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A b s t r a c t - - S o m e  new variants  of Newton 's  me thod  based on harmonic  mean  and  midpoint  inte- 
grat ion rule have been developed and their  convergence properties have been discussed. The  order of 
convergence of the proposed me thods  are three. In addit ion to numerical  tes ts  verifying the  theory, 
a comparison of the  results  for the  proposed methods  and some of the  existing ones have also been 
given. @ 2004 Elsevier Ltd. All r ights reserved. 
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1. I N T R O D U C T I O N  

We consider the  problem of finding a real zero a of a function f : I C R --* R. This zero can 

be de termined as a fixed point  of some i tera t ion  function g by means of the  one-point  i tera t ion 

method  

z~+l  = g ( z ~ ) ,  n = 0 , 1 , . . . ,  

where x0 is the  s ta r t ing  value. The best  known and the most widely used example of these types  

of methods  is the classical Newton 's  me thod  given by 

f(x~) n = 0, 1 , . . . .  (1) 
x +l = * n  f ' ( x n ) '  

It  converges quadra t ica l ly  to simple zeros and l inearly to mult iple  zeros. In the  l i terature ,  some of 

its modificat ions have been in t roduced in order to accelerate it  or to  get a me thod  with a higher 

order of convergence (see, e.g., [1-3]). The method  developed by Fernando  et al. [1], which can 

be called as t rapezo ida l  Newton 's  or a r i thmet ic  mean Newton 's  method,  suggests some other 

variants  of Newton 's  method.  In Section 2, we briefly give some definitions and concepts. In 

Section 3, we int roduce some new variants  of Newton 's  me thod  in addi t ion to some of the  known 

ones, and a deta i led convergence analysis of the proposed methods  has been suppl ied in Section 4. 
Numerical  results  and comparisons have been given in the  last  section. 

The  au thor  is grateful to the  anonymous  referee for many  helpful comments  and  construct ive  criticism. 
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2.  D E F I N I T I O N S  

DEFINITION 2.1. (See [4].) I f  the sequence {xn [ n > 0} tends to a limit a in such a way that  

lim x n + l - a  = C  
. . . .  (x, - ~)~ 

for some C # 0 and p > 1, then the order of  convergence of the sequence is said to be p, and C 
is known as the asymptotic error constant. 

When p = 1 the convergence is linear, while for p = 2 and p -- 3 the sequence is said to converge 
quadratically and cubically, respectively. The value of p is called the order of convergence of the 
method which produces the sequence {x~ ] n >_ 0}. Let e~ -- x~ - a. Then the relation 

e~+~ = Ce~ + O (e~ +1) 

is called the error equation for the method, p being the order of convergence. 

DEFINITION 2.2. (See [1].) Let a be a zero of the function f and suppose that  Xn--1, 2Cn, and xn+ 1 
are three successive iterations closer to the zero a.  Then the computational order of  convergence p 
can be approximated using the formula 

in I ( ~ + ~  - ~)  / ( x ,  - ~)1 
P ~  in I ( x , -  ~)/(=.-~-~)1" 

3.  D E S C R I P T I O N  O F  T H E  M E T H O D S  

3.1. C las s i ca l  N e w t o n ' s  ( C N )  M e t h o d  a n d  A r i t h m e t i c  M e a n  N e w t o n ' s  ( A N )  M e t h o d  

Let a be a simple zero of a sufficiently differentiable function f and consider the numerical 

solution of the equation f ( x )  = O. It  is clear tha t  

# f (x )  = f(Xn) + if(t)  d t  (2) 

Suppose we interpolate f '  on the interval [x~,x] by the constant f ' (x~).  Then (x -x ,Of ' ( z~ ,  ) 
provides an approximation for the indefinite integral in (2) and by taking x -- ~ we obtain 

0 ~ f (x~)  + (a  - x~)f ' (x~) ,  

and hence, a new approximation xn+l to  a is given by 

f (~)  
X n + l  : X n  ! , 

f (Xn) 
which is Newton's  method for n = 0, 1 , . . . .  On the other hand, if we approximate the indefinite 

integral in (2) by the trapezoidal rule and take x -- a,  we obtain 

I(oL ' x  , 0 ~ f ( ~ )  + ~ - x~) ( f  { , )  + f ' (~) )  

and therefore, a new approximation Xn+l to a is given by 

2f(=,,) 

X~+l = x,, - ff(x~) + f'(x~+l)" 

If the (n + 1) th value of Newton's  method is used on the right-hand side of the above equation 

to overcome the implicity problem, then 

2f(xn)  where Zn+l : Xn f(x'O (3) 
• ~+1 = ~ - f , ( ~ )  + f ' ( z ~ + O '  f ' ( ~ )  

is obtained which is, for n = 0, 1, 2 , . . . ,  the trapezoidal Newton 's  method of Fernando et al. [1]. 

