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a b s t r a c t

In this paper, the authors extended the derivation to the nonlinear Schrödinger equation
in two-dimensions, modified by the effect of non-uniformity. The authors derived several
classes of soliton solutions in 2 + 1 dimensions. When the solution is assumed to depend
on space and time only through a single argument of the function, they showed that the
two-dimensional nonlinear Schrödinger equation is reduced either to the sine-Gordon
for the hyperbolic case or sinh-Gordon equations for the elliptic case. Moreover, the
authors extended this method to obtain analytical solutions to the nonlinear Schrödinger
equation in two space dimensions plus time. This contains some interesting solutions such
as the plane solitons, the N multiple solitons, the propagating breathers and quadratic
solitons. The authors displayed graphically the obtained solutions by using the software
Mathematica 5.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The Benjamin–Feir instability (BFI) corresponds to the loss of stability of Stokes nonlinear travelling waves to sideband
perturbations [1,2]. An alternative treatmentwhich leads to the same results, based on a nonlinear evolution equation for the
envelope of the Stokes wave was given by [3–5]. A further treatment of the BFI mechanism of the two-dimensional Stokes
waves in deep water was given by Stuart and DiPrima [4]. They used the method of the nonlinear Schrödinger equation
(NLSE) that allows the analysis of the sideband perturbations.

The theoretical prediction of the Benjamin–Feir sideband instability is a breakup of a nonlinear wave, spreading the
energy over a number of small-amplitude waves eventually. These predictions were found to be in remarkable agreement
with their experimental results. This indicates that the monochromatic gravity waves – produced in the experiment –
transfers energy to a wavenumber adjacent to that of the carrier wave by the nonlinear interactions [1,2]. Benjamin–Feir
observed what was apparently a disintegration of a mechanically produced finite-amplitude deep water wave. They
interpreted that this disintegration (or breakup) is due to a sideband instability of the finite-amplitude wave. Based upon
linear stability analysis, they described further the mechanism as a resonant coupling between the primary wave train with
a pair of wavemodes at sideband frequencies andwavenumbers fractionally different from both the fundamental frequency
and wavenumber. With the identification of solitons, it has been conjectured that the final state of an unstable Stokes wave
would be one ormore solitons (which is further illustrated in thiswork). In consequence of coupling, the energy is transferred
from the primary wave to the sidebands at a rate that can increase exponentially in either time or distance as the nonlinear
interactions develop. The general conclusion is that finite-amplitude water waves are unstable [6,7].

Although the technique as well as the experiment of Benjamin–Feir is quite remarkable, the discovery of the BFI led to a
question regarding the possible end-states of a nonlinear wave train undergoingmodulational instability. This questionwas
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Fig. 1. (a) The numerical solution for the sinh-Gordon equation in the plane with C = 1 in the interval [−1, 0], ϕ[−1] = 1.5 and ϕ′
[−1] = 0.3. (b) The

one soliton solution for the sinh-Gordon equation in the plane with C = 1 in the interval [−1, 0] and ζ0 = −0.08.
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Fig. 2. (a), (b) The one soliton solution for the sinh-Gordon equation in the plane with C = 1 in the interval [−10, 0], ζ0 = −0.1; −1.

answered by an even more remarkable experimental and computational work of Yuen and Lake [5] and Lake et al. [8]. They
have shown that the sideband instability in the evolution of a nonlinear wave train does not lead to either a disintegration
of the wave train (as observed by Benjamin–Feir) or a loss of coherence (as suggested by Benney) [9]. Instead, it has been
confirmed by the experimental work of Lake et al. [8] that unstablemodulations grow to amaximum limit and then subside.
The energy is transferred from the primarywave train to the sidebands for a definite period of time, then it is recollected back
into the primarywavemode. Their experimental findings have also been verified by numerical computations using the NLSE
with unstable perturbations. Also, numerical computations indicated that the longtime evolution of an unstable wave train
leads to a series of modulation-demodulation cycles in the absence of viscosity. This striking feature of the modulation-
demodulation cycles involved in the evolution of an unstable wave train is known as the Fermi-Pasta–Ulam recurrence
phenomenon. Theworks of Yuen and Lake [5] and Lake et al. [8]were accepted as a conclusive evidence of the Benjamin–Feir
modulational instability, the development of solitons, and the Fermi-Pasta–Ulam recurrence phenomenon [6]. The critical
feature of this instability is that the class of perturbations has awavelengthwhich is different from that of the basic travelling
wave. A rigorous proof of the BFI for the Stokes’ travelling wave, when the fluid depth is sufficiently large, has been given
in [10,11]. For interfacial waves, without a basic velocity difference, a comprehensive analytical treatment of the BFI is given
in [12], with numerical results for large amplitudes in [13]. Numerical results on the BFI of interfacial gravity waves with a
velocity difference are given in [14].

