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Implementing efficient inspection policies is much important for the organizations to
reduce quality related costs. In this paper, a particle swarm optimization (PSO) algorithm
is proposed to determine the optimal inspection policy in serial multi-stage processes. The
policy consists of three decision parameters to be optimized; i.e. the stages in which
inspection occurs, tolerance of inspection, and size of sample to inspect. Total inspection
cost is adopted as the performance measure of the algorithm. A numerical example is
investigated in two phases, i.e. fixed sample size and sample size as a decision parameter,
to ensure the practicality and validity of the proposed PSO algorithm. It is shown that PSO
gives better results in comparison with two other algorithms proposed by earlier works.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The organizations nowadays have to reduce costs through managing different aspects of their business operations to con-
tinuously improve products, services, and processes. They must satisfy the customers’ needs and expectations to survive in
the severe competitive environment. Since quality of services and products is one of critical factors that significantly affects
customers’ satisfaction, developing efficient quality systems is then very important for organizations.

According to Emmons and Rabinowitz [1], implementing a quality system is expensive and requires valuable resources of
the organization. Moreover, the products and production systems become more and more complex with a larger set of failure
possibilities. As the organizations invest large amounts in such systems, implementing an efficient inspection strategy is of
much importance to reduce quality related costs. Therefore, the quality economics is a major issue for the organizations.

Many organizations establish inspection systems as a tool to achieve quality. However inspection is an inferior way of deal-
ing with quality problems, but the benefits of quality improvement are superior to any inspection scheme for many cases [2].
Identifying an efficient inspection policy has economic relevance, as adopting different inspection policies will result in dif-
ferent costs. The inspection policy may affect the production process in different stages, thus inspection only in the last stage
may cause to non-conformance products, waste resources, and incur penalty costs because of customer dissatisfaction, losing
market share, etc. Therefore, a cost trade-off is necessary in selecting the optimal inspection policy [2]. On the other hand,
subjecting a larger product fraction to inspection, or tightening the acceptance limits, will normally lead to a higher product
quality, but will result in higher costs of inspection, scrap, and rework [3]. Therefore, establishing an efficient economic
inspection policy is desired to balance these effects. The policy should ensure the required output quality while minimizing
total inspection cost. The total inspection cost comprises the cost of all inspected units and the cost incurred by defective units
detected at any stage or eventually at the delivery point. Such problem is called a multi-stage inspection problem.
. All rights reserved.
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Traditionally, the multi-stage inspection problem consists of a decision schedule in which some manufacturing stages re-
ceive full inspection and the rest none [4]. However, the problem is more complicated in a real serial multi-stage processing
environment. In this case, three parameters are decided as the followings:

1. Whether inspection should be performed after each stage of the process or not.
2. The acceptance limits for each inspection station, i.e. tolerance of inspection.
3. The degree of inspection or size of sample to inspect.

Thus, the problem is to find the most efficient combination of three above decision parameters minimizing the total cost
of inspection. The total inspection cost clearly depends on the number of inspection occurred in the production process and
the number of defect products delivered to customers. In current research, a particle swarm optimization (PSO) algorithm is
proposed to optimize such multi-stage inspection problem in which all three mentioned decision parameters is considered.

The paper is organized as follows: first, the previous works on inspection optimization problem is reviewed in Section 2.
Then, the optimization problem in current work is described and formulated in Section 3. The solution algorithm based on
PSO is introduced in Section 4. Section 5 illustrates application of the proposed algorithm in a numerical example and pro-
vides discussion on the results. The paper finally ends up in Section 6 with conclusions and some hints for future research.
2. Literature review

The process quality improvement using appropriate optimization methodologies has been a continual research endeavor
[5]. It has been focused and investigated from different viewpoints in several previous works. Researchers have either ap-
plied exact solution approaches such as dynamic programming and integer programming, or approximate methods.

