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Abstract—Some new variants of Newton’s method based on harmonic mean and midpoint inte-
gration rule have been developed and their convergence properties have been discussed. The order of
convergence of the proposed methods are three. In addition to numerical tests verifying the theory,
a comparison of the results for the proposed methods and some of the existing ones have also been
given. © 2004 Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

We consider the problem of finding a real zero « of a function f: I € R — R. This zero can
be determined as a fixed point of some iteration function g by means of the one-point iteration
method

$n+1:g(1‘n), 'I’LZO,l,...,

where x; is the starting value. The best known and the most widely used example of these types
of methods is the classical Newton’s method given by

R n=01,.... (1

It converges quadratically to simple zeros and linearly to multiple zeros. In the literature, some of
its modifications have been introduced in order to accelerate it or to get a method with a higher
order of convergence (see, e.g., [1-3]). The method developed by Fernando et al. [1], which can
be called as trapezoidal Newton’s or arithmetic mean Newton’s method, suggests some other
variants of Newton’s method. In Section 2, we briefly give some definitions and concepts. In
Section 3, we introduce some new variants of Newton’s method in addition to some of the known
ones, and a detailed convergence analysis of the proposed methods has been supplied in Section 4.
Numerical results and comparisons have been given in the last section.
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2. DEFINITIONS

DEFINITION 2.1. (See [4].) If the sequence {z, | n > 0} tends to a limit o in such a way that
hm Eﬁi__ — C
Tp—rC (an — a)P
for some C # 0 and p > 1, then the order of convergence of the sequence is said to be p, and C
is known as the asymptoti¢ error constant.

When p = 1 the convergence is linear, while for p = 2 and p = 3 the sequence is said to converge
quadratically and cubically, respectively. The value of p is called the order of convergence of the
method which produces the sequence {z,, | n > 0}. Let e,, = 2, — . Then the relation

ent1 = Ceb + O (eBF1)
is called the error equation for the method, p being the order of convergence.

DEFINITION 2.2. (See [1].) Let o be a zero of the function f and suppose that T,_1, Tn, and Tpn41
are three successive iterations closer to the zero a. Then the computational order of convergence p
can be approximated using the formula

o In|(znt1 — @) /(zn — a)l
Inj(zn — @)/ (Zn-1— )|

3. DESCRIPTION OF THE METHODS
3.1. Classical Newton’s (CN) Method and Arithmetic Mean Newton’s (AN) Method

Let o be a simple zero of a sufficiently differentiable function f and counsider the numerical
solution of the equation f(z) = 0. It is clear that

o) = 1Gan) + [ 10t | )

Suppose we interpolate f' on the interval [z,,z] by the constant f’ (:nn) Then (z — z,) f'(zn)
provides an approximation for the indefinite integral in (2) and by taking = = o we obtain

0% f(zn) + (o — zn) f'(2n),
and hence, a new approximation z,41 to o is given by

f(zn)

T i)
k13

which is Newton’s method for n =0, 1,.... On the other hand, if we approximate the indefinite
integral in (2) by the trapezoidal rule and take z = o, we obtain

0% f(2n) + 3 (= za) (Fan) + £/(00),
and therefore, a new approximation z41 to o is given by
Tyl = Tp — 2f(1'n) )
F(@n) + ' (@nt1)
If the (n + 1)*® value of Newton’s method is used on the right-hand side of the above equation
to overcome the implicity problem, then
f(@n) + f(znt1)’ f'(zn)
is obtained which is, for n = 0,1,2,..., the trapezoidal Newton’s method of Fernando et al. [1].
Let us rewrite equation (3) as

Tptl = Tp — where zp41 = Tn —

flzn)
Tpil = Tp — , n=0,1,.... (4)
T P lan) + (1)) /2
So, this variant of Newton’s method can be viewed as obtained by using arithmetic mean of f'(z»)
and f'(zn41) instead of f'(z,,) in Newton’s method defined by (1). Therefore, we call it arithmetic

mean Newton’s (AN) method.
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3.2. New Variants of Newton’s Method

In (4), if we use the harmonic mean instead of the arithmetic mean we get

f(zn) (F(@n) + f'(2n+1))
2f(@n) f (Znr1)

Tptl = Tp —

n=01,..., (5)

which we call harmonic mean Newton’s (HN) method. On the other hand, if we approximate the
indefinite integral in (2) by the midpoint integration rule instead of the trapezoidal rule and take
T = «, we obtain

0~ f(@a) + (@ — . (?——;ﬁ)

and in this case a new approximation z,41 to « is given by

T (@t n)/2)

Again using the (n + 1)* value of Newton’s method on the right-hand side of the last equation
to overcome the implicity problem, we obtain

7 =1z, — f(zn)
T (o 241)/2)

f(zn)’

where 2,1 =z, —

(6)
which, for n =0,1,2,..., we call midpoint Newton’s (MN) method.

4. CONVERGENCE ANALYSIS

THEOREM 4.1. Let a € I be a simple zero of a sufficiently differentiable function f : I CR — R
for an open interval I. If zq is sufficiently close to o, then the methods defined by (5) and (6)
converge cubically.

PRrROOF. Let o be a simple zero of f. Since f is sufficiently differentiable, by expanding f(z,)
and f'(z,) about a we get

f(mﬂ) :f/(a) [en+02672t+63ei+---:! , (7)
and
F(@n) = /(@) [1+ 2caen + 3cze) + degel, + -], (8)

where ¢ = (1/kD)f®)(a)/f' (), k = 2,3,... and e, = z,, — . Since the terms in square brackets
are polynomials in terms of e,, direct division gives us

f'(zn)

=ep —cel +2(c3 —c3)ed +0(eh),
and hence, for z,41 given in (6) we have
Zpel =0+ cze,z1 +2 (C3 — cg) ef‘L +0 (ei) . (9)
Again expanding f'(z,+1) about o and using (9) we obtain
y] 1 1 (zn+1 — o‘)Q 7
F(nan) = £(0) + (zngn — )" (@) + AL gy 4

= f'(c) + [caer +2 (cs — c3) es + O (e})] /() + O (e}) (10)
= f'(e) [1+2c3e2 + 4 (cocs — c3) €2 + O (e2)].
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From (8) and (10), we get
@) (zar1) = (F1(@))? (1 + 2c0en + (262 + 3c3) €2 + 4(cacs + ca)ed + O (ek))
and
, 3
F'(@n) + f(zns1) = 2f' () (1 + coen + (cg -+ 3 03> €2 +