In general, the effect of non-uniformity (both temporal and spatial) on the development of a modulated wave was
studied by using a multiple scales perturbation technique in one-dimension [15] and we found the solution of the NLSE
in one-dimension. Moreover, we extended the derivation to the NLSE in two-dimensions, which is modified by the effect
of non-uniformity. We applied the function transformation method on the two-dimensional NLSE (which was transformed
to either sine-Gordon or sinh-Gordon equations), which leads to a general equation which depends only on one function ζ
and can be solved. We obtained the general solution of the equations in ζ which leads to a general soliton solution of the
two-dimensional NLSE. The two-dimensional NLSE was transformed to a sinh-Gordon equation for the elliptic case and to a
sine-Gordon equation for the hyperbolic case. It contains some interesting specific solutions such as a plane solitons, the N
multiple solitons, the propagating breathers and the quadratic solitons which contained the circular shape, elliptical shape
and hyperbolic shape solitons. As an illustration, we used Mathematica 5 to solve the original problem. We started from
the governing partial differential equation (PDE) and by using Mathematica 5 we obtained soliton solutions. This solution is
in good agreement with the analytical solutions. We displayed graphically the obtained solutions by using Mathematica 5
(Figs. 1–4).

This paper is organised as follows: There is an introduction in section one. In section two, the basic equations and the
boundary conditions governing the problem togetherwith themultiple scalemethod are given. The effect of non-uniformity
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Fig. 3. (a) The numerical solution for the sine-Gordon equation in the plane with C ′
= 1 in the interval [0, 1],Ψ [1] = 0.5 and Ψ ′

[1] = 0.1. (b) The one
soliton solution for the sine-Gordon equation in the plane with C ′

= 1 in the interval [0, 1], and ζ0 = −0.02.
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Fig. 4. (a), (b) The one soliton solution for the sine-Gordon equation in the plane with C ′
= 1 in the interval [−10, 10], ζ0 = −0.1; −1.

on the development of a modulated wave is briefly illustrated by using a multiple scales perturbation technique in section
three. We extend the derivation to the NLSE in two-dimensions, modified by the effect of non-uniformity and we discuss
the soliton stability for the soliton solutions. In section four, we obtain the general soliton solutions to the standard NLSE in
two-dimensions in both elliptic and hyperbolic cases. Finally, the paper ends with a conclusion in section five.

2. Problem formulation (non-uniformity case)

Van Duin [15] considered a fixed Cartesian coordinate system Oxz. The z-axis points vertically upwards, with z = 0
corresponding to the undisturbed free water surface. The x-axis is aligned with the propagation direction of a Stokes
wavepacket. Since the fluid motion is irrotational, incompressible and deep with respect to the characteristic wavelength,
a velocity potential φ(x, z, t) satisfying Laplace’s equation

φxx + φzz = 0, −∞ < z < ζ, (1)

where ζ (x, t) denotes the position of the undulating free surface. The boundary conditions at an infinite depth reads
∂φ

∂x

2

+


∂φ

∂z

2

→ 0 at z → −∞. (2)

At the air–water interface, z = ζ (x, t), we have the conditions

∂φ

∂z
=
∂ζ

∂t
+
∂φ

∂x
∂ζ

∂x
, (3)

2gζ + 2
∂φ

∂t
+


∂φ

∂x

2

+


∂φ

∂z

2

= 0. (4)

He considered the motion of a Stokes wavepacket in the two-dimensional water waves of infinite depth. The evolution of a
packet is described by two PDEs: the NLSE with a forcing term and a linear equation, which is of either elliptic or hyperbolic
type depending onwhether the group velocity of a Stokes wavepacket is less than or greater than the velocity of long gravity
waves [16,17].
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3. Two-dimensional NLS equation

We study the effect of non-uniformity (both temporal and spatial) on the development of a modulated wave in two-
dimensions. Using a multiple scales perturbation technique, we derive the NLSE in two-dimensions, modified by the effect
of non-uniformity. As a preliminary it will be useful to consider the equation

∂2Ψ

∂t2
− d2


∂2Ψ

∂x2
+
∂2Ψ

∂y2


+ b2Ψ + aΨ 3

= 0. (5)

This again turns out to be a representative model of weakly non-linear, dispersive waves in two-dimensions, when a small
parameter ε is a measure of the amplitude of the wave, relevant slow variables are [18]

xn = εnx, yn = εny, tn = εnt. (6)

The phase function θ is defined by

∂θ

∂x
= l(x2, y2, t2),

∂θ

∂y
= m(x2, y2, t2),

∂θ

∂t
= −ω(x2, y2, t2), (7)

where l andm are the direction cosines of thewave vector along the x and y directions respectively. If θ is twice continuously
differentiable, which gives the compatibility relationship, these are related according to the consistency relation

∂ l
∂t2

+
∂ω

∂x2
= 0,

∂m
∂t2

+
∂ω

∂y2
= 0. (8)

The degree of non-uniformity, or modulation depth, is determined by the particular choice of the slow variables in Eq. (7).
As a solution of Eq. (5), we take

Ψ = ε

A (x1, x2, y1, y2, t1, t2) eiθ + c.c.