It has been demonstrated in early studies that for unconstrained systems and linear cost functions the optimal inspection
policy at each of the inspection stations installed is 100% inspection Lindsay and Bishop [6] and White [7]. In more recent
works in the field, Shiau [8] has assumed the limited number of inspection stations of each inspection station class, for solv-
ing the allocation problem in an advanced manufacturing system with multiple qualities characteristic. A unit cost model
has been introduced considering the manufacturing capability, inspection capability, and tolerance specified concurrently
for a multiple quality characteristic product. The situation of unbalanced tolerance design has been also investigated. Since
determining the optimal inspection allocation plan seems to be impractical as the problem size becomes large, two decision
criteria, i.e. sequence order of workstation and tolerance interval, have been employed separately to develop two different
heuristic solution methods. The case has been further investigated by Shiau [9] to find a feasible inspection allocation plan
where the specified tolerance of each quality characteristic varies from time to time according to the changing requirements
of various customers.

Rau and Chu [10] have discussed inspection allocation problems for serial production systems with two types of worksta-
tions: attribute data and variable data, which better represents real practice. Three possibilities for the treatment of detected
nonconforming units, namely, repair, rework and scrap have been considered. They have developed a profit model for opti-
mally allocating inspection stations and introduced a heuristic solution method. In addition, Rau et al. [11] have developed a
mathematical model considering layered fabrication to find the optimal solution for allocating inspections in re-entrant pro-
duction systems. Workstations of variables data and inspections of quality characteristics measurement have been modeled
and repair, rework, and scrap considered as three possibilities for the treatment of detected non-conforming units. Rau and
Cho [12] have also addressed this problem and a genetic algorithm approach has been taken as the solution approach.

Wang [13] has focused on a production system subject to random deterioration where product inspections are performed
only at the end of the production run. A mathematical formula representing the expected total cost per item has been de-
rived as the objective function for such a system, where the in-control period follows a general probability distribution. Then,
minimizing this objective function has been considered through the joint optimization of the production run length and
product inspection policy. In another study, Wang and Yeh [14] have proposed an approximate production and inspection
solution under the condition that the optimal inspection policy is equally-spaced. That is, an approximate production run
length and number of inspections are obtained. The study has further investigated this approximate solution demonstrated
that how to utilize it to obtain the real optimal solution more efficiently.

As a comprehensive inspection policy for serial multi-stage processes, considering all three previously mentioned inspec-
tion parameters concurrently will result in a complex joint optimization problem. To our knowledge, such an optimization
problem has been only studied by Van Volsem et al. [15] and Azadeh and Sangari [16]. However, they both have considered
the degree of inspection, i.e. size of sample, as a constant value not a decision variable to optimize.

Van Volsem et al. [15] have embedded a discrete event simulation to model the serial multi-stage process and introduced
a genetic algorithm for numerical optimization purposes. They considered three inspection types in each work station, i.e. no
inspection, sampling with a constant sample size, and full inspection. Azadeh and Sangari [16] have proposed another solu-
tion algorithm for the problem using simulated annealing (SA).

Table 1 provides a comprehensive overview of previous works in the field and main characteristics of each model.
In this paper, the problem of inspection optimization in serial multi-stage processes is expanded by including the size of

sample as another decision parameter in the optimization model. Then, a solution algorithm using particle swarm optimi-



Table 1
Comprehensive overview of previous works in the field.

Author(s) Main characteristics of the model

Lindsay and Bishop [6] and White [7] � Optimal policy at each inspection station
� Unconstrained systems
� Linear cost functions

Klimberg et al. [21] � A two-objective, zero-one programming model for inspection allocation problem

Villalobos et al. [22] � Automated inspection strategies for production of printed circuit boards

Taneja and Viswanadham [23] � Inspection location problem with manufacturing and scrapping and penalty cost
� Genetic algorithm as solution approach