Let us rewrite equation (3) as 

f ( x ~ )  n = o, 1 , . . . .  (4) 
=~+~ = x~ - ( f , ( x ~ )  ÷ f ' ( z ~ + l ) )  / 2 '  

So, this variant of Newton's  method can be viewed as obtained by using arithmetic mean of i f (x ,  0 
and f/(zn+l) instead of f ' (x~) in Newton's  method defined by (1). Therefore, we call it arithmetic 
mean Newton's (AN) method. 



Some New Var ian t s  679 

3.2. N e w  Variants  o f  N e w t o n ' s  M e t h o d  

In (4), if we use the harmonic mean instead of the arithmetic mean we get 

/ 
x,~+l = x,~ f(x~) (f ' (xn) + f (Zn+l)) 

- 2f '(x~)f ' (zn+l)  ' n = 0, 1 , . . . ,  (5) 

which we call harmonic mean Newton's (HN) method. On the other hand, if we approximate the 
indefinite integral in (2) by the midpoint integration rule instead of the trapezoidal rule and take 
x : a, we obtain 

and in this case a new approximation X~+z to c~ is given by 

f(~,~) 
xn+l = Xn -- f,((Xn + Xn+l)/2)" 

Again using the (n + 1) th value of Newton's method on the right-hand side of the last equation 
to overcome the implicity problem, we obtain 

f(x,~) where z,~+z : x,~ f(x~) (6) 
! 1 x~+1 = x~ f ' ( ( x~  + z~+1)/2)' f (x~) 

which, for n = 0, 1, 2 , . . . ,  we call midpoint Newton's (MN) method. 

4. C O N V E R G E N C E  A N A L Y S I S  

THEOREM 4.1. Let a E I be a simple zero of a sut~cientIy differentiable function f : I C R --* R 
for an open interval I. I f  xo is su1~ciently close to a, then the methods defined by (5) and (6) 
converge cubically. 

PROOF. Let a be a simple zero of f .  Since f is sufficiently differentiable, by expanding f (x~) 
and f ' (x~)  about  a we get 

e 2 3 f ( x ~ ) :  f ' (a)[en  + 2% +c3% + ' " ] ,  (7) 

and 

f'(x~) : f'(~) [1 + 2c~e. + 3~3e~ + 4c44 + . . .  ], (s) 

where ck -- (1 /k! ) f (k) (a) / f ' (a) ,  k ---- 2, 3 , . . .  and e,~ -- x~ - a .  Since the terms in square brackets 
are polynomials in terms of e~, direct division gives us 

f(xn) 
f'(xn) 

3 - -  = e~ - e ~ 4  + B ( 4  - e3) e~ + O ( e L ) ,  

and hence, for zn+l given in (6) we have 

z,~+, = o~ + e24 + 2 (e~- 4 )  4 + 0 (4 )  • 

Again expanding f '(z~+l) about a and using (9) we obtain 

/'(z~+,) = f l ( oz )  -j- ( Z n +  1 - -  o~)flt(OZ) -~- ( Z n + l  - -  Oz)2 2! if,t(@ + . . .  

f '(~) + [e~£ + 2 (c~ - 4 )  £ + 0 (et)] S"(~) + 0 (4 )  
f ' ( a )  [1 B 2 a + 2c~e~ + 4 (c~e~- 4)  e,, + 0 ( 4 ) ] .  

