
Journal of Symbolic Computation 44 (2009) 1326–1345

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

PolyBoRi: A framework for Gröbner-basis computations
with Boolean polynomialsI

Michael Brickenstein a,1, Alexander Dreyer b
aMathematisches Forschungsinstitut Oberwolfach, Schwarzwaldstr. 9-11, 77709 Oberwolfach-Walke, Germany
b Fraunhofer Institute for Industrial Mathematics (ITWM), Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

a r t i c l e i n f o

Article history:
Received 29 October 2007
Accepted 22 February 2008
Available online 13 February 2009

Keywords:
Boolean Gröbner basis
Formal verification
Algebraic cryptoanalysis
Satisfiability

a b s t r a c t

This work presents a new framework for Gröbner-basis computa-
tions with Boolean polynomials. Boolean polynomials can be mod-
elled in a rather simple way, with both coefficients and degree per
variable lying in {0, 1}. The ring of Boolean polynomials is, how-
ever, not a polynomial ring, but rather the quotient ring of the
polynomial ring over the field with two elements modulo the field
equations x2 = x for each variable x. Therefore, the usual polyno-
mial data structures seem not to be appropriate for fast Gröbner-
basis computations. We introduce a specialised data structure for
Boolean polynomials based on zero-suppressed binary decision di-
agrams (ZDDs), which are capable of handling these polynomials
more efficiently with respect to memory consumption and also
computational speed. Furthermore, we concentrate on high-level
algorithmic aspects, taking into account the new data structures
as well as structural properties of Boolean polynomials. For exam-
ple, a new useless-pair criterion for Gröbner-basis computations in
Boolean rings is introduced. One of the motivations for our work is
the growing importance of formal hardware and software verifica-
tion based on Boolean expressions, which suffer – besides from the
complexity of the problems – from the lack of an adequate treat-
ment of arithmetic components. We are convinced that algebraic
methods are more suited and we believe that our preliminary im-
plementation shows that Gröbner-bases on specific data structures
can be capable of handling problems of industrial size.

© 2009 Elsevier Ltd. All rights reserved.

I Partly financed by the Deutsche Forschungsgemeinschaft (DFG) under Grand No. GR 640/13-1.
E-mail addresses: brickenstein@mfo.de (M. Brickenstein), alexander.dreyer@itwm.fraunhofer.de (A. Dreyer).
URLs: http://www.mfo.de (M. Brickenstein), http://www.itwm.fhg.de (A. Dreyer).

1 Tel.: +49 7834 979 31; fax: +49 7834 979 55.

0747-7171/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2008.02.017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82090659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jsc
http://www.elsevier.com/locate/jsc
mailto:brickenstein@mfo.de
mailto:alexander.dreyer@itwm.fraunhofer.de
http://www.mfo.de
http://www.mfo.de
http://www.mfo.de
http://www.mfo.de
http://www.itwm.fhg.de
http://www.itwm.fhg.de
http://www.itwm.fhg.de
http://www.itwm.fhg.de
http://www.itwm.fhg.de
http://dx.doi.org/10.1016/j.jsc.2008.02.017

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1327

1. Introduction

Gröbner-bases have become a standard tool for treating problems which can be described by
polynomial systems. While the concept of Gröbner-bases has been known much longer (Buchberger,
1965), their current practical importance is a result of dramatic improvements in performance and
algorithms in recent years. It has also been shown, that a specialised implementation can often tackle
much harder problems, like Faugère’s attacks on hidden field equation (HFE) cryptosystems (2003).
The motivation for our work was to provide a framework for computations in the following special
but nevertheless important case of polynomials: coefficients lie in the field with two elements and
exponents are bounded to degree one in each variable. This degree bound usually originates from the
application of field equations of the form x2 = x. This occurs in many significant applications like
formal verification, but also in cryptography, logic, and many more. This is due to the fact that those
special polynomials – the so-called Boolean polynomials – correspond directly to Boolean functions.
Although the treatment of polynomial systems using Gröbner-bases improved considerably in

recent years, current implementations have not yet been capable of satisfactorily handling Boolean
polynomials from real-world applications. One of the first questions was: Can we use the properties
of this simplified class of polynomials to obtain better data structures? Of course, we did also ask,
whether we can find algorithmic improvements in this situation.
The role of PolyBoRi in this context is to provide a framework of high performance data structures

and example Gröbner-bases algorithms. On the other hand it is very clear, thatmany problems arising
from practice can only be tackled, if optimisation occurs on many levels: data structures, higher level
algorithms, formulation of equations/problems, good monomial orderings
An important aspect in symbolic computation is that – independent of the strategy – polynomials

can become very big, but usually keep structured (in a very general sense). Using this structure to
keep thememory consumptionmoderatewas a primary design goal of PolyBoRi. Another observation
is that operations on similar polynomials (differing only in a few terms) occur quite often during
Gröbner-basis computations. PolyBoRi also gives an answer to that problemusing a cachemechanism
on the level of polynomial substructures.
Even though it is not essential for the present paper, the reader may be interested in the following

short description of one important application: Formal verification is a key challenge during the
design process of digital systems. The goal is to have an automated and dependable way of finding
errors in a given layout, before a prototype is built. See also McMillan (1993), Hachtel and Somenzi
(1996) and Kunz et al. (2002) for more details.
Classical methods for design validation include the simulation of the system with respect to

suitable input stimuli as well as tests based on emulations, which use simplified prototypes. The latter
may be constructed using field programmable gate arrays (FPGAs). Due to a large number of possible
settings, these approaches cannot cover the overall behaviour of a proposed implementation. In the
worst case, a defective system is manufactured and delivered, which might result in a major product
recall.
In contrast, formal verification methods are based on exact mathematical methods for automated

proving of circuit properties. In this context several approaches like SAT-solving, graph representation
of Boolean functions, and (timed) finite automata are already in use for bringing a designer’s concept
into agreement with the required specifications. Here, formal methods have the ability to disclose
unexpected side-effects early in the design process, and also they may show that certain short-hand
assumptions are really true for all input patterns and states.
The ability of checking the validity of a proposed design restricts the design itself: a newly

introduced design approach may not be used for an implementation as long as its verification
cannot be ensured. In particular, this applies to digital systems consisting of combined logic and
arithmetic blocks, which may not be treated with specialised approaches. Here, dedicated methods
from computer algebra may lead to more generic procedures, which help to fill the design gap.
Following, we start with a motivation of suitable data structures for handling of Boolean

polynomials and continue with some mathematical background. Then we give a brief description of
the PolyBoRi framework and the implemented algorithms. Finally, the treatment of some benchmark
examples is compared with those of other computer algebra systems.

1328 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

2. Boolean polynomials as sets

We are actually interested in modelling expressions from propositional logic as polynomials over
the finite field with two elements. Allowing values from {0, 1} only, the condition x = x2 holds for
all x ∈ Z2. Hence, we deal with elements of the polynomial ring P = Z2[x1, . . . , xn] restricted by
the field equations

x21 = x1, x
2
2 = x2, . . . , x

2
n = xn. (1)

This leads to a degree bound of one on all variables, and therefore we can restrict ourself to a certain
class of polynomials in the following.

Definition 1 (Boolean Polynomials). Let p ∈ Z2[x1, . . . , xn] be a polynomial, sth

p = a1 · x
ν11
1 · . . . · x

ν1n
n + · · · + am · x

νm1
1 · . . . · x

νmn
n (2)

with coefficients ai ∈ {0, 1} and νij ∈ {0, 1}. Then p is called a Boolean polynomial.

A given Boolean polynomial p is defined by the fact, whether each term xνi11 · . . . · x
νin
n occurs in

it. Analogously, the occurrences of the variables determine each term. One can assign a set Sp =
{s1, . . . , sm} to p consisting of different subsets sk, si 6= sj for i 6= j, of the variable vector {x1, . . . , xn}.
Then Eq. (2) can be rewritten as

p =
∑
s∈Sp

(∏
xν∈s

xν

)
with Sp = {{xi1 , . . . , xin1 }︸ ︷︷ ︸

s1

, . . . , {xim , . . . , xinm }︸ ︷︷ ︸
sm

} , (3)

with indices ij ∈ {1, . . . , n}. In fact, there is a one-to-one correspondence between the set of Boolean
polynomials in P and the set of all subsets of the power set of {x1, . . . , xn} via the mapping which is
defined by Sp 7→

∑
s∈Sp

(∏
xν∈s xν

)
= p.