+ 0(ε3), (9)

then Eq. (5) becomes

− εω2Aeiθ − 2iωε2
∂A
∂t1

eiθ − ε3

2iω

∂A
∂t2

+ 2iA
∂ω

∂t2
−
∂2A
∂t21


eiθ + +εd2l2Aeiθ

− 2ild2ε2
∂A
∂x1

eiθ − d2ε3

2il
∂A
∂x2

+ 2iA
∂ l
∂x2

−
∂2A
∂x21


eiθ + εd2m2Aeiθ

− 2imd2ε2
∂A
∂y1

eiθ − d2ε3

2im

∂A
∂y2

+ 2iA
∂m
∂y2

+
∂2A
∂y21


eiθ + c.c.+ b2Aεeiθ + aε3


Aeiθ + Ae−iθ 3

= 0, (10)

sinceΨ 3
= ε3


A3e3iθ + 3A |A|

2 eiθ + 3A |A|
2 e−iθ

+ A3e−3iθ

. Equating the coefficients of terms powers θ in Eq. (10), we get,

for the first order, the term αε should vanish, and gives the dispersion relation

ω2
= b2 + l2d2 + m2d2. (11)

For the second order, the term αε2 should also vanish

ω
∂A
∂t1

+ ld2
∂A
∂x1

+ md2
∂A
∂y1

= 0,

then we have

∂A
∂t1

+ vl
∂A
∂x1

+ vm
∂A
∂y1

= 0, (12)

where vl =
ld2
ω

and vm =
md2
ω

are the group velocities of the wave packet along the x and y axes respectively. For the third
order, the term αε3 also should vanish

2iω

∂A
∂t2

+
ld2

ω

∂A
∂x2

+
md2

ω

∂A
∂y2

+
A
2ω

∂ω

∂t2
+

d2A
2ω

∂ l
∂x2

+
d2A
2ω

∂m
∂y2


+ d2

∂2A
∂x21

+ d2
∂2A
∂y21

−
∂2A
∂t21

= 3a |A|
2 A. (13)

Eq. (13) leads to

2iω

∂A
∂t2

+ vl
∂A
∂x2

+ vm
∂A
∂y2

+
A
2
∂vl

∂x2
+

A
2
∂vm

∂y2


+

d2 − v2l

 ∂2A
∂x21

− 2vlvm
∂2A
∂x1∂y1

+

d2 − v2m

 ∂2A
∂y21

= 3a |A|
2 A. (14)
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We study the stability of the so-called fundamental wave in two-dimensions, using A0 instead of A. This depends on the
slow variables x2, y2 and t2 only, and it is described by the equation

2iω

∂A0

∂t2
+ vl

∂A0

∂x2
+ vm

∂A0

∂y2
+

A0

2
∂vl

∂x2
+

A0

2
∂vm

∂y2


= 3a |A0|

2 A0. (15)

Then the equation

∂

∂t2


|A0|

2
+

∂

∂x2


vl |A0|

2
+

∂

∂y2


vm |A0|

2
= 0, (16)

derived from (16), shows that the energy of the fundamental wave propagates with the local group velocity. Depending
on whether the group velocity increases or decreases in the direction of propagation, the associated wave will be called
expansive or compressive wave. Then Eq. (15) leads to

2i

∂A
∂t2

+ vl
∂A
∂x2

+ vm
∂A
∂y2


+ P1

∂2A
∂x21

+ 2P2
∂2A
∂x1∂y1

+ P3
∂2A
∂y21

= Q |A|
2 A − CA, (17)

where

P1 =
1
ω


d2 − v2l


, P3 =

1
ω


d2 − v2m


, P2 = −

1
ω
(vmvl) ,

C = 1/2

∂vl

∂x2
+
∂vm

∂y2


, Q =

3a
ω
.

The PDE (17) is elliptic or hyperbolic depending upon the sign of P = P2
2 − P1P3,

P =
d4

ω4


l2d2 + m2d2 − ω2 .