(9) 

(io) 
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From (8) and (I0), we get 

/ X  t Z 2 f ( n)f  (n+ l )  = ( / ' (a))  2 (1 + 252e= + (2592 + 3ca) e~ + 4(5253 -}- 54)e 3 -1- O (et)) 

and 

f ' ( ~ )  + :  (z~+~) = 2f'(~) 1 + ~ :~  + ~ + 2 c~ e~ + 2 (5:~ - ~ + 5~) 4 + ( 4  • 

So, using (7) 

f ( ~ )  ( Y ( ~ )  +/'(Z~+l)) = 2 (f,(~))2 e~ + 25:~ + 25~ + ~ c~ ~n + o (~ . 

Hence, 
f(xn) (f'(xn) -4- f '(z~+l)) 1 3 ÷ O (e 4) 

2: ' (~ ) : ' (~+~)  = ~ - ~ 5:,, 

and therefore, 

f(xn) (ff(Xn) -4- f/(zn+l)) 
' T ' n ÷ l  : X n  - -  2f'(x,,~)f'(z,~+l) 

= x ~ -  e ~ - ~  a e ~ + O ( e  , 

or subtracting o~ from both sides of this equation we get 

1 a 
~ + ~ =  5 c : ~  + o  ( 4 ) ,  

which shows that harmonic Newton's method is of third order for simple zeros. 
Now consider the midpoint Newton's method defined by (6). It is clear that 

X n ~ -  Z n +  1 e n 1 
2 ~ = T + ~ [524 + (2c~ - 25~) 4 ]  + o ( : )  

By expanding f'((x,~ + z,~+z)/2) about a and using (11) we obtain 

: ,  x~ z~+l = f'(~) + + ~ - 2~2) en] :"(~) 

1 
+~ { 4  + 2c:~}  :"(~)  + ~s 4:'"'(~) + o ( 4 ) .  

Hence, direct division of (7) by (12) gives us 

f(x~) = e. + c3 - c~ e,~ + 0 (e4). 
f ' ( (~.  + zn+~)/2) 

Using this in (6) and subtracting a from both sides we get 

X n ÷ l  - -  O~ ~ .  X n  - -  O~ - -  e n  A-  5 3  - -  C e n -4- 0 e 

o r  

~÷~ = c ~ -  c~ ~ + o ( 4 ) ,  

which shows that the midpoint Newton's method converges cubically. 

(11) 

(12) 
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Table 1. 