Bai and Yun [24] � Optimal inspection level in a serial multi-stage production system
� Location of limited number of automatic inspection
� Exact solution algorithm for small size problems
� A heuristic method based on backward dynamic programming as solution approach for large size

problems

Barad and Braha [25] � Optimal acceptance limits
� Multi-stage process
� Inspection is done at each production stage

Emmons and Rabinowitz [1] � Assignment and scheduling of inspection tasks

Heredia-Langner et al. [4] � Highly constrained multi-stage inspection problem
� All stages must receive partial rectifying inspection
� Real-valued genetic algorithm as solution approach

Kogan and Raz [26] � N-stage production system with inspection activities
� Problem of managing the intensity, sequence and timing of inspection
� Minimizing sum of inspection costs and penalties caused by undetected defects

Shiau [8] � Inspection allocation problem in an advanced manufacturing system
� Limited number of inspection stations
� Multiple quality characteristic
� Unit cost model and unbalanced tolerance design
� Heuristic solution methods

Shiau [9], Rau and Chu [10] � Adding time dependency to tolerance design in Shiau [8]
� Inspection allocation problem
� Serial production system
� A heuristic solution method

Rau et al. [11] � Inspection allocation problem
� Re-entrant production systems
� Mathematical modeling considering layered fabrication

Wang [13] � A production system subject to random deterioration
� Inspections only at the end of the production run
� Mathematical formulation of expected total cost per item
� Joint optimization of production run length and product inspection policy

Freiesleben [2] � Inspection allocation problem
� Uniform defect rates
� Genetic algorithm as solution approach

Van Volsem et al. [15] � Serial multi-stage process
� Joint optimization of inspection type and acceptance limits with a fixed sample size
� Genetic algorithm as solution approach and Discrete event simulation

Rau and Cho [12] � Genetic algorithm as solution approach for Rau et al. [11]

Wang and Yeh [14] � An approximate production and inspection solution
� Assuming that optimal inspection policy is equally-spaced

Azadeh and Sangari [16] � Simulated annealing as solution approach for Van Volsem et al. [15]
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zation (PSO), a metaheuristic method, is proposed. The efficiency and performance of the proposed algorithm is evaluated
through comparing the results obtained from algorithms introduced by Van Volsem et al. [15] and also Azadeh and Sangari
[16].
3. Problem statement

Consider a production process consisting of n consecutive process stages illustrated in Fig. 1. The products travel sequen-
tially from stage 1 to n and the output of each process stage is the input for the next one. Thus, the last stage is dependent on
the outputs of all former stages. The main benefit of inspection is that the downstream operations are not applied to already
defective products, resulted in saving cost and preventing a congestion of the production flow.



Fig. 1. The serial multi-stage process.
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In such a process, the inspection system consists of m inspection stations such that m 6 n. At each stage, a decision should
be made of the inspection extent. Two inspection types are assumed:

1. No inspection (N): the products go to the next stage immediately.
2. Inspection (I): a number of products (may be all of them) in the batch are inspected.

In the first inspection type, there is no more decision; but in the second type the decision should be made of inspection
limits or products specification. For the sampling inspection, two other decision variables should be also identified, the sam-
ple size and acceptance number. Every product identified as defective through inspection should be reworked. It is further
assumed that no inspection mistakes such as false reject or false accept errors occur.

To represent the mathematical model of the problem, it is assumed that there is a batch of K products and three types of
inspection, namely no inspection (N), full inspection (F), and sampling (S). It is also assumed that Xi represents the decision
about the extent of inspection or inspection type in stage i, i.e. Xi e {N, F, and S}. Where the decision is of sampling type, two
more parameters are included: Si as the sample size and ai as the acceptance number for stage i, i e {1,2 . . . ,n}. If the number
of bad items in the sample of stage i (bi) is greater than ai, then the batch is rejected. In this case, a full inspection of the
rejected batch is performed consecutively in the same stage.

In current research, the product dimension is considered as the quality characteristic for the serial n-stage process and
tested at each inspection stage. The inspection limits for each stage i are as the followings:

LILi: lower inspection limit for stage i, and
UILi: upper inspection limit for stage i.