For the elliptic case, when P is negative, we introduce the transformations

ζ1 =
x1
P1/2
1

, η1 =


P3 −

P2
2

P1

−1/2 
y1 −

P2
P1

x1


. (18)

Then we obtain the elliptic equation

2i
∂A
∂τ

+
∂2A
∂ζ 2

1
+
∂2A
∂η21

= Q |A|
2 A − CA. (19)

Eq. (19) is the standard elliptic NLSE in 2 + 1 dimensions. For the hyperbolic case, when P is positive. We introduce the
transformations

ζ1 =
x1
P1/2
1

, η1 =


P2
2

P1
− P3

−1/2 P2
P1

x1 − y1


. (20)

Proceeding as before, we obtain the hyperbolic equation

2i
∂A
∂τ

+
∂2A
∂ζ 2

1
−
∂2A
∂η21

= Q |A|
2 A − CA. (21)

Eqs. (19) and (21) can be expressed in the form

2i
∂A
∂τ

+∆1
∂2A
∂ζ 2

1
+∆2

∂2A
∂η21

= Q |A|
2 A − CA, (22)

with∆1 = 1, and∆2 = 1 when P2
2 − P1P3 < 0, and∆2 = −1 when P2

2 − P1P3 > 0. It is easy to show that two integrals of
motion exist for Eq. (22)

I1 =


|A|

2 dζ1dη1, (23)

I2 =

 
∆1

 ∂A∂ζ1
2 +∆2

 ∂A∂η1
2 +

Q
2

|A|
4
−

C
2

|A|
2


dζ1dη1. (24)
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Furthermore, it is possible by direct calculation to show that

∂2

∂τ 2

 
ζ 2
1 + η21


|A|

2 dζ1dη1

= 8
 

∆2
1

 ∂A∂ζ1
2 +∆2

2

 ∂A∂η1
2 +

Q
4
(∆2 + 1) |A|

4
−

C
4
(∆2 + 1) |A|

2


dζ1dη1, (25)

where the integrals are over the whole ζ1 and η1 plane. For the elliptic case∆2 = 1 the right hand side of the Eq. (25) is just
8I2. Since I2 is a constant of motion, Eq. (25) can be integrated twice to give 

ζ 2
1 + η21


|A|

2 dζ1dη1 = 4τ 2I2 + c1τ + c2. (26)

The sign of I2 is now important since it is the 4τ 2I2 term which dominates as τ increases. If Q < 0 and C > 0, then it is
possible to have I2 < 0, for quite a broad class of initial data. If therefore I2 < 0, then the right-hand side of Eq. (26) can
change sign after a finite value of τ . Since the integral on the right-hand side of Eq. (26) has a positive definite integrand,
this behaviour implies the existence of a singularity in A after a finite time and the solution ceases to exist [19,20].

4. General soliton solutions of the elliptic and hyperbolic NLS equations

Nowwe shall find solution classes to both elliptic and hyperbolic NLS equations. By applying the function transformation
method, we come to find the solutions of Eq. (22) in the form

A = θ (τ , ζ1, η1) exp i (c0τ + c1ζ1 + c2η1) , (27)

where θ (τ , ζ1, η1) = θ∗ (τ , ζ1, η1) and c0, c1, c2 are real constants. By inserting (27) into (22), we get

2i
∂θ

∂τ
+ 2ic1∆1

∂θ

∂ζ1
+ 2ic2∆2

∂θ

∂η1
+∆1

∂2θ

∂ζ 2
1

+∆2
∂2θ

∂η21
=

−c + 2c0 +∆1c21 +∆2c22


θ + Q θ3.

For the elliptic case, we have

2i
∂θ

∂τ
+ 2ic1

∂θ

∂ζ1
+ 2ic2

∂θ

∂η1
+
∂2θ

∂ζ 2
1

+
∂2θ

∂η21
= Cθ + Q θ3, (28)

where 2c0 + c21 + c22 − c = C (constant). Let us make a function transformation,

θ =

C/Q sinh (φ/2) , (29)

then we have

2i
∂φ

∂τ
+ 2ic1

∂φ

∂ζ1
+ 2ic2

∂φ

∂η1
+
∂2φ

∂ζ 2
1

+
∂2φ

∂η21
+

1
2
tanh (φ/2)


∂φ

∂ζ1

2

+


∂φ

∂η1

2


= C sinh (φ) . (30)

Setting φ = φ (ζ )which is a function of another function ζ only we easily see that

∂2φ

∂ζ 2
1

=


∂ζ

∂ζ1

2 d2φ
∂ζ 2

+
∂2ζ

∂ζ 2
1

dφ
dζ
, and

∂2φ

∂η21
=


∂ζ

∂η1

2 d2φ
∂ζ 2

+
∂2ζ

∂η21

dφ
dζ
. (31)

By substituting (31) into (30), we see that
2i
∂ζ

∂τ
+ 2ic1

∂ζ

∂ζ1
+ 2ic2

∂ζ

∂η1
+

1
2
∂2ζ

∂ζ 2
1

+
1
2
∂2ζ

∂η21


dφ
dζ

+


∂φ

∂ζ1

2

+


∂φ

∂η1

2


d2φ
dζ 2

+
1
2
tanh (φ/2)


dφ
dζ

2


= C sinh (φ) . (32)