f(x) x0 N COC NOFE'- 

CN AN HN MN CN AN HN MN CN AN HN MN 

a --0.5 97 6 52 i0 2.00 3.00 3.00 3.00 194 18 156 30 

1 5 3 3 3 2.00 3.00 3.00 3.00 i0 9 9 9 

2 5 4 3 4 2.00 3.00 3.00 3.00 I0 12 9 12 

b 1 6 4 3 4 2.00 3.00 ND 3.00 12 12 9 12 

3 6 3 3 4 2.00 ND ND 3.00 12 9 9 12 

c 2 5 4 4 3 2.00 3.00 3.00 3.01 i0 12 12 9 

3 6 4 4 4 2.00 3.00 3.00 ND 12 12 12 12 

d 1 4 2 3 3 2.00 2.75 3.00 3.00 8 6 9 9 

1.7 4 3 3 3 2.00 3.01 3.00 3.00 8 9 9 9 

-0.3 5 4 4 4 2.00 3.00 3.00 3.00 I0 12 12 12 

e 0 9 15 5 6 2.00 3.00 3.00 3.00 18 45 15 18 

1.5 7 5 4 5 2.00 3.00 3.00 3.00 14 15 12 15 

2.5 6 4 3 4 2.00 3.00 3.01 3.00 12 12 9 12 

3 6 4 4 4 2.00 3.00 3.00 3.00 12 12 12 12 

3.5 7 5 4 5 2.00 3.00 3.00 3.00 14 15 12 15 

f 1.5 16 467 7 59 2.00 3.00 3.00 3.00 32 1401 21 177 

2.5 7 5 5 5 2.00 3.00 3.00 3.00 14 15 15 15 

3.0 9 6 5 6 2.00 3.00 3.00 3.00 18 18 15 18 

3.5 10 7 6 6 2.00 3.00 3.00 3.00 20 21 18 18 

g 1.5 27 NC 13 NC 2.00 - 3.00 - 54 - 39 - 

2.5 8 5 5 5 2.00 3.00 3.00 3.00 16 15 15 15 

3.0 9 6 5 6 2.00 3.00 3.00 3.00 18 18 15 18 

3.5 12 8 7 7 2.00 3.00 3.00 3.00 24 24 21 21 

h -2 8 6 5 5 2.00 3.00 3.00 3.00 16 18 15 15 

--3 14 9 8 9 2.00 3.00 3.00 3.00 28 27 24 27 

i 3.5 12 8 7 7 2.00 3.00 3.00 3.00 24 24 21 21 

3.25 8 6 5 5 2.00 3.00 3.00 3.00 16 18 15 15 

j --0.5 16 11 9 i0 2.00 3.00 3.00 3.00 32 33 27 30 

k - 2  11 7 6 7 2.00 3.00 3.00 3.00 22 21 18 21 

1 1.4 84 55 44 52 1.00 1.00 1.00 1.00 168 165 132 156 

- 1  119 79 63 74 1.00 1.00 1.00 1.00 238 237 189 222 
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5 .  N U M E R I C A L  R E S U L T S  A N D  C O N C L U S I O N S  

In this section, we present the results of some numerical tests to compare the efficiencies of 

the methods. We employed CN method, AN method of Fernando et al. [i], and HN and MN 

methods that we developed. Numerical computations reported here have been carried out in a 

IViAPLE V environment rounding to 64 significant digits. The stopping criterion has been taken 

as [Xn+l - ~I + If(x +1)r < 10 <4, and the following test functions have been used (see [1,5]). 

(a) z 3 + 4x 2 - I0, ~ = 1.365230013414097, 

(b)  s i n 2 z  - x 2 + 1, o~ = 1 .404491648215341,  

(c) x 2 - e x - 3 x  + 2, a = 0 .2575302854398608 ,  

(d)  e o s x  - x ,  a = 0 .7390851332151607 ,  

(e) (x - 1) 3 - 1, ~ = 2, 

(f) (x - i) 6 - i, ~ = 2, 

(g) ( x - - l )  8-1,c~=2, 
(h)  x e  ~ 2  - s i n 2 x  + 3 cos  x + 5, c~ = - 1 . 2 0 7 6 4 7 8 2 7 1 3 0 9 1 9 ,  



682 A.Y. (~)ZBAN 

(i) e ~2+7x-3° - 1, a = 3, 
(j) 4 I~m=o(X - (I + 0.1m)), a = 1, 

5 
(k) I-[.~=o(X - (m + 1)), a = 1, 
(1) (x - 2)3(x + 2) 4, a l  = 2, and a2 = - 2 .  

In Table 1, we give the  number  of i terat ions (N) and the  number  of function evaluat ions (NOFE)  

required to satisfy the  s topping criterion, and the computa t iona l  order  of convergence (COC) 

taken as: p~ if 1001p ~ - p ~ _ ; I / m i n { p n , p n _ l }  < 10 and Pl if N = 2 where Pn = l n l (xn+ l  - 

a ) / ( x n  - a ) l / l n  I(x~ - c~)/(xn-1 -~)1" The nota t ion  ND (not defined) has been used if 1001pn - 

p -ll/min{sn, p -l} > 10. 
All numerical  results  are in accordance with  the  theory  and the  basic advantage  of the  vari- 

ants of Newton 's  me thod  based on means or integration methods t ha t  t hey  do not  require the  

computa t ion  of second- or higher-order derivatives a l though they  are of th i rd  order  (for simple 

zeros). 

As far as the  numerical  results are considered, for most  of the  cases HN method  requires 

the  least  number  of function evaluations while AN and MN methods  require a lmost  the  same 

number  of function evaluations.  The  A M  and MN methods  did not  converge (NC) to the  root  

for the  function in (g) for x0 = 1.5 in 1000 i terations.  Al though the  roots  of the  function 

in (1) are not  simple, and hence all the  methods  converge linearly, we have used i t  to see the 

effectiveness of the  methods  in case of mult iple  roots. Whi le  the  CN and HN methods  converge 

quite slowly for the  function in (a) for x0 = - 0 . 5 ,  the  AN and MN methods ,  especially AN 

method,  converge quite slowly for the  function in (f) for x0 = 1.5, which shows the  impor tance  of 

the  ini t ial  approximat ions  and the functions al though all the  methods  s tem from the same fact: 

approx imat ion  to  the  same indefinite integral.  
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