For practical applications it is reasonable to assume that Sp is sparse, i.e. the set is only a small
subset of the power set over the variable vector. Even the si can be considered to be sparse, as usually
quite few variables occur in a term. Consequently, the strategies of the algorithms used have to be
tuned in such a way, that this kind of sparsity is preserved.
In our context it is enough to treat Boolean polynomials only, as they are exactly the canonical

representative of residue classes in the quotient ring of Z2[x1, . . . , xn] modulo the ideal of the field
equations 〈x21 + x1, . . . , x

2
n + xn〉.

2.1. Zero-suppressed binary decision diagrams

Binary decision diagrams (BDDs) are widely used in various areas as a unique representation of
large sets, which could not be constructed efficiently by an enumerative approach.

Definition 2 (Binary Decision Diagram). A binary decision diagram (BDD) is a rooted, directed, and
acyclic graph with two terminal nodes {0, 1} and decision nodes. The latter have two ascending
edges (high/low or then/else), each of which corresponding to the assignment of true or false,
respectively, to a given Boolean variable.
A series of connected nodes of a BDD starting at the root and ending at the terminal node 1 is called

a path. In case, that the variable order is constant over all paths, we speak of an ordered BDD.

This data structure is compact and easy to handle. For a more detailed treatment of the subject
see Bryant (1986) and Bérard et al. (1999).

Definition 3. Let b be a binary decision diagram.

• The decision variable associated to the root node of b is denoted by top(b). Furthermore, then(b)
and else(b) indicate the (sub-)diagrams, linked to then- and else-edge, respectively, of the root
node of b.

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1329

(a) Non-canonical. (b) zero-suppressed.
Fig. 1. Different binary decision diagrams representing a c + c. Edges: then (—) and else (- -).

• For two BDDs b1, b0, which do not depend on the decision variable x, the if-then-else operator
ite(x, b1, b0) denotes the BDD c , which is obtained by introducing a new node associated to the
variable x, sth then(c) = b1, and else(c) = b0.

The set of all valid paths of a binary decision diagrams can be used to represent a subset of the
power set of the decision variables, which can be accessed easily, by following then- and else-edges.
Since any Boolean polynomial p can be identified uniquely with such a subset, BDDs are perfectly
suited for storing Boolean polynomials in a natural way. For instance, Fig. 1 shows some BDDs
for p = a c + c. Unlike other BDD approaches, the diagram paths do not represent the valid solutions
of the Boolean function behind p, but they form the sets {a, c} and {c} corresponding to polynomial
terms directly.
For efficiency reasons it is useful to omit variables, which are not necessary to construct the whole

set. A classic variant for this purpose is the reduced-ordered BDD (ROBDD, sometimes referred to
as ‘‘the BDD’’). These are ordered BDDs with equal subdiagrams merged, i.e. if some edges point to
equivalent subdiagrams, those are forced to point to the same diagram and share it. Furthermore, a
node elimination is applied, if both descending edges point to the same node.
While the last reduction rule is useful for describing numerous Boolean-valued vectors, it is

gainless for treating sparse sets. For this case, another variant, namely the ZDD (sometimes also
called ZBDD or ZOBDD), has been introduced.
Definition 4 (ZDD). Let z be an ordered binary decision diagram with equal subdiagrams merged.
Then z is called a zero-suppressed binary decision diagram (ZDD), if and only if those nodes are
eliminated, whose then-edges point to the 0-terminal.
Note, in this case elimination means, that a nodes n is removed from the diagram and all edges

pointing to it are linked to else(n). Fig. 1 illustrates this reduction step of a given binary decision
diagram for the polynomial a c + c. In Fig. 1(a) the then-edge of the right node with decision
variable c is pointing to the 0-terminal. Hence, it can be safely removed, without losing information.
As a consequence, the then-edge of the b-node is now connected to zero, and hence can also be
eliminated. The effect of the complete zero-suppressed node reduction can be seen in Fig. 1(b). Note,
that the construction guarantees canonicity of resulting diagrams, see Ghasemzadeh (2005). But still
the structure of resulting decision diagrams depends on the order of variables. Fig. 2 shows example
ZDDs for a given Boolean polynomial. In particular, the number of diagram nodes is highly sensitive
to it, as Fig. 2(a) and (b) illustrate. Therefore, a suitable choice of the order is always a crucial point,
when modelling a problem using sets of Boolean polynomials.

2.2. State of the art

Although graph-based approaches using decision diagrams for polynomials have already been
proposed, they were not capable of handling algebraic problems efficiently. This was mainly due to

1330 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

(a) a, b, c. (b) a, c, b.
Fig. 2. ZDDs representing the polynomial a c + b c + c for two different variable orders. Edges: then (—) and else (- -).

the fact that the attempts were applied to very general polynomials with integer coefficients and
unbounded exponents, which cannot be represented as binary decision diagrams in a natural way.
For instance, the use of ZDDs for representing polynomials with integer coefficients can be found

in Minato (1995). In this context coefficients and degrees had to be coded in a binary manner, which
had lead to large diagram trees, even for rather small polynomials. Assuming a bit length of m for
each polynomial variable xν , a number of m decision variables has to be introduced in order to
represent x1ν, x

2
ν, . . . , x

2m
ν . Arbitrary x

n
ν may be obtained by decomposing n into a sum of exponentials

with respect to base 2. The same can be done to binary encode the coefficients. For instance, the
polynomial 5 x2 + 2 x y has to be decomposed into x2 + 22 x2 + 21 x1 y1, with the new set of decision
‘‘variables’’ {x2, x1, y1, 22, 21}. In this general case addition andmultiplication correspond to costly set
operations involving de- and recoding of coefficient and degree numbers.
Apart from our own research, in recent times progress has beenmade in applying decision diagram

methods to problems fromcomputational algebra and cryptography. Chai et al. (2008) suggested ZDD-
based data structures for improving a characteristic set method for solving Boolean equations. In ad-
dition, Michon et al. (2004) used BDDs for efficient handling of conjunctions of logical expressions for
the analysis of HFE cryptosystems, but they did not utilise polynomial structures. In both cases, the use
of decision diagrams resulted in significant improvements in performance andmemory consumption.
Despite these efforts the important problem of dealingwith nontrivialmonomial orderings has not

yet been resolved. Usually, computer algebra systems store polynomials with respect to the current
monomial ordering (Bachmann and Schönemann, 1998). This enables fast access to the leading term,
and efficient iterations over all terms. In contrast, binary decision diagrams are ordered naturally
in a lexicographical way. Fortunately, for special cases like the Boolean polynomials described in
Section 2, it is possible to implement a search for the leading term and term iterators with suitable
effort. Also, the special case of Boolean polynomials can be mapped to ZDDs more naturally, since the
polynomial variables are in one-to-one correspondence with the decision variables in the diagram.
The same applies for polynomial arithmetic, which can efficiently be done using basic set operations.
The PolyBoRi framework presented in thiswork is addressed to the utilisation of this in a user-friendly
environment.
Our approach can also be considered in the context of the meta approach of Coudert and Madre

(1992). Boolean variables x1, . . . , xn yield 2n possible configurations in {0, 1}n for assigning true or
false to each xν . Enumerating all valid solution vectors with respect to rather simple relations leads
quickly to large and dense subsets of {0, 1}n. Since those sets cannot be handled efficiently, it had been
suggested to store and manipulate the relations, which implicitly define the sets. In the language of
computer algebra, the implicit relations are systems of Boolean polynomials. Hence, we can draw
profit from the experience with Gröbner-bases computations and heuristics for the treatment of
polynomial systems. In addition, especially tuned strategies can be refined and developed when
obeying the unique properties of Boolean rings.
There exists a good theoretical basis for dealing with Boolean polynomial and field equations.

In Hansen et al. (2006) the classical Gröbner-basis theory was adjusted to the settings of the quotient

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1331

Fig. 3. ZDD structure representing the ith carry bit of an n-bit adder.

ring modulo the field polynomials. An equivalent approach considering ideals (which contain these
field equations) in the polynomial ring was done in Brickenstein et al. (in press).