Explicitly, some solutions of (32) obey the following system of equations:

i
∂ζ

∂τ
+ ic1

∂ζ

∂ζ1
+ ic2

∂ζ

∂η1
=
∂2ζ

∂ζ 2
1

+
∂2ζ

∂η21
= 0 and


∂ζ

∂ζ1

2

+


∂ζ

∂η1

2

= 1, (33)

d2φ
dζ 2

+
1
2
tanh (φ/2)


dφ
dζ

2

= C sinh (φ) . (34)
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Eq. (34) is equivalent to a sinh-Gordon equation; its solution is a well-known soliton

φ = 4 tanh−1


exp


C
2
ζ + ζ0


− π, ζ0 = constant. (35)

Substituting (35) and (29) into (27), we obtain the soliton solutions of the two-dimensional NLSE (22) in the form

θ =

C/Q sinh


2 tanh−1


exp


C
2
ζ + ζ0


−
π

2


,

A =

C/Q sinh


2 tanh−1


exp


C
2
ζ + ζ0


−
π

2


exp i (c0τ + c1ζ1 + c2η1) . (36)

Now we come to find a kind of general solutions of (33) in the form

ζ = F

ξj

+ d0τ + d1ζ1 + d2η1, ξj = bj0τ + bj1ζ1 + bj2η1 + εj, (37)

where d0, d1, d2, bj0, bj1, bj2, εj are constants, and F

ξj

denotes an arbitrary function of ξj. Combining (33) and (37) we

easily obtain

i
∂ζ

∂τ
+ ic1

∂ζ

∂ζ1
+ ic2

∂ζ

∂ζ2
= i


bj0 + c1bj1 + c2bj2

 ∂F
∂ξj

+ i (d0 + c1d1 + c2d2) ,
∂ζ

∂ζ1

2

+


∂ζ

∂η1

2

=


bj1
2

+

bj2
2 ∂F

∂ξj

2

+

2d1bj1 + 2d2bj2

 ∂F
∂ξj

+ d21 + d22 = 1,

∂2ζ

∂ζ 2
1

= bj1bk1
∂2F
∂ξj∂ξk

= 0 and
∂2ζ

∂η21
= bj2bk2

∂2F
∂ξj∂ξk

= 0,

where F

ξj

to be arbitrary leads to the conditions

bj0 + c1bj1 + c2bj2 = 0, d0 + c1d1 + c2d2 = 0, bj1bk1 + bj2bk2 = 0,

d1d1 + d2d2 = 1 and d1bj1 + d2bj2 = 0. (38)

The general solutions (37) make (35) and (34), a form of general soliton solutions of the two-dimensional NLSE and sinh-
Gordon equation.

For the hyperbolic case, we have

2i
∂Φ

∂τ
+ 2ic1

∂Φ

∂ζ1
− 2ic2

∂Φ

∂η1
+
∂2Φ

∂ζ 2
1

−
∂2Φ

∂η21
= QΦ3

− C ′Φ, (39)

where 2c0 + c21 − c22 − c = −C ′ (constant). Let us make a function transformation

Φ =


C ′

Q
sin

ψ

2


, (40)

where Ψ is a function in τ , ζ1 and η1

2i
∂Φ

∂τ
+ 2ic1

∂Φ

∂ζ1
− 2ic2

∂Φ

∂η1
=


C ′

Q
cos (Ψ /2)


i
∂Ψ

∂τ
+ ic1

∂Ψ

∂ζ1
− ic2

∂Ψ

∂η1


,

∂2Φ

∂ζ 2
1

=
1
2


C ′

Q


cos (Ψ /2)

∂2Ψ

∂ζ 2
1

−
1
2
sin (Ψ /2)


∂Ψ

∂ζ1

2

,

∂2Φ

∂η21
=

1
2


C ′

Q


cos (Ψ /2)

∂2Ψ

∂η21
−

1
2
sin (Ψ /2)


∂Ψ

∂η1

2

,

QΦ3
− C ′Φ = −

C ′

2


C ′

Q
cos (Ψ /2) sinΨ .

