ ∈ End(P ). We know that End(P ) is clean (see [2]). There-
fore, σ = α + β where α is an idempotent in End(P ) and β is an automorphism on P . Since M is a
dual automorphism-invariant lifting module over a right perfect ring, by Proposition 28, M is discrete.
Therefore, by Lemma 29(ii), α(K ) ⊆ K . Since M is a dual automorphism-invariant module, by Theo-
rem 27, β(K ) ⊆ K . Thus σ(K ) = (α + β)(K ) ⊆ K . Hence M is quasi-projective. The converse follows
from Proposition 7. �
Theorem 31. Let R be a right perfect ring. If M = M1 ⊕ M2 is a dual automorphism-invariant right R-module,
then both M1 and M2 are dual automorphism-invariant and they are projective relative to each other.

Proof. We have already seen that a direct summand of a dual automorphism-invariant module is dual
automorphism-invariant.

Now, we proceed to show that M1 and M2 are projective relative to each other. Let M1 = P1/K1

and M2 = P2/K2 where P1, P2 are projective and K1 ⊂s P1, K2 ⊂s P2. Then M = M1 ⊕ M2 = P1⊕P2
K1⊕K2

.

Note that the decomposition M = M1 ⊕ M2 gives rise to decomposition P = P1 ⊕ P2, where M1 =
P1+K

K and M2 = P2+K
K and K = K1 ⊕ K2 where K1 = K ∩ P1, K2 = K ∩ P2. Thus M1 ∼= P1/K1 and

M2 ∼= P2/K2.
Let L2 = L2/K2 be any submodule of M2. Consider the exact sequence M2 → M2/L2 → 0. Let

λ : M1 → M2/L2 be a homomorphism. This gives us a mapping

λ′ : P1

K1
→ P2

L2

with λ′(x1 + K1) = x2 + L2 if λ(x1 + K1) = (x2 + K2) + L2
K2

.
It lifts to a homomorphism μ : P1 → P2. Then P = P ′

1 ⊕ P2 where P ′
1 = {x1 + λ′(x1): x1 ∈ P1}.

We get an automorphism

σ : P → P

where σ(x1 + x2) = x1 + λ′(x1) + x2.
Since M is dual automorphism-invariant, we have σ(K ) = K = σ(K1) ⊕ σ(K2) = K ∩ P ′

1 ⊕ K ∩ P2.
This gives a decomposition

M = P ′
1 + K

K
⊕ P2 + K

K
.

We have an isomorphism

σ ′ : P1 + K

K
→ P ′

1 + K

K

given by σ ′(x1 + K ) = σ(x1) + K = x1 + λ′(x1) + K . Now, if x1 ∈ K , then x1 + λ′(x1) ∈ K . This gives
λ′(x1) ∈ K ∩ P2 = K2. Hence λ′ induces mapping

μ̄ : P1 → P2
K1 K2
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given by μ̄(x + K1) = λ′(x)+ K2. This shows that M1 is projective with respect to M2. Similarly, it can
be shown that M2 is projective with respect to M1. �

As a consequence it follows that

Corollary 32. If R is a right perfect ring, then a right R-module M is quasi-projective if and only if M ⊕ M is
dual automorphism-invariant.

Proof. Let R be a right perfect ring. Suppose M is a quasi-projective right R-module. Then M ⊕ M
is quasi-projective and hence dual automorphism-invariant. Conversely, suppose M ⊕ M is dual
automorphism-invariant. Then by Theorem 31, M is M-projective, that is, M is quasi-projective. �
Proposition 33. Let R be an artinian serial ring. Then a right R-module M is dual automorphism-invariant if
and only if M is quasi-projective.

Proof. Suppose M is dual automorphism-invariant. Since R is artinian serial, M = ⊕n
i=1 Mi , where

each Mi is uniserial. Since M is dual automorphism-invariant, by Theorem 31, each Mi is projective
with respect to M j , for each j �= i.

Let Mi, M j be such that Mi
Mi J (R)

∼= M j
M j J (R)

. Then, since Mi, M j are projective relative to each other,

we can lift this isomorphism to give Mi ∼= M j .
So now M = ⊕m

i=1 Li , where Li = ⊕
k∈Λ Mk with Mi ∼= Mk for each i,k ∈ Λ. Let t be the length

of Mk ⊂ Li . Then, as R is an artinian serial ring, Mi is projective as an R/ J t(R)-module for each
i ∈ Λ. This shows that Li is M-projective. Consequently, it follows that M is M-projective. Thus M is
quasi-projective. The converse is obvious. �
6. Problems

Problem 34. Let M1 and M2 be dual automorphism-invariant modules such that M1 is M2-projective
and M2 is M1-projective. Is M1 ⊕ M2 a dual automorphism-invariant module?

Problem 35. Characterize von Neumann regular rings over which every right R-module is dual
automorphism-invariant.

Problem 36. Characterize rings over which each cyclic module is dual automorphism-invariant?
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