Assuming the above notations, a product in stage i is considered as defective if the dimension value of this product lies
outside the interval [LILi, UILi]. It is obvious that the lower product specification (LPS) and upper product specification (UPS)
are equivalent to LILn and UILn, respectively.

Therefore, the total inspection cost (TIG) for every inspection policy consists of three cost components as the followings:

1. Inspection cost in stage i (ICi): the cost of doing inspection, test or analysis in stage i.
2. Rework cost in stage i (RCi): the cost of reworking products which are identified as defective through inspection or replace

it with a non-defective product in stage i, and
3. Penalty cost (PC): the cost of delivering bad products to the customer. If the dimension value of the final product which is

delivered to the customer lies outside of [LPS, UPS], then a penalty cost incurs.

In addition, unit inspection cost in stage i, unit rework cost in stage i, and unit penalty cost are represented by ici, rci, and
pci, respectively.

It is obvious that as the product flows to next stages the rework cost increases, i.e. for i > j we have rci < rcj. Since it is not
economical that inspection be more expensive than rework, it is assumed that ici < rci Thus, the total inspection cost can be
determined with Eq. (1):
TIC ¼ IC þ RC þ PC: ð1Þ
In other words, the total cost for an inspection policy is given by summation of total test and analysis cost, total rework cost,
and total penalty cost where:
IC ¼
Xn

i¼1

ICi; ð2Þ

RC ¼
Xn

i¼1

RCi: ð3Þ
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According to Eq. (2), total cost of performing inspection is calculated by adding the cost of performing inspection in all n
stages of the process. Such a statement can be also given for Eq. (3) where total rework cost of an inspection policy is cal-
culated. Moreover, ICi and RCi, the inspection and rework cost in stage i, are calculated by the following equations:
ICi ¼ f0; if Xi ¼ N; ic�i K; if Xi ¼ F or ðXi ¼ S and bi > aiÞ; ic�i si; if Xi ¼ S and bi 6 aig; ð4Þ
RCi ¼ f0; if Xi ¼ N; rc�i di; if Xi ¼ F or ðXi ¼ S and bi > aiÞ; 0; if Xi ¼ S and bi 6 aig; ð5Þ
where di is number of defective items in stage i. Eqs. (4) and (5) determine the related costs in three following conditions:
1. No inspection in stage i.
2. Full inspection in stage i or sampling inspection, where the number of bad items is more than the acceptance number.
3. Sampling inspection in stage i, where the number of bad items is less than the acceptance number.

The total penalty cost is also formulated as in Eq. (6):
PC ¼ pc�i dn; ð6Þ
where dn is number of defective final products in the batch.
To have a better understanding, consider no inspection (N) as a feasible inspection policy to the problem. It is clear that

adopting this policy results in minimum inspection and rework cost, but also yields maximum penalty cost. On the other
side, full inspection (F) in all stages, leads to minimum penalty cost and causes that total inspection and rework cost to
be maximized. These two conflicting inspection policy results in minimum value for each of the cost constituents separately.
However, we should find an inspection policy which minimizes TIC as an aggregate cost function. Such a policy is considered
as the optimal solution and also called an efficient inspection policy.

As described before, every inspection policy comprises a set of decision parameters: the number and location of inspec-
tion stations or inspection types, i.e. Xi e {N, F, and S}; the rigor of inspection or inspection limits, i.e. LILi and UILi for each
i e {1,2, . . . ,n}; and inspection extent, i.e. si and ai. We consider ai as a fixed parameter equal to 1, herein. Thus, the optimal
inspection policy found by our proposed algorithm will offer optimal value for the following decision parameters:

1. Xi e {N, F, and S}.
2. LILi and UILi for each i e {1,2, . . . ,n}, and
3. Si.

A solution algorithm is proposed to find the optimal inspection policy including above inspection parameters to obtain
the minimum total inspection cost.