By substituting (40) into Eq. (39), we get

i
∂Ψ

∂τ
+ ic1

∂Ψ

∂ζ1
− ic2

∂Ψ

∂η1
+

1
2


∂2Ψ

∂ζ 2
1

−
∂2Ψ

∂η21


−

1
4
tan (Ψ /2)


∂Ψ

∂ζ1

2

−


∂Ψ

∂η1

2


= −
C ′

2
sinΨ . (41)
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Setting Ψ = Ψ (ζ )which is a function of another function ζ only and by substituting (31) into (41), we easily see that
i
∂ζ

∂τ
+ ic1

∂ζ

∂ζ1
− ic2

∂ζ

∂η1
+

1
2
∂2ζ

∂ζ 2
1

−
1
2
∂2ζ

∂η21


dΨ
dζ

+


∂ζ

∂ζ1

2

−


∂ζ

∂η1

2


1
2
d2Ψ
dζ 2

−
1
4
tan (Ψ /2)


dΨ
dζ

2


= −
C ′

2
sinΨ . (42)

Explicitly, some solutions of (42), obey the following system of equations:

i
∂ζ

∂τ
+ in1

∂ζ

∂ζ1
− in2

∂ζ

∂η1
=
∂2ζ

∂ζ 2
1

−
∂2ζ

∂η21
= 0 and


∂ζ

∂ζ1

2

−


∂ζ

∂η1

2

= 1, (43)

d2Ψ
dζ 2

−
1
2
tan(Ψ /2)


dΨ
dζ

2

= −C ′ sin (Ψ ) . (44)

Eq. (44) is equivalent to a sine-Gordon equation, its solution is a well-known soliton

Ψ = 4 tan−1 exp


C ′

2
ζ + ζ0


− π, ζ0 = constant. (45)

Applying (45) and (40) into (27), we obtain the soliton solutions of the two-dimensional NLSE (22) in the form

A =

C ′/Q tanh


C ′

2
ζ + ζ0


exp i (c0τ + c1ζ1 + c2η1) , (46)

where ζ denotes a solution of Eq. (43) which has several solution classes, it includes many interesting solitons of the two-
dimensional NLSE. Now we come to find a kind of general solution of Eq. (45) in the form

ζ = F

ξj

+ m0τ + m1ζ1 + m2η1, ξj = bj0τ + bj1ζ1 + bj2η1 + εj, (47)

where m0,m1,m2, bj0, bj1, bj2, εj are constants, and F

ξj

denotes an arbitrary function of ξj. Combining (47) and (43), we

easily obtain

i
∂ζ

∂τ
+ ic1

∂ζ

∂ζ1
− ic2

∂ζ

∂ζ2
= i


bj0 + c1bj1 − c2bj2

 ∂F
∂ξj

+ i (m0 + c1m1 − c2m2) ,
∂ζ

∂ζ1

2

+


∂ζ

∂η1

2

=


bj1
2

−

bj2
2 ∂F

∂ξj

2

+

2m1bj1 − 2m2bj2

 ∂F
∂ξj

+ m2
1 − m2

2 = 1,

∂2ζ

∂ζ 2
1

= bj1bk1
∂2F
∂ξj∂ξk

= 0,
∂2ζ

∂η21
= bj2bk2

∂2F
∂ξj∂ξk

= 0,

where F

ξj

to be arbitrary leads to the conditions

bj0 + c1bj1 − c2bj2 = 0, m0 + c1m1 − c2m2 = 0, bj1bk1 − bj2bk2 = 0,

m1m1 + m2m2 = 1, and m1bj1 − m2bj2 = 0. (48)
The general solutions (47) make (45) and (46), a form of general soliton solutions of the two-dimensional NLSE and sine-
Gordon equation. They contain some interesting specific solutions, such as the plane solitons, the N multiple solitons,
the propagating breathers and the quadratic solitons. We will discuss the elliptic and hyperbolic cases respectively as the
following.

4.1. The plane solitons.

This is a simple case. The equations of the elliptic case and sinh-Gordon equation; equation of the hyperbolic case and
sine-Gordon equation have the following solutions.

4.1.1. The elliptic case

φ = 4 tanh−1


exp


C
2
(d0τ + d1ζ1 + d2η1)+ ζ0


− π, (49)

A =

C/Q sinh


2 tanh−1


exp


C
2
(d0τ + d1ζ1 + d2η1)+ ζ0


−
π

2


(exp (i (c0τ + c1ζ1 + c2η1))) . (50)
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4.1.2. The hyperbolic case

Ψ = 4 tan−1


exp


C ′

2
(m0τ + m1ζ1 + m2η1)+ ζ0


− π, (51)

A =

C ′/Q tanh


C ′

2
(m0τ + m1ζ1 + m2η1)+ ζ0


(exp (i (c0τ + c1ζ1 + c2η1))) . (52)

In this case, Eqs. (49)–(52) denotes hyperplanar soliton solutions of the two-dimensional NLSE, sinh-Gordon and sine-
Gordon equations.

4.2. The N multiple soliton solutions

Let us select F(ξj) in the form

F

ξj


= lnΣN
j=1 exp


bj0τ + bj1ζ1 + bj2η1 + εj


, (53)

4.2.1. The elliptic case
Application of (37) and (53) leads to

ζ = ln

ΣN

j=1 exp

aj0τ + aj1ζ1 + aj2η1 + εj


, (54)

where ajα = dα + bjα, α = 0, 1, 2, the conditions in (38) are simplified to

aj0 + c1aj1 + c2aj2 = 0, and aj1ak1 + aj2ak2 = 1.