2.3. Modelling digital components

Here we present an application example, which is motivated from arithmetical blocks arising in
digital systems design. An adder block unit takes two n-bit inputs a and b, and computes the sum s
consisting of the lowest n bits of the addition result. In addition, another n bit output c gives a sequence
of carry-overs.
In order to formulate the problem in terms of Boolean polynomials, the Boolean vari-

ables a0, . . . , an−1 and b0, . . . , bn−1 are introduced for bitwise handling of the inputs. Analogously,
the sequences s0, . . . , sn−1, and c0, . . . , cn−1 are used to model the outgoing sums and carry bits. The
system can be described by the following equations

ci + carryi= 0
si + ai + bi + carryi= 0

for i = 0, . . . , n− 1 , (4)

where the carryi denote Boolean polynomials, which are recursively defined by setting carry−1 = 0
and carryi = ai · (bi + carryi−1) + bi · carryi−1. As already mentioned before, the size of a ZDD is
very sensitive to the order of the variables. For efficient generation and handling of the ZDD structure
it is crucial to use a variable order, which is motivated by the topology of the digital system. For
this purpose, variables corresponding to outputs have to be placed before them, marking inputs.
Additionally, obeying the recursive generation of carryi the variables ai and bi have to be selected
reverse alternating.
Hence, selecting an−1, bn−1, an−2, bn−2, . . . , a0, b0 we obtain the ZDD structure of carryi as shown

in Fig. 3. In this case the polynomial of the most significant carry bit has 2n − 1 terms. The usual
computational approach of storing the polynomial term-wise already causes memory problems for
rather small n, even in case bit vectors are used as storage type. In contrast, the plaited structure of
the ZDD leads to a linear growth of the number of nodes as the following theorem shows:

Theorem 5. Let zn be the ZDD, which corresponds to the Boolean polynomial carryn−1 in the
variables an−1 > bn−1 > an−2 > bn−2 > · · · > a0 > b0, where carryi is recursively defined by

carry0 = a0 · b0 (5)
carryi = ai · (bi + carryi−1)+ bi · carryi−1. (6)

Then zn has 3 n− 1 nodes.

Proof. If n = 1 the claim is trivial. For n > 1 Eq. (6) adds three new nodes to the ZDD structure
of carryn−2, which concludes the theorem. �

1332 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

This enables fast polynomial generation and operations during Gröbner-base computations. In
PolyBoRi it is possible to use such adder structures with thousands of bits almost instantaneously.
Although it is very unlikely, that adder blocks with bit width larger that 128 will occur in a given
design, such structuresmay occur in formal verification. For instance, this is the casewhen properties,
which last for several clock cycles, are unrolled and reformulated in a time-independent way.

3. Algebraic basics

In this section, we recall some algebraic basics, including classical notions for the treatment of
polynomial systems, as well as basic definitions and results from computational algebra. For a more
detailed treatment of the subject see the book of Greuel and Pfister (2002) and the references therein.

3.1. Classical notions

Let P = K [x1, . . . , xn] be the polynomial ring over the field K . A monomial ordering on P ,
more precisely, on the set of monomials {xα = xα11 · . . . · x

αn
n |α ∈ Nn}, is a well ordering ‘‘>’’

(i.e. each nonempty set has a smallest element with respect to ‘‘>’’) with the following additional
property: xα > xβ ⇒ xα+γ > xβ+γ , for γ ∈ Nn.
An expression λm (λ ∈ K , m a monomial) is called a term and λ the coefficient. An arbitrary

element f ∈ P is called a polynomial.
Let f =

∑
α cα · x

α (cα,i ∈ K) a polynomial. Then

supp(f) := {xα|cα 6= 0}

is called the support of f .
Furthermore lm(f) denotes the leading monomial of f , the largest monomial occurring in f w.r.t.

‘‘>’’ (if f 6= 0). The corresponding term is denoted by lt(f) and the coefficient by lc(f). Moreover,
we set

tail(f) := f − lt(f).

If F ⊂ P is any subset, L(F) denotes the leading ideal of F , i.e. the ideal in P generated by {lm(f)|f ∈
F\{0}}. The S-Polynomial of f , g ∈ P\{0}with lm(f) = xα , lm(g) = xβ is denoted by

spoly(f , g) := xγ−α f −
lc(f)
lc(g)

xγ−βg,

where γ = lcm(α, β) := (max(α1, β1), . . . ,max(αn, βn)). Recall that G ⊂ P is called a Gröbner-
basis of an ideal I ⊂ P , if {lm(g)|g ∈ G\{0}} generates L(I) in the ring P and G ⊂ I .

Definition 6 (Standard Representation). Let f , g1, . . . , gm ∈ P , and let h1, . . . , hm ∈ P . Then

f =
m∑
i=1

hi · gi ∈ K [x1, . . . , xn],

is called a standard representation of f with respect to g1, . . . , gm, if

∀i : hi · gi = 0 or otherwise lm(hi · gi) ≤ lm(f) .

The classical product criterion of Buchberger (Buchberger, 1985) reads as follows:

Lemma 7 (Product Criterion). Let f , g ∈ K [x1, . . . , xn] be polynomials. If the equality lm(f) · lm(g) =
lcm(lm(f), lm(g)) holds, then spoly(f , g) has a standard representation w.r.t. {f , g}.

Definition 8 (Elimination Orderings). Let R = K [x1, . . . , xn, y1, . . . , ym]. An ordering ‘‘>’’ is called
an elimination ordering of x1, . . . , xn, if xi > t for every monomial t in K [y1, . . . , ym] and every
i = 1, . . . , n.

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1333

3.2. t-representations

There is an alternative approach to standard representations formulated in Becker and
Weispfennig (1993) and used in Faugère (1999), which utilises the notion of t-representations. While
this notion is mostly equivalent to using syzygies, it makes the correctness of the algorithms easier to
understand.

Definition 9 (t-representation). Let t be a monomial, f , g1, . . . , gm ∈ P , h1, . . . , hm ∈ P . Then

f =
m∑
i=1

hi · gi ∈ P

is called a t-representation of f with respect to g1, . . . , gm if

∀i : lm(hi · gi) ≤ t or hi · gi = 0.

Example 10. • Let the monomials of P be lexicographically ordered (x > y) and let

t = x5y5, g1 = x2, g2 = x5 − y, f = y

• Then f = x3g1 − g2 is a x5y5-representation for f .
• Each standard representation of f is a lm(f)-representation.
• For t < lm(f) t-representations of f do not exist.

Notation: Given a representation p =
∑m
i=1 hi · fi with respect to a family of polynomials f1, . . . , fm,

we may shortly say that p has a nontrivial t-representation, if a t-representation of p exists with

t < max{lm(hi · fi)|hi · fi 6= 0}.

For example, spoly(fi, fj)has a nontrivial t-representation if there exists a representation of spoly(fi, fj)
where the summands have leading terms smaller than

lcm(lm(fi), lm(fj)).

Theorem 11. Let F = (f1, . . . , fk), fi ∈ K [x1, . . . , xn], be a polynomial system. If for each f , g ∈ F
spoly(f , g) has a nontrivial t-representation w.r.t. F , then F is a Gröbner-basis.

Proof. For a full proof see Becker and Weispfennig (1993). A more sophisticated version of this
theorem can be formulated and proven analogously to Greuel and Pfister (2002, p. 142). �

4. The PolyBoRi framework

With PolyBoRi, we have implemented a C++ library for Polynomials over Boolean Rings, which
provides high-level data types for Boolean polynomials and monomials, exponent vectors, as well
as for the underlying polynomial rings. The ring variables may be identified by their indices or
by a custom string. Polynomial structures and monomials use ZDDs as internal storage type, but
this is hidden from the user. The current implementation uses the decision-diagram management
from CUDD (Somenzi, 2005). Its functionality is included using interface classes, which allows an
easy replacement of the underlying BDD system without extensive rewriting of crucial PolyBoRi
procedures.
In addition, basic polynomial operations – like addition and multiplication – have been

implemented and associated to the corresponding operators. In order to enable efficient
implementation, these operationswere reformulated in terms of set operations, which are compatible
with the ZDD approach. This also applies to other classical functionality like degree computation
and leading-term computations. The ordering-dependent functions are currently available for
lexicographical, degree-lexicographical (graded-lexicographical) ordering (with first variable being
the largest one), and degree-reverse-lexicographical ordering, whereas in the latter case the variables
are treated in reversed order for efficiency reasons. Product orderings consisting of blocks of these are
also available.