4. Solution algorithm

It is clear that a serial process with n stages offers 2n possible inspection combinations (whether to inspect or not in each
stage). The complete enumeration of all combinations becomes more prohibitive as the number of stages increases. There-
fore, application of metaheuristic methods will be more efficient to develop a solution algorithm as they need limited com-
putational effort while yielding a nearly optimal solution. Herein, the solution algorithm is proposed based on PSO.

4.1. Particle swarm optimization

Particle swarm optimization (PSO) is an adaptive population based and derivative-free method, which is basically de-
signed for continuous space optimization developed in 1995 [17]. It is inspired of social behavior of bird flocking and fish
schooling. PSO is recently applied in many fields because of its simple structure with few numbers of parameters, which sim-
plifies coding of the algorithm.

Suppose a swarm of birds searching for food in a space where there is only one piece of food available. Each particle’s
location in the multi-dimensional problem space is a feasible solution to the problem, which is evaluated with a fitness func-
tion. A particle in the swarm flies through the space near to the best own flying experience and swarm’s flying experience. In
other word, the strategy of the particle to find the food is changing the velocity to fly near the best place that has already
experienced. PSO actually uses both aspects of cooperation and competition among the individuals in the population, which
means it combines local and global search to reach the global optima. The distance of the particles to the food is measured by
the pre-determined fitness function in all iterations. The particles in a local neighborhood share their information of their
‘‘best’’ positions, and then use the information to adopt their own velocities, and thus update their positions. In fact, each
particle in this swarm has two kinds of intelligence, namely self-intelligence and social-intelligence. It is expected that
the particles move towards better solutions in the feasible space.

PSO is a modern evolutionary algorithm comparable with genetic algorithm (GA). It is similar to GA in some aspects, such
as starting with a randomly generated population (solutions), having a fitness function to evaluate the solutions, and using
random techniques to update the population in all iterations. However in PSO, unlike GA, updating the particles depends on
their memory and so does not have special operators [18]. It is also important to notice: ‘‘It has a more global searching abil-
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ity at the beginning of the run and a local search near the end of the run. Therefore, while solving problems with more local
optima, there are more possibilities for PSO to explore local optima at the end of the run’’ [19].
4.2. Basic PSO algorithm

In the literature of PSO, population is called swarm and each individual solution is called particle. The algorithm starts
with a random population and then searches the feasible space for optima by updating the particles.

As mentioned before, self-intelligence is one of the critical parameters of PSO, which means each particle keeps its best
position. The algorithm uses this as a factor for speed adjusting which is similarly relative to the global best position. In other
words, while scanning the surface by its experiences, each particle sees the global best position and then move on the next
iteration. So if the particle is far from the global best position, a higher change in its speed and direction is expected. The
factors used in the algorithm are as the followings:

xi
k: position of ith particle in kth iteration.

v i
k: velocity of ith particle in kth iteration.

pi
k: the best ever position of ith particle from start to in kth iteration.

pg
k: global best position of swarm from start to in kth iteration.

The position of particle is updated in all iterations with following formula:
xi
kþ1 ¼ xi

k þ v i
kþ1; ð7Þ
while the velocity is updated with:
v i
kþ1 ¼ xk � v i

k þ c1r1ðpi
k � xi

kÞ þ c2r2ðpg
k � xi

kÞ: ð8Þ
In the above formula, r1 and r2 are random numbers distributed uniformly between 0 and 1. These two parameters mod-
erate the effect of pi

k and pg
k on velocity. c1 and c2 are constant values representing the degree of importance of pi

k and pg
k . For

example, if c2 is set greater than c1, the global best position has greater degree of importance. xk is inertia of the particle
which is to keep the particle moving and reacts on the capability of overall balance and part searching [20]. xk can be set
as a constant value or a variable changing in all iterations.