Taking j equal to 1, 2, . . . ,N respectively, the N multiple wave solutions are:

φ = 4 tanh−1 exp


C
2


ln

ΣN

j=1 exp

aj0τ + aj1ζ1 + aj2η1 + εj


+ ζ0


− π, (55)

A =

C/S (exp i (c0τ + c1ζ1 + c2η1))

× sinh


2 tanh−1 exp


C
2


ln

ΣN

j=1 exp

aj0τ + aj1ζ1 + aj2η1 + εj


+ ζ0


−
π

2


. (56)

4.2.2. The hyperbolic case
Application of (47) and (53) leads to

ζ = ln

ΣN

j=1 exp

Dj0τ + Dj1ζ1 + Dj2η1 + εj


, (57)

where Djα = mα + bjα, α = 0, 1, 2, the conditions in (48) are simplified to

Dj0 + n1Dj1 − n2Dj2 = 0 and Dj1Dk1 − Dj2Dk2 = 1. (58)

Then the N multiple wave solutions are

Ψ = 4 tan−1 exp


C ′

2


ln

ΣN

j=1 exp

Dj0τ + Dj1ζ1 + Dj2η1 + εj


+ ζ0


− π, (59)

A =


C ′

Q
tanh


C ′

2


ln

ΣN

j=1 exp

Dj0τ + Dj1ζ1 + Dj2η1 + εj


+ ζ0


(exp i (n0τ + n1ζ1 + n2η1)) . (60)

Eqs. (55)–(56) and (59)–(60) denote the N multiple soliton solutions of the two-dimensional NLSE, sinh-Gordon and sine-
Gordon equations, respectively.

4.3. The propagating breathers

4.3.1. The elliptic case
Considering N = 2 in (53) we get

ζ = ln (exp [a10τ + a11ζ1 + a12η1 + ε1])+ exp [a20τ + a21ζ1 + a22η1 + ε2] , (61)

which corresponds to a 2-soliton solutions of the two-dimensional NLSE, we set

a10 = −a20, a11 = −a21, a12 = a22, ε1 = ln s, ε2 = ln s + iπ. (62)
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Then (61) becomes

ζ = ln [2A exp (a12η1) sinh (a10τ + a11ζ1)] ,

and (38) gives the conditions

a211 + a212 = 1, a10 + 2c1a11 = 0, c2a12 = 0.

If a10, a11 and A are imaginary numbers such as

a10 = ia0, a11 = ia1, 2A = −iB,

then (61) takes the form

ζ = ln [B exp (a12η1) sin (a0τ + a1ζ1)] .

Then the solutions of Eqs. (34) and (20) become

φ = 4 tanh−1 exp


C
2
ln [B exp (a12η1) sin (a0τ + a1ζ1)] + ζ0


− π, (63)

A =

C/Q sinh


tanh−1 exp


C
2
ln [B exp (a12η1) sin (a0τ + a1ζ1)] + ζ0


−
π

2


× (exp i (c0τ + c1ζ1 + c2η1)) . (64)

4.3.2. The hyperbolic case
Considering N = 2 in (53), we get

ζ = ln (exp [D10τ + D11ζ1 + D12η1 + ε1])+ exp [D20τ + D21ζ1 + D22η1 + ε2] , (65)

which corresponds to a 2-soliton solutions of the two-dimensional NLSE (hyperbolic equation), and

ζ = ln [λ exp (D12η1) sin (D0τ + D1ζ1)] , (66)

where D10 = iD0, D11 = iD1, 2s = −iλ. Substituting from Eq. (66) into Eqs. (45) and (46), the solutions become

Ψ = 4 tan−1 exp


C ′

2
ln [λ exp (D12η1) sin (D0τ + D1ζ1)] + ζ0


− π, (67)

A =

C ′/Q tanh


C ′

2
ln [λ exp (D12η1) sin (D0τ + D1ζ1)] + ζ0


(exp (i (n0τ + n1ζ1 + n2η1))) . (68)

Then (63)–(64) and (67)–(68) are multidimensional breathers which propagate in the ζ1 direction and have the same value
on the right line a12η = constant and D12η = constant.

4.4. The quadratic solitons

4.4.1. The elliptic case
We take the solution (53) in the form

ζ = bj0bj0τ 2 + bj1bj1ζ 2
1 + bj2bj2η21 + 2bj1bj2ζ1η1 +


2εjbj1 + 2bj0bj1τ + d1


ζ1

+

2εjbj2 + 2bj0bj2τ + d2


η1 +


2εjbj0 + d0


τ + εjεj, j = 1, 2, . . . ,N. (69)

It describes some general quadratic surfaces at any definite time. These quadratic surfaces include all specific ones such as:
The circle.