1334 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

A complete Python (Rossum and Drake, 2006) interface allows for parsing of complex polynomial
systems, and also sophisticated and easy extendable strategies for Gröbner-base computations have
been made possible by this. An extensive test suite, which mainly carries satisfiability examples, and
also some from cryptography, is used to ensure validity during development. Also, with the tool
ipython the PolyBoRi data structures and procedures can be used interactively as a command line
tool. In addition, routines for interfacing with the computer algebra system Singular (Greuel et al.,
2005) are under development.

4.1. Polynomial arithmetic

Boolean polynomial rings are motivated by the fact, that logical operations on bits can
be reformulated in terms of addition and multiplication of Z2-valued variables. Representing
polynomials as ZDDs these operationsmay also be implemented as set operations. For instance, adding
the polynomials p =

∑
s∈Sp

(∏
xν∈s xν

)
and q =

∑
s∈Sq

(∏
xν∈s xν

)
, with Sp and Sq as illustrated in

Eq. (3) (Section 2), is just p + q =
∑
s∈Sp+q

(∏
xν∈s xν

)
, where Sp+q = (Sp ∪ Sq)\(Sp ∩ Sq). Although

each of these three operations is already available for ZDDs, it is usually more preferable to have them
replaced by one specialised procedure. This avoids large intermediate sets (like Sp ∪ Sq) and repeated
iterations over both arguments.
Algorithm1 shows a suitable implementation of the Boolean polynomial addition. Since the indices

Algorithm 1 Recursive Boolean addition
Require: f , g Boolean Polynomials
Ensure: h = f + g
if f = 0 then
h = g

else if g = 0 then
h = f

else if f = g then
h = 0

else
if isCached(+, f , g) then
h = cache(+, f , g)

else
set xν = top(f), xµ = top(g)
if ν < µ then
h = ite(xν, then(f), else(f)+ g)

else if ν > µ then
h = ite(xµ, then(g), f + else(g))

else
h = ite(xν, then(f)+ then(g), else(f)+ else(g))

cache(+, f , g) = h
return h

of top(p), top(q) are greater than i, the if-then-else operator ite(xi, p, q), which is equivalent to xi ·p+q
here, can be implemented cheaply by linking then- and else-branches of the new root node for xi to p
and q, respectively.
The procedure also includes a cache lookup, immediately after the initial if-statements, which

treat trivial cases only. The lookup can be implemented cheaply, because polynomials have a unique
representations as ZDDs. Hence, previous computations of the sums of the form f + g can be
reused. The advantage of a recursive formulation is, that this also applies to those subpolynomials,
which are generated by then(f) and else(f). Because of the recurring multiplication and addition
operations, which are used in Buchberger-based algorithms for elimination of leading terms and the

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1335

tail-reduction process, it is very likely, that common subexpressions can be reused during Gröbner-
base computation. Currently, the default settings of the underlying BDD library are used for cache-size
and related parameters. Fine-tuning and optimisation in this area are subject of further research.
In a similar manner a kind of Boolean multiplication is given in Algorithm 2. The procedure

Algorithm 2 Recursive Boolean multiplication
Require: f , g Boolean Polynomials
Ensure: h = f ?2 g

if f = 1 then
h = g

else if f = 0 or g = 0 then
h = 0

else if g = 1 or f = g then
h = f

else
if isCached(?2 , f , g) then
h = cache(?2 , f , g)

else
xν = top(f), xµ = top(g)
if ν < µ then
set p1 = then(f), p0 = else(f), q1 = g , q0 = 0

else if ν > µ then
set p1 = then(g), p0 = else(g), q1 = f , q0 = 0

else
set p1 = then(f), p0 = else(f), q1 = then(g), q0 = else(g)

h = ite(xmin(ν,µ), p0?2 q1 + p1?2 q1 + p1?2 q0, p0?2 q0)
cache(?2 , f , g) = h

return h

computes the unique representative of the product of two Boolean polynomials modulo the field
equations. Thismultiplication is denoted by ?2 in the following,while ·means the usualmultiplication.
If variables of right- and left-hand side polynomials are distinct, both operations coincide.

4.2. Monomial orderings

The operations treated in Section 4.1 are independent of the actual monomial ordering. Crucial for
Gröbner algorithms is the computation of the leading term or leading monomial. Both concepts are
equal in our context, and mean the largest monomial, with respect to the current ‘‘<’’-relation.
It was a major part of our research to make such functionality available for various nontrivial

monomial orderings. In particular, this applies to such orderings, which obviously do not match with
the natural order of the terms stored by a ZDD. By taking advantage of the cache and the uniqueness
properties of the data structure is was possible to implement these functions with a reasonable small
computational overhead.
Lexicographically, the leading monomial is just the product of all node variables in the first valid

path of the underlying ZDD, i.e. the sequence of nodes from the root down to the 1-leaf consisting of
those nodes adjacent by then-branches only. In case of degree orderings, one has to work harder. For
instance, the leadingmonomial for the degree-lexicographical ordering can be found by iterating over
all monomials (see Section 4.3) as follows: initially, degree and monomial of the first term are stored.
If incrementing to the next term leads to a strictly higher degree, both – degree and monomial – are
replaced by the current ones. This naïve approach does notmake use of recursions, and hence it cannot
be cached efficiently. A more suitable variant is given in Algorithm 3.
Sometimes the degree of a polynomial is cheap to compute, for instance, if an upper bound can be

used. It is a common practice in computational algebra to have such a degree bound (or sugar value,

1336 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

Algorithm 3 Recursive leading term and degree lead_and_deg(f) (degree-lex.)
Require: f Boolean polynomial.
Ensure: {h, d} = {lead(f), deg(f)}
if f is constant then
h = 1, d = 0

else
if isCached(lead_and_deg, f) then
{h, d} = cache(lead_and_deg, f)

else
{h1, d1} = lead_and_deg(then(f))
{h0, d0} = lead_and_deg(else(f))
if d0 < d1 + 1 then
h = top(f) · h1, d = d1 + 1

else
h = h0, d = d0

cache(lead_and_deg, f) = {h, d}
return {h, d}

see Giovini et al., 1991) arising from intermediate polynomials. It can be generated using basic degree
formulas, like

deg(f + g) ≤ max(deg(f), deg(g)). (7)

In PolyBoRi these degree bounds are of even greater use. In degree orderings they can be utilised in a
dual-purpose manner: having the degree bound you can speed up leading-term calculations, having
the leading term you can improve the degree bound. This is not the exact, original sugar strategy, but
it behaves well in practice. Algorithm 4 illustrates the degree computation. In any case, the number n

Algorithm 4 Recursive degree computation with upper bound
Require: f Boolean polynomial, dmax upper bound for degree
Ensure: d = deg(f , dmax)
if f is constant then
d = 0

else
if isCached(deg, f , dmax) then
d = cache(deg, f , dmax)

else
d1 = deg(then(f), dmax − 1)+ 1
if d1 = dmax then
d = d1

else
d = max(d1, deg(else(f), dmax))

cache(deg, f , dmax) = d
return d

of ring variables may always be used for such an upper bound, i.e. deg(f) = deg(f , n). Also caching is
useful, since immediately a single call of deg(f)makes deg(g) available on the cache for all recursively
generated subpolynomials. Having such a kind of cheap deg-functionality available, one can formulate
Algorithm 5, which only generates the leading term, but – unlike Algorithm 3 – not the other terms
of the polynomial.
Note, that similar algorithms can be formulated for the degree-reverse-lexicographical ordering

with reversed variable order. The reason for the reversion of the variables (which can be hidden
easily from the user) is that the implementation can be done more efficiently. For instance, for
computing lead_and_deg w.r.t. this ordering one just has to replace the strict less-comparison in

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1337

Algorithm 5 Recursive leading term (degree-lexicographical)
Require: f Boolean polynomial.
Ensure: h = lm(f)

if deg(f) = 0 then
h = 1
if isCached(lm, f) then
h = cache(lm, f)

else
if deg(f) = deg(then(f))+ 1 then
h = top(f) · lm(then(f))

else
h = lm(else(f))

cache(lm, f) = h
return h

Algorithm3by less or equal. Analogously, in Algorithm5, it has to be tested for deg(f) 6= deg(else(f))
instead of deg(f) = deg(then(f))+ 1.