The general algorithm of basic PSO is shown in Fig. 2. As it can be seen from the flowchart, implementing the algorithm to
the optimization problems is so easy with respect to other similar techniques. In current research, it is used to construct a
solution algorithm for the inspection optimization problem.
4.3. Proposed solution algorithm

As previously described, there are both continuous and discrete variables in the inspection optimization problem. Integer
variables are those which determine what kind of inspection should be done in each stage (Xi e {N, F, and S}) and also the
sample size (Si). In addition, tolerance of inspection is the continuous variable of the problem (LILi and UILi for each
i e {1,2, . . . ,n}). It determines the acceptable range for the dimension of parts to be inspected.

There are some challenges for solving such problem. Controlling these variables, especially the mentioned continuous
variables, is much difficult because their ‘‘feasible’’ interval is absolutely tiny. The term ‘‘feasible’’ herein means that the
range for inspection tolerance has a reasonable limit. For example, it is not reasonable to specify the tolerance ±5 for a part
with the length of 10. Thus, it is necessary to tune the PSO parameters in a way that the solutions in all iterations not escape
from a particular number. If the parameters are not tuned fined, the solutions may escape from this number and disturb the
problem solving procedure. Moreover, this number is not pre-determined; it is inferred from the nature of the problem.
Therefore, the decision maker can tune a fine number for the PSO parameters after getting insight to the problem. For the
current problem, it is inferred that the tolerance should not be so far from 2 + e.

Before describing how the initial solution is generated, let us discuss the solution method a bit more. As mentioned be-
fore, three different situations may happen in each process stage which is shown by Xi: F (full inspection), S (sampling), and N
(no inspection). A straight way to solve the problem is to map these integer variables to a continuous range of 0 to 15 � e
where e is a small positive value. Then, one of the following rules will be applied for determining the value of Xi:

� If Xi P 0 and Xi < 5, then no inspection is done.
� If Xi P 5 and Xi < 10, then sampling inspection in done.
� If Xi P 10, then full inspection is done.

As stated before, the sample size has been treated as a constant value not a decision parameter in previous works. How-
ever, it is another integer variable herein and should be optimized with the solution algorithm. From the operator’s point of
view, if sampling inspection is adopted, i.e. Xi = S, then he should select si parts randomly and check them. We set the initial



Fig. 2. Flow chart for basic PSO.
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value of si equal to 50 in the solution procedure (equal to its constant value in previous works), but it will change during the
algorithm iterations.

Furthermore, for the standard continuous variables, i.e. the tolerance of inspection which has been described earlier, the
‘‘Floor’’ operator is used to map them to the integer.
4.3.1. Generating an initial solution
To generate an initial solution, a uniformly distributed function between 0 and 15 is applied for Xi. After the type of

inspection for the particles is determined, the sample size is set at 50 for all of them. As the sample size is variable, it will
change in next iterations.

To determine the tolerance of inspection, a function like 2 + e is defined in which e is of uniform function between �0.5
and 0.5.

After determining all the necessary parameters, then all solutions will be evaluated with a fitness function. The current
solution for all of the particles is set to the best position of the particle and the best solution is set to the best global.
4.3.2. Parameter setting and updating the particles
In this phase, the most important thing is to set the parameters appropriately. Although xk is a constant value in basic

PSO, but we can update it through the next iterations. For this purpose, we have:
xk ¼ xmax �
xmax �xmin

kmax

� �
� k ð9Þ
in which xmax and xmin are the maximum allowable inertia and kmax is the maximum number of iterations. The inertia will
be updated through the iterations such that in early iterations has the greater value and at the end has the minimum value.
It is owing to the fact that in early iterations it is needed to search more and in last iterations it is needed to diminish the
steps.

The parameters xmax, c1, and c2 for LILi and UILi, are set at a very small value, for example 0.05, because the large number
for coefficients may cause diversity in newly generated solutions. Although another straight method is to widen the solution
space.
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5. Discussion and analysis

To ensure that the proposed algorithm works properly and yields efficient solutions, a numerical example is investigated
and the obtained results are discussed in two phases.
5.1. Numerical example characteristics

The required data the problem characteristics are adopted from the numerical example discussed in Van Volsem et al.
[15]. Table 2 shows the characteristics of this problem.