By choosing the constants of (69) as

bjibjk = δik j = 1, 2, . . . ,N, (70)

then (69) becomes

ζ = τ 2 + ζ 2
1 + η21 +


2εjbj1 + d1


ζ1 +


2εjbj2 + d2


η1 +


2εjbj0 + d0


τ + εjεj. (71)

We obtain a circle with radius

R =


εjbji +

di
2


εkbki +

di
2


− τ 2 −


2εjbj0 + d0


τ − εjεj

1/2
, (72)
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which satisfies R2 > 0, and with center

G

−2εjbj1 − 2bj0bj1τ − d1,−2εjbj2 − 2bj0bj2τ − d2


, (73)

which moves along a space line. Thus (71), (35) and (36) gives some circular shape solitons of the two-dimensional NLSE
and sinh-Gordon equation.
The ellipses. Under the conditions

bj1bj1 > 0, bj2bj2 > 0, bjibjk = 0, i ≠ k, j = 1, 2, . . . ,N, (74)

then (69) becomes

ζ = bj0bj0τ 2 + bj1bj1ζ 2
1 + bj2bj2η21 +


2εjbj1 + d1


ζ1 +


2εjbj2 + d2


η1 +


2εjbj0 + d0


τ + εjεj. (75)

Eq. (75) are ellipses while (35) and (36) are the elliptical shape solitons.
The hyperbolas. In the conditions (69), let the constants satisfy

bj1bj1 > 0, bj2bj2 < 0, bjibjk = 0 i ≠ K , j = 1, 2, . . . ,N. (76)

We obtain the hyperbolas by inserting the condition (76) in Eqs. (35) and (36), i.e. this gives the corresponding hyperbolic
shape solitons of the two-dimensional NLSE and sinh-Gordon equation.

4.4.2. The hyperbolic case
We take the solution (53) in the form

ζ = bj0bj0τ 2 + bj1bj1ζ 2
1 + bj2bj2η21 + 2bj1bj2ζ1η1 +


2εjbj1 + 2bj0bj1τ + m1


ζ1

+

2εjbj2 + 2bj0bj2τ + m2


η1 +


2εjbj0 + m0


τ + εjεj. (77)

It describes some general quadratic surfaces at any definite time. These quadratic surfaces include all specific ones such as:
The circle.

The solution (77) becomes

ζ = τ 2 + ζ 2
1 + η21 +


2εjbj1 + m1


ζ1 +


2εjbj2 + m2


η1 +


2εjbj0 + m0


τ + εjεj, (78)

we obtain a circle with radius

R =


εjbji +

mi

2

 
εkbki +

mi

2


− τ 2 −


2εjbj0 + m0


τ − εjεj

1/2
, (79)

which satisfies R2 > 0, and with center

G

−2εjbj1 − 2bj0bj1τ − m1,−2εjbj2 − 2bj0bj2τ − m2


, (80)

which moves along a space line. Thus (78), (45) and (46) give some circular shape solitons of the two-dimensional NLSE and
sine-Gordon equation.
The ellipses.

ζ = bj0bj0τ 2 + bj1bj1ζ 2
1 + bj2bj2η21 +


2εjbj1 + m1


ζ1 +


2εjbj2 + m2


η1 +


2εjbj0 + m0


τ + εjεj. (81)

Eq. (81) are ellipses while (45) and (46) are the elliptical shape solitons.
The hyperbolas. From the conditions (77), we obtain some hyperbolas which (45) and (46) give the corresponding hyperbolic
shape solitons of the two-dimensional NLSE and sine-Gordon equation.

5. Conclusion

The effect of non-uniformity on the development of a modulated wave was studied by using the multiple scales
perturbation technique in one-dimension and we found the solution of the NLSE in one-dimension. We extended the
derivation to the NLSE in two-dimensions, modified by the effect of non-uniformity. Applying the function transformation
method, the two-dimensional NLSE was transformed to either sine-Gordon or sinh-Gordon equations, which depend only
on one function ζ and can be solved. The general solution of the equations in ζ leads to a general soliton solution of the two-
dimensional NLSE. Further the two-dimensional NLSEwas transformed to either a sinh-Gordon equation for the elliptic case
or to a sine-Gordon equation for the hyperbolic case. It contains some interesting specific solutions such as plane solitons, the
N multiple solitons, the propagating breathers and the quadratic solitons which contain the circular shape, elliptical shape
and hyperbolic shape solitons. As an illustration, we used the ready made package Mathematica 5 to solve the original
problem. We started from the governing PDEs and by using Mathematica 5 we obtained soliton solutions. This solution
was in good agreement with the analytical one. We displayed graphically the obtained solutions by using Mathematica 5
(Figs. 1–4).
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