4.3. Iterators

PolyBoRi’s polynomials also provide term access. For this purpose iteration over all monomials
was implemented in the style of Standard Template Library’s (STL) iterators, obtained using begin()
and end()member functions, like in Stepanov and Lee (1994). Very much like a generalisation of the
pointer concept, such a kind of iterator can be dereferenced to gain constant, i.e. read-only, access to
the current term, and incremented to go to the next term in question. Also, comparison with other
iterators of the same type is possible. In particular, equalitywith a special endmarker yields the end of
the iteration. This ensures compatibility with STL algorithms, originally designed for template classes
like std::vector and std::list.
This kind of term iterator was implemented by a stack, which stores a sequence of references

pointing to the diagram nodes. Initially, these are generated from following the first valid path.
Incrementing the iterator is equivalent to popping the top element from the stack as long as the
corresponding nodes have invalid else-edges only. Then the subdiagram adjacent to this edge, and
also its first valid path, is put on the stack, in order to represent the next lexicographical term. On
dereferencing a temporary monomial holding the current term is generated.
In addition to the natural order of the underlying ZDD, more complex iterators have been

implemented for all supportedmonomial orderings. This hides the fact, that the internal data structure
is actually ordered lexicographically. Hence, we have a sophisticated programming interface, which
allows the formulation of general procedures in the manner of computational algebra, without the
need for caring about certain properties of binary decision diagrams or the current ordering.

5. Algorithmic aspects in higher level computations

PolyBoRi implements basic polynomial arithmetic as well as higher level functions from
computational algebra like Gröbner-basis algorithms and normal form computations. These
algorithms from computational algebra have been adjusted to the facts that:

• We have a very special situation: only coefficients 0 or 1, no exponents greater than 1.
• The framework can only represent Boolean polynomials (which is sufficient for the practice,
since Boolean functions are equivalent to Boolean polynomials), but not general polynomials, in
particular not the field equations themselves.
• Our data structures behave completely different, some operations aremore costly, some are faster.

Paying attention to these points it is possible to achieve high performance using PolyBoRi.

1338 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

5.1. Normal forms

A good example for this redesign of existing algorithms is the classical normal form computation
of Algorithm 6.

Algorithm 6 Buchberger normal form
Require: G finite tuple of Boolean polynomials, f Boolean polynomial.
while f 6= 0 and (∃g ∈ G : lm(g)|lm(f)) do
f := spoly(f , g)

return f

A more suitable approach in PolyBoRiwould be the one of Algorithm 7.

Algorithm 7 Greedy normal form
Require: G finite tuple of Boolean polynomials, f Boolean polynomial.
while f 6= 0 and (∃g ∈ G : lm(g)|lm(f)) do
h := f

lm(g) /* division by remainder */
/* sth the result corresponds to terms in f divisible by lm(g) */

f := f − h?2 g /* no term of f is divisible by lm(g) any more */
return f

The latter algorithm combines many small steps. The cost of the single steps can be higher using ZDD
operations, but the combined step can be done much faster. The high cost (compared to classical
polynomial representations) of these single additions might be surprising in the first moment, but
can be explained quite easily. Good normal form strategies try to select a monomial for g , whenever
possible. Then of course classical structures like linked list do not need a general addition, but can
simply pop the first element (term) from the list. This can be done in constant time. In fact only
applying this greedy technique to the case, where g is a monomial, already gives a quite good normal
form implementation in PolyBoRi. Of course, it is a matter of heuristics to decide, when it might be
better only to perform a single reduction step.
The algorithm makes more sense in the case of Boolean polynomials. In fact, in the non-Boolean

case a single reduction step can give worse results andwould be harder from the computational point
of view than a reduction step in the classical Buchberger normal form algorithm.

Example 12. We consider the polynomials f = x2+x ·y and g = x+y inQ[x, y]with lexicographical
ordering (x > y). Then spoly(f , g) = 0, but

f +
f

lm(g)
· g = f − (x+ y) · g = −x · y− y2.

The purpose of the the construction was to cancel all multiples of lm(g) in f , which includes x · y in
this example. Apparently the strategy fails in this general case.

The following theorem shows, that in the case of Boolean polynomials (and Boolean multiplication)
the situation is better.

Theorem 13. Let f , g be Boolean polynomials in Z2[x1, . . . , xn], lm(g) divides lm(f). Then

r := f −
f

lm(g)
· g

does not contain any term, which is a multiple of lm(g): r
lm(g) = 0. In particular, this claim holds for

r2 := f −
f

lm(g)
?2 g

as well. Additionally, supp(r) 6⊃ supp(spoly(f , g)), if r 6= spoly(f , g).

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1339

Proof. We only have to show that f
lm(g) · tail(g) does not contain multiples of lm(g), as

f
lm(g) · lm(g)

cancels with terms in f . W.m. a. lm(g) 6= 1 (in this case tail(g) = 0). Then by elementary properties
of monomial orderings no term in tail(g) is divisible by lm(g). On the other hand every term in f

lm(g)
does not contain a variable occurring in lm(g) (themaximal exponent per variable is 1), somultiplying
with this terms does not contribute to divisibility by lm(g). This proves the first claim. The last claim
can be shown analogously. �

5.2. Gröbner-basis

The first real Gröbner-basis algorithm implemented in PolyBoRi is an enhanced and specialised
variant of the slimgb (Brickenstein, 2006), which was implemented first in Singular. Slimgb is a
Buchberger algorithm, which was designed to reduce the intermediate expression swell. We call
the improved version for this special case symmgbGF2. In particular it features a good strategy for
elimination orderings (e.g. lexicographical orderings) using a special weighted length function, which
not only considers the number of terms of a polynomial, but also their degree. We will concentrate
in the presentation of the results on Gröbner-bases computations, as there exists a large example set
and it is a task, which is optimised in many systems.

5.2.1. Implementation tricks
The availability of ZDDs for set operations can also used for other things than polynomial

representation. For instance, having a polynomial p, the search for a polynomial q in your generations
with the property, that lm(q) divides lm(p) can be implemented using set operations in the following
way (Algorithm 8).

Algorithm 8 Search for reductor
Require: p 6= 0 polynomial, G polynomials with lm(g) 6= lm(h),∀g, h ∈ G, g 6= h, S = {lm(g)|g ∈
G},
lm2p : S → Gmap with lm(g) 7→ g,∀g ∈ G /* leading term back to polynomial */

Ensure: D set of possible possible reductors
t := {s ∈ S|s divides lm(p)} /* implementable as a single ZDD operation */
D := {lm2p(s)| for s ∈ t}
return D

This presented algorithm is supposed to be much faster than a linear search, under the following
(sensible) assumptions

• S is a large set
• each leading term in S is unique
• m has quite small degree compared to the number of variables
• D is small
• a call of lm2p has complexity O(log2(#S))
• lm2p is precomputed.

This follows from the general principle, first to minimise the set of considered leading terms via set
operations, and then to access the actual polynomial via a hash lookup. One can also use a similar
technique, when applying the product criterion. There are many other possibilities to use the ZDDs
for improving Gröbner-basis computations.

5.2.2. Criteria
Criteria for keeping the set of critical pairs in the Buchberger algorithm small are a central part

of Gröbner-basis algorithms. In most implementations the chain criterion and product criterion or
variants of them are used.

1340 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

These are of quite general type. This leads to the question, whether we can formulate new criteria
for our particular case. There are two types of pairs to consider: Boolean polynomials with field
equations, and pairs of Boolean polynomials. We concentrate on the first kind of pairs here.

Theorem 14. Let f be a Boolean polynomial in Z2[x1, . . . , xn], f = l · g, l a polynomial with linear
leading term xi, g a polynomial. Then spoly(f , x2i +xi) has a nontrivial t-representation against the system
consisting of f and the field equations.

Proof. First, we consider the case g = 1. In this situation the following formula holds: lm(f) = xi.
Let r be a reduced normal form of spoly(f , x2i + xi) against f and the field equations. Then r is (tail)
reduced, so it is a Boolean polynomial and irreducible against f , so xi does not occur. In particular
considered as a Boolean function it is independent from the value of xi.
Since r is a linear combination of f and field equations (which are zero considered as Boolean

functions) we get:

r(x1, . . . , xn) = 1⇒ f (x1, . . . , xn) = 1.

Now, we assume that r 6= 0. As a nonzero Boolean polynomial corresponds to a nonzero Boolean
function, we know, that there exist v1, . . . , vn ∈ {0, 1} subject to the condition g(v1, . . . , vn) = 1.
The above implication gives f (v1, . . . , vn) = 1.
Then we can change the value of xi without affecting the value of r , i.e.

r(v1, . . . , vi + 1, . . . , vn) = 1 ,

but f (v1, . . . , vi + 1, . . . , vn) = 0, since xi only occurs in the one term xi of f . This contradicts the
above implication between r and f . So r = 0 and spoly(f , x2i + xi) has a standard representation.
Now, we consider a general Boolean polynomial g . spoly(l, x2i + xi) has a standard representation

against l and the field equations:

spoly(l, x2i + xi) =
n∑
j=1

hj · x2j + xj + α · l ,

for polynomials α, hj (j ∈ {1, . . . , n}):

x2j · lm(hj) ≤ lm(spoly(l, x
2
i + xi)) < x

2
i , lm(α · xi) < x

2
i .

We multiply this equation by g and get by that fact, that xi does not occur in g:

spoly(l · g, x2i + xi) = spoly(l · g, g · x
2
i + xi)− tail(g) · (x

2
i + xi)

= g · spoly(l, x2i + xi)− tail(g) · (x
2
i + xi).

Using the standard representation for spoly(l, x2i + xi) from above, both summands have a t-
representation for a monomial t < x2i · lm(g), so we also get a nontrivial t-representation in the
sum. �

Remark 15. The polynomials l and g are indeed Boolean polynomials, as a Boolean polynomial only
factors in Boolean polynomials (this can be seen using degree formulas). Together with the product
criterion, we get, that we have only to consider pairs of Boolean polynomials f with field equations
for variables x, which do not occur in an irreducible nonlinear factor of f . In the above proof, we make
use of the fact, that we only consider well-orderings, when claiming, that xi does not occur in the tail
of f .

5.3. Gröbner proof system

The Gröbner proof system (Clegg et al., 1996) is a combination of backtracking for calculation.
Traditional SAT-solvers using backtracking split a logical expression into clauses, which have to be

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1341

satisfied simultaneously (Kunz et al., 2002). This algorithm works the following way. On each level
of the calculation a value for a chosen variable is plugged in. If even a single clause is unsatisfiable,
then the system is obviously unsatisfiable. Then the other branch (the chosen value of the opposite
variable) has to be checked.
The Gröbner proof system works similar to these classical SAT-solvers. The difference is, that the

criterion for a system to be obviously unsatisfiable is that a run of the Buchberger algorithm with
degree bound yields one (so the ideal is the whole ring). This algorithm has been implemented in a
first experimental version. It will be a challenge for the future to find good strategies and heuristics
for this very high level algorithm.

6. Benchmarks and practical results

This section presents some benchmarks comparing PolyBoRi to general-purpose and specialised
computer algebra systems. Note, that it only presents the state of PolyBoRi in the development
version at the end of August 2007. Since the project is very young we can expect major performance
improvements for sure in the near future.
The following timings have been done on a AMDDual Opteron 2.2 GHz (all systems have used only

one CPU) with 16 GB RAM on Linux.
The used ordering was lexicographical, with the exception of FGb, where degree-reverse-

lexicographic was used. PolyBoRi also implements degree ordering, but for the presented practical
examples elimination orderings seem to bemore appropriate. A recent development in PolyBoRiwas
the implementation of block orderings, which behave very naturally for many examples.
We compared the following system releases with the development version of PolyBoRi’s

symmgbGF2 (forMagma, see Bosma et al., 1997):
Maple 11.01, June 2007 Gröbner package, default options
FGb 1.34, Oct. 2006 via Maple 11.01, command: fgb_gbasis
Magma 2.13-10, Feb. 2007 command: GroebnerBasis, default options
Singular 3-0-3, May 2007 std, option(redTail)
The examples were chosen from current research problems in formal verification and algebraic

crypto-analysis. The latter yields systems of equations, which are comparable to those arising from
formal verification, but they are more scalable. We use an algebraic attack to a small-scale variant of
the Advanced Encryption Standard (AES) (National Institute of Standards and Technology, 2001). This
approach is based on Cid et al. (2005) and was provided by Bulygin (private communication). We
made some optimisations on the formulation of the equations in the formulation. This is done by an
approach similar to the one of Toli and Zanoni (2004), but over GF2. Details will be published in a later
article.
Furthermore, examples using Courtois Toy Cipher (CTC; see Courtois, 2006),which are due toMartin

Albrecht (Albrecht, 2006), were tested. The systems describing the formal verification of multipliers
were provided by Wedler (private communication).
All timings of the computations are summarised in Table 1 below. The authors of this article are

quite convinced, that the default strategy of Magma is not well suited for these examples (walk,
see Collart et al. (1997), or homogenisation). However, when we tried a direct approach in Magma,
it ran very fast out of memory (at least in the larger examples). So we can conclude, that the
implemented Gröbner-basis algorithm in PolyBoRi offers a good performance combined with low
memory consumption. The relatively large offset of about 50MB in memory usage is due to an initial
memory pool for the cache management, whose size depends on the available RAM. Part of the
strength in directly computing Gröbner-bases (without walk or similar techniques) is inherited from
the slimgb algorithm in Singular. On the other hand our data structures provided a fastway to rewrite
polynomials, which might be of greater importance than sparse strategies in the presented examples.
While we used the normal slimgb algorithm for the presented examples, wewere able to tackle much
harder problems like 12-BIT-Multiplier, AES small scale chiffre SR(10-1-2-8), SR(10-2-1-8), SR(10-2-
2-4) using optimised scripts.
In order to treat classes of examples, for which the lexicographical ordering is not the best choice,

PolyBoRi is also equipped with other monomial orderings. Although, its internal data structure is

1342 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

Table 1
Timings and memory usage for benchmark examples.
Example Vars./Eqs. PolyBoRi FGb Maple Magma Singular

s MB s MB s MB s MB s MB

aes_7_1_2_4_pp 204 225 0.15 53.82 2812.30 55.42 >1h 345.82 206.22 27.41 25.77
aes_10_1_1_4_pp 164 184 0.02 52.70 1.97 32.69 2.99 70.48 0.28 9.03 0.02 1.75
aes_10_1_2_4_pp 288 318 0.22 55.59 >1h >1h 847.36 471.58 183.73 55.86
ctc_3_3 117 117 0.04 52.80 6.56 16.66 10.40 67.96 1.62 10.39 0.77 5.25
ctc_5_3 189 189 0.10 63.05 602.20 30.68 929.77 231.39 84.65 67.79 3.63 14.75
ctc_8_3 297 297 0.15 64.23 >1h >1h 758.96 299.08 14.32 33.31
ctc_15_3 549 549 0.28 68.71 >1h >1h >1h 66.63 116.98

mult3× 3 33 28 0.01 54.52 0.07 4.15 0.04 3.58 0.00 6.55 0.01 0.64
mult4× 4 55 48 0.00 54.54 1.76 5.50 1.96 4.87 0.31 10.48 0.02 0.66
mult5× 5 83 74 0.01 54.66 219.09 6.37 236.14 6.87 30.41 46.05 0.01 1.67
mult6× 6 117 106 0.03 54.92 Failed >1h >1h 4.28 21.19
mult8× 8 203 188 0.40 55.43 >1h >1h >1h >15GB
mult10× 10 313 294 18.11 85.91 >15GB >15GB >15GB >15GB

Table 2
Timings and memory usage for benchmark examples, w. r. t. various orderings.

Example Vars./Eqs. Order PolyBoRi Magma FGb

s MB s MB

uuf50_8 50 218 lp 11.58 71.58 12.26 26.04
dlex 10.95 71.06 12.33 29.02
dp_asc 7.78 70.82 9.23 37.02 76.27 7.57

uuf75_8 75 325 lp 843.38 819.80 14014.66 1633.62
dlex 553.43 490.86 14290.90 2439.53
dp_asc 448.53 472.04 13678.87 2539.24 99721.46 8958.36

uuf100_01 100 430 lp 44779.77 12309.79 >2days
dlex 11961.86 6101.43 >2days
dp_asc 10635.72 6146.47 >2days Failed

ordered lexicographically, the computational overhead of the degree orderings implementation is
small enough, that the advantage of these orderings become effective. Table 2 illustrates this for a
series of random unsatisfiable examples Hoos and Stützle (2000). The latter arise from benchmarking
SAT-solvers, which can handle them very quickly, as their conditions are easy to contradict. But they
are still a challenge for the algebraic approach. The strength of PolyBoRi is visible in themore complex
examples, as it scales better than the other systems in tests. The computations of the these problems
include a large number of generators, consisting of initially short polynomials, which leads to large
intermediate results. The algorithmic improvement of symmgbGF2 and the optimised pair handling
render the treatment of these example with algebraic methods possible.
In addition the performance of PolyBoRi is compared with the freely available SAT-solver

MiniSat2 (release date 2007-07-21), which is state-of-the-art among publicly available solvers (Eén
and Sörensson, 2003). The examples consist of formal verification examples corresponding to digital
circuits with n-bit multipliers and the pigeon hole benchmark, which is the most important standard
benchmark problem for SAT-solvers, e.g. used in Hoos and Stützle (2000), and some small-scale AES
examples again. The latter checks whether it is possible to place n+ 1 pigeons in n holes without two
of them being in the same hole (obviously, it is unsatisfiable).
Although, the memory consumption of PolyBoRi is larger, Table 3 illustrates, the computation

time of both approaches is comparable for this kind of practical examples. (Again the first part
was computed using preprocessing.) In particular, it shows, that in our research area the algebraic
approach is competitive with SAT-solvers: the fast Boolean multiplication can be seen in the pigeon-
hole benchmarks. In contrast, the good performance of the cryptography examples is due to fast
elimination of auxiliary variables.
Finally, we used some standard benchmark problems to compare PolyBoRi’s performance with

that achieved by other systems. For this purpose, HFE cryptosystems of degree 96 in 25, 30, 35, 40,
and 45 variables were treated (Steel, 2004). Table 4 shows, that PolyBoRi is able to solve these
problems in a reasonable time.Magma shows better performance, in particular if specialised routines
for HFE are used. PolyBoRi cannot play out its strengths here, since it is optimised for Boolean systems
with several hundreds of variables. In this case, the main bottleneck is the linear algebra approach

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1343

Table 3
Comparison of PolyBoRi and MiniSat.

Vars./Eqs. PolyBoRi MiniSat

s MB s MB

hole6 42 133 0.13 51.64 0.01 1.96
hole7 56 204 0.46 51.89 0.06 1.96
hole8 72 297 1.88 56.59 0.30 2.08
hole9 90 415 8.01 84.04 2.31 2.35
hole10 110 561 44.40 97.68 25.20 3.24
aes_2_2_2_4 128 128 3.93 64.91 12.04 4.73
aes_3_2_2_4 184 184 46.67 88.77 76.88 6.77
aes_10_1_1_8 328 328 2.26 132.74 58.30 38.13
aes_10_2_2_4 576 576 1193.19 150.70 190.58 15.03
aes_7_1_2_4 204 225 0.15 53.82 0.38 5.16
aes_10_1_1_4 164 184 0.02 52.70 0.03 3.49
aes_10_1_2_4 288 318 0.22 55.59 0.44 7.28

mult3× 3 33 28 0.01 54.52 0.00 1.96
mult4× 4 55 48 0.00 54.54 0.00 1.95
mult5× 5 83 74 0.01 54.66 0.01 1.95
mult6× 6 117 106 0.03 54.92 0.03 1.95
mult8× 8 203 188 0.40 55.43 0.96 2.21
mult10× 10 313 294 18.11 85.91 22.85 3.61
aes_1_2_2_4 72 72 3.53 54.92 0.08 2.51
aes_3_1_2_4 104 104 0.48 55.42 0.23 2.98
aes_4_1_1_4 68 68 0.14 54.94 0.01 2.38
aes_4_1_2_4 120 120 0.88 55.44 0.32 3.27
aes_4_2_1_4 136 136 0.63 55.68 1.36 3.91
aes_5_1_2_4 148 148 1.29 55.69 0.40 3.58
aes_6_1_1_4 100 100 0.17 55.42 0.04 2.73
aes_6_1_2_4 176 176 1.55 55.98 0.64 4.05

Table 4
Timings and memory usage for hidden field equation problems (ordering is dp).

PolyBoRi FGb Magma Magma: HFE

s MB s MB s MB s MB

HFE 25-96 75.64 244.16 359.03 12.95 16.80 153.88 3.46 20.89
HFE 30-96 378.52 626.13 2065.06 22.33 55.46 780.66 13.12 48.14
HFE 35-96 2625.89 3318.59 7687.16 36.60 211.06 2439.00 44.47 109.76
HFE 40-96 5705.39 4430.30 23352.74 57.37 588.43 5914.81 110.36 233.79
HFE 45-96 11620.94 7014.04 (Failed after 16h) 1527.72 12681.66 256.45 464.90

proposed by Bard (2006), which can be used to solve HFE-like problems. Currently PolyBoRi’s
implementation is less advanced than the correspondingMagma procedures.

7. Conclusions

In this paper the PolyBoRi framework was presented. It utilises special properties of Boolean
systems of equations for computing Gröbner-basis over Boolean polynomials in an efficient way. A
special data structure based on binary decision diagrams, and optimised procedures for polynomial
operations were proposed. In addition, novel theoretical results were given, which have been used to
improve the algorithmic aspects in higher levels of the Gröbner-basis computations.
On the one hand, PolyBoRi offers fast Boolean operations and elimination of auxiliary variables.

On the other, the algorithmic improvement of symmgbGF2 and the optimised pair handling make it
possible to treat problems with a large number of generators, which might yield large intermediate
results.
It is also important to note, that various nontrivial monomial orderings were made available in an

efficient way on a ZDD-based data structure. To our knowledge, this is a unique approach in area of
Gröbner-basis computations, which has already paid off. Also, togetherwith some valuable properties
of binary decision diagrams it may lead to interesting new points of view in future research.
In this way the initial performance of PolyBoRi seems to be very promising. It can be seen, that the

advantage of PolyBoRi grows with the number of variables. For many practical applications this size
will even be larger. We are very confident, that it will be possible to tackle some of these problems in
the future by using more specialised approaches. Indeed, it was a key point during the development
of PolyBoRi to facilitate problem-specific, high-performance solutions.

1344 M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345

Acknowledgements

This work has been partly financed by the Deutsche Forschungsgemeinschaft (DFG) under Grand
No. GR 640/13-1, and it has been supported by the Rheinland-Pfalz cluster of excellence Dependable
Adaptive Systems and Mathematical Modelling (DASMOD). In addition, the authors thank Prof.
Gert-Martin Greuel and Prof. Gerhard Pfister (both Department of Mathematics, University of
Kaiserslautern, Germany) for their encouragement.

References

Albrecht, M., 2006. Algebraic Attacks on the Courtois Toy Cipher. Universität Bremen. Diplomarbeit.
Bachmann, O., Schönemann, H., 1998. Monomial representations for Gröbner Bases computations. In: Proc. of the International
Symposium on Symbolic and Algebraic Computation. ISSAC’98. ACM Press, pp. 309–316.

Bard, G.V., 2006. Accelerating cryptanalysis with the method of four Russians. Cryptology ePrint Archive, Report 2006/251
http://eprint.iacr.org/.

Becker, T., Weispfennig, V., 1993. Gröbner bases, a computational approach to commutative algebra. In: Graduate Texts in
Mathematics. Springer Verlag.

Bérard, B., Bidoit,M., Laroussine, F., Petit, A., Petrucci, L., Schoenebelen, P.,McKenzie, P., 1999. Systems and SoftwareVerification:
Model-Checking Techniques and Tools. Springer-Verlag New York, Inc., New York, NY, USA.

Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system I. Journal of Symbolic Computation 24 (3/4), 235–265.
Brickenstein, M., 2006. Slimgb: Gröbner Bases with Slim Polynomials. In: Rhine Workshop on Computer Algebra. pp. 55–66.
Proceedings of RWCA’06, Basel, March 2006.

Brickenstein, M., Dreyer, A., Greuel, G.-M., Wedler, M., Wienand, O., New developments in the theory of Gröbner bases and
applications to formal verification. In: Theoretical Effectivity and Practical Effectivity of Groebner Bases. Journal of Pure and
Applied Algebra, in press (doi:10.1016/j.jpaa.2008.11.043) (special issue).

Bryant, R.E., 1986. Graph-based algorithms for Boolean functionmanipulation. IEEE Transactions on Computers 35 (8), 677–691.
Buchberger, B., 1985. A Criterion for Detecting Unnecessary Reductions in the Construction of a Gröbner Basis. In: Bose, N.K.
(Ed.), Recent Trends in Multidimensional System Theory.

Buchberger, B., 1965. Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen
Polynomideal. Dissertation. Universität Innsbruck.

Bulygin, S., Small-scale variant (examples) of the Advanced Encryption Standard (AES), private communication.
Chai, F., Gao, X.-S., Yuan, C., 2008. A characteristic set method for solving Boolean equations and applications in cryptanalysis
of stream ciphers. MM-Preprints 26. URL: http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf.

Cid, C., Murphy, S., Robshaw, M.J.B., 2005. Small scale variants of the AES. In: Gilbert, H., Handschuh, H. (Eds.), Fast Software
Encryption 2005. In: Lecture Notes in Computer Science, vol. 3557. Springer-Verlag, pp. 145–162.

Clegg, M., Edmonds, J., Impagliazzo, R., 1996. Using the Groebner basis algorithm to find proofs of unsatisfiability. pp. 174–183.
Collart, S., Kalkbrener, M., Mall, D., 1997. Converting Bases with the Gröbner Walk. Journal of Symbolic Computation 24,
465–469.

Coudert, O., Madre, J.C., 1992. Implicit and incremental computation of primes and essential primes of Boolean functions. In:
Design Automation Conference. pp. 36–39.

Courtois, N., 2006. How fast can be algebraic attacks on block ciphers? Cryptology ePrint Archive, Report 2006/168. URL: http://
eprint.iacr.org/2006/168.pdf.

Eén, N., Sörensson, N., 2003. An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (Eds.), SAT. In: Lecture Notes in Computer
Science, vol. 2919. Springer, pp. 502–518.

Faugère, J.-C., 2003. Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner bases. In: Advances in
Cryptology. CRYPTO 2003. In: Lecture Notes in Computer Science, vol. 2729/2003. pp. 44–60.

Faugère, J.-C., 1999. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure and Applied Algebra 139 (1–3),
61–88.

Ghasemzadeh, M., 2005. A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision
diagrams and memoization. Ph.D. Thesis, University of Potsdam, Potsdam, Germany URL: http://opus.kobv.de/ubp/
volltexte/2006/637/.

Giovini, A., Mora, T., Niesi, G., Robbiano, L., Traverso, C., 1991. One sugar cube, please or Selection strategies in Buchberger
algorithms. In: Watt, S. (Ed.), Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computations.
ISSAC’91. ACM press, pp. 49–54.

Greuel, G.-M., Pfister, G., Schönemann, H., 2005. SINGULAR 3.0. A Computer Algebra System for Polynomial Computations.
Centre for Computer Algebra, University of Kaiserslautern. URL: http://www.singular.uni-kl.de.

Greuel, G.-M., Pfister, G., 2002. A SINGULAR Introduction to Commutative Algebra. Springer Verlag.
Hachtel, G.D., Somenzi, F., 1996. Logic Synthesis and Verification Algorithms. Kluwer Academic.
Hansen, O.M., Michon, J.-F., 2006. Boolean Gröbner basis. In: Michon, J.-F., Valarcher, P., Yunès, J.-B. (Eds.). Proceedings of
BFCA’06 Conference, March 13–15, 2006, Rouen, France. pp. 185–201.

Hoos, H.H., Stützle, T., 2000. SATLIB: An online resource for research on SAT. In: Gent, I.P., v. Maaren, H., Walsh, T. (Eds.), SAT
2000. IOS Press, pp. 283–292.

Kunz, W., Marques-Silva, J., Malik, S., 2002. SAT and ATPG: Algorithms for Boolean Decision Problems. p. 309–341.
McMillan, K.L., 1993. Symbolic Model Checking. Kluwer Academic Publishers, Norwell, MA, USA.
Michon, J.-F., Valarcher, P., Yunès, J.-B., 2004. HFE and BDDs: A practical attempt at cryptanalysis. In: Feng, K., Niederreiter, H.,
Xing, C. (Eds.), Coding Cryptography and Combinatorics. In: Progress in Computer Science and Applied Logic, vol. 23.
Birkhäuser Verlag, pp. 237–246.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
doi:10.1016/j.jpaa.2008.11.043
doi:10.1016/j.jpaa.2008.11.043
doi:10.1016/j.jpaa.2008.11.043
doi:10.1016/j.jpaa.2008.11.043
doi:10.1016/j.jpaa.2008.11.043
doi:10.1016/j.jpaa.2008.11.043
doi:10.1016/j.jpaa.2008.11.043
doi:10.1016/j.jpaa.2008.11.043
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://www.mmrc.iss.ac.cn/pub/mm26.pdf/4-csz2-mm.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2006/168.pdf
http://eprint.iacr.org/2006/168.pdf
http://opus.kobv.de/ubp/volltexte/2006/637/
http://opus.kobv.de/ubp/volltexte/2006/637/
http://opus.kobv.de/ubp/volltexte/2006/637/
http://opus.kobv.de/ubp/volltexte/2006/637/
http://opus.kobv.de/ubp/volltexte/2006/637/
http://opus.kobv.de/ubp/volltexte/2006/637/
http://opus.kobv.de/ubp/volltexte/2006/637/
http://opus.kobv.de/ubp/volltexte/2006/637/
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de
http://www.singular.uni-kl.de

M. Brickenstein, A. Dreyer / Journal of Symbolic Computation 44 (2009) 1326–1345 1345

Minato, S., 1995. Implicit manipulation of polynomials using zero-suppressed BDDs. In: Proc. of IEEE The European Design and
Test Conference, ED&TC’95. pp. 449–454.

National Institute of Standards and Technology,, 2001. Advanced encryption standard (AES). FIPS-197, U.S. DoC/National
Institute of Standards and Technology.

Rossum, G.V., Drake, F.L., 2006. The python language reference manual. Network Theory Ltd., Bristol, United Kingdom.
Somenzi, F., 2005. CUDD: CU decision diagram package. University of Colorado at Boulder, Release 2.4.1. URL: http://vlsi.
colorado.edu/∼fabio/CUDD/.

Steel, A., 2004. Allan Steel’s Gröbner basis timings page.Website. URL: http://magma.maths.usyd.edu.au/users/allan/gb/.
Stepanov, A.A., Lee, M., 1994. The Standard Template Library. Tech. Rep. X3J16/940095, WG21/N0482.
Toli, I., Zanoni, A., 2004. An algebraic interpretation of AES-128. In: Dobbertin, H., Rijmen, V., Sowa, A. (Eds.), AES Conference.
In: Lecture Notes in Computer Science, vol. 3373. Springer, pp. 84–97.

Wedler, M., Formal verification of multipliers (examples), private communication.

http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/
http://magma.maths.usyd.edu.au/users/allan/gb/

	PolyBoRi: A framework for Gröbner-basis computations with Boolean polynomials
	Introduction
	Boolean polynomials as sets
	Zero-suppressed binary decision diagrams
	State of the art
	Modelling digital components

	Algebraic basics
	Classical notions
	t-representations

	The PolyBoRi framework
	Polynomial arithmetic
	Monomial orderings
	Iterators

	Algorithmic aspects in higher level computations
	Normal forms
	Gröbner-basis
	Implementation tricks
	Criteria

	Gröbner proof system

	Benchmarks and practical results
	Conclusions
	Acknowledgements
	References