This serial multi-stage process consists of six stages. Production in stages 1, 2, 4 and 5 follows normal distributions and in
stages 3 and 6 keeps uniform distributions. Parameter 1 is the mean value for normal distributions and is the lower bound
for uniform distributions. The second parameter also states the standard deviation for normal distributions and the upper
bound for uniform ones. The expected value of the product dimension at each stage is presented in the fifth column. The last
two columns of the table show the inspection, test or analysis cost and rework cost at each stage, respectively. It is obvious
that when a product flows in the system from stage i to j, the cost of rework then increases and touches the maximum
amount at final stage of the process.

The penalty cost of delivering a defective product to the customer is 3000 in this case and the acceptance number in a
sample (ai) is set at 1. A batch with 1000 products is also assumed. The final product will be accepted if its dimension lies
in the interval [58,62].
5.2. Sample size as a fixed value

First, the problem is solved with a fixed sample size. Similar to the studies by Van Volsem et al. [15] and Azadeh and San-
gari [16], the sample size is set at 50. The results of 10 runs of the algorithm are given in Table 3.

The final result after several runs of the algorithm is NXFNXF. According to this string, no inspection is planned for stages 1
and 4 and full inspection is planned for stages 3 and 6. Moreover, there is not a unique decision for stages 2 and 5. It is de-
noted by X where X e {N, S} based on the results given in Table 3.

The general answer from the proposed algorithm is rather different from the results obtained from two earlier works in
which the string of NNFXXF is the optimal answer. However, the algorithm developed herein based on PSO results in a better
answer as it yields a smaller objective value. The average total inspection cost (TIC) as the objective value obtained from the
proposed solution algorithm after several runs is 123,075, while this measure for the genetic algorithm proposed by Van Vol-
sem et al. [15] and simulated annealing approach proposed by Azadeh and Sangari [16] is 125975.8 and 125747.4, respec-
tively. Therefore, PSO gives better results.
Table 2
Characteristics of the numerical example.

Stage no. Distribution Parameter 1 Parameter 2 Expected value Inspection or test cost Rework cost

1 Normal 10 0.3 10 1 50
2 Normal 10 0.5 20 1 100
3 Uniform 8.5 11.5 30 2 200
4 Normal 10 0.1 40 1 400
5 Normal 10 0.5 50 1 800
6 Uniform 9 11 60 2 1600

Table 3
Obtained results for the numerical example using proposed solution algorithm where sample size is a fixed value (si = 50).

Number of run Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Objective value

1 N N F1.7692 N N F2.0228 120,500
2 N N F1.8852 N N F1.9877 123,800
3 N N F1.9173 N S1.9656 F1.9811 120,750
4 N S1.247 F1.8195 N N F1.8692 123,550
5 N N F1.9545 N S1.7386 F1.9880 121,850
6 N N F1.8303 N N F2.0477 126,600
7 N N F1.8076 N N F2.0181 125,400
8 N S1.4494 F1.7916 N N F1.9794 123,250
9 N S1.4994 F1.7687 N N F1.9901 122,850
10 N N F1.9155 N N F2.0258 122,200

N: no inspection; Fx: full inspection with tolerance of x; and Sx: sampling inspection with tolerance of x.



Table 4
Obtained results for the numerical example using proposed solution algorithm where sample size is a decision parameter.

Number of run Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Objective value

1 N N S1:2783
92

N N F1.9873 120,684

2 N N S1:3300
98

N N F2.0035 118,096

3 N N S1:2234
97

N N F1.9937 123,094

4 N N S1:1703
84

N N F2.0315 118,668

5 N N S1:5563
97

N N F2.0532 118,094

6 N N S1:2435
92

N N F2.0103 121,394

7 N S1:2547
81

N S1:4504
63

N F2.0241 119,844

8 N S1:1369
78

N S1:304
64

N F2.0198 122,442

9 N S1:3110
96

N S1:1158
61

N F2.9835 120,457

10 N S1:2547
80

N S1:2041
73

N F2.0014 119,153

N: no inspection; Fx: full inspection with tolerance of x; and Sx: sampling inspection with tolerance of x and sample size of s.
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It should be noted that the proposed algorithm has a difference with the two earlier models. They have calculated the
ratio of defected items based on the distribution function of production, but in the proposed PSO method the number of de-
fected products is calculated based on defected number of parts that produced via simulation.

5.3. Sample size as a decision variable

At the second phase, the primary model is extended with a new decision parameter. The numerical problem is then
solved with a variable sample size. The results of 10 runs of the algorithm are shown in Table 4.

As given in Table 4, the optimal solution is changed to NXXXNF where X e {N,s}. According to the results, no inspection is
the optimal decision for stages 1 and 5. In addition, full inspection is planned for the sixth stage.

Furthermore, it is realized that the inspection policy for stage 2–4 denoted by XXX will be of two sets: NSN (solutions 1–6
in Table 4) and SNS (solutions 7–10). In other words, if no inspection is planned for stage 2 the inspection in stage 3 will be
then of sampling type and no inspection is planned for stage 4. Moreover, where inspection in stage 2 is of sampling type no
inspection is then happened to stage 3. In this case, stage 4 also requires sampling inspection. From a theoretical point of
view, when the weight of global optimum in the PSO relations are greater or equal to the local optimum, the first solution
set is then obtained, but when the coefficients for local optimum is significantly greater than the coefficients of the global
optimum, the second set is obtained. However, the objective values for both sets of solutions are quite close to each other.

Considering the sample size as a decision parameter to be optimized reduces the average of objective function value (TIC)
to 120192.6 and leads to a better performance. The full inspection is not needed in third stage in this scenario. Moreover, the
sample size of 50 is not enough. However, the last stage needs full inspection in all of the solutions.

Note that it is reasonable that the inspection in the last stage is done by the tolerance of 2. The tolerance in the last stage
is clearly close to 2.

6. Conclusions

As inspection systems requires valuable organizational resources and incurs cost to the organizations, it is important to
find an efficient and economical inspection policy to implement. This paper has studied the optimal inspection policy for
inspection in a serial multi-stage process. Three decision components have been assumed for such policy: determining
the stages in which inspection should occur and type of inspection (full or sampling), tolerance of inspection (acceptance
limits), and the sample size where sampling inspection is decided. The product dimension is considered as the quality char-
acteristic to be tested at the inspection stages as the quality characteristic for the considered serial n-stage process.

It is clear that a process including n serial stages offers 2n possible inspection combinations. As the number of stages in-
creases, complete enumeration of all combinations becomes more prohibitive. Therefore, application of metaheuristic meth-
ods is more efficient to develop a solution algorithm, as they need limited computational effort while yielding a nearly
optimal solution. In this paper, a solution algorithm based on PSO has been developed to achieve the optimal inspection
policy.

The algorithm has been investigated in two phases using a numerical example adopted from earlier works. In the first
phase, the size of sample to inspect has been set at a fixed value similar to previous works. Secondly, the model has been
extended and the sample size has been considered as a decision parameter which should be optimized. The obtained solu-
tions in both cases have validated the practicality and efficiency of the algorithm. Moreover, it has been also proved that the
proposed solution approach using PSO gives better quality results in comparison with previous algorithms considering total
inspection cost as the performance measure.

The proposed approach is especially helpful for production and quality managers dealing with the problem of allocating
inspection facilities in sequential processes, such as the assembly lines, and provides the practitioners with an economical
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inspection policy. The results can be used as a basis for further exploration and discussion by the management to make the
final decision regarding the inspection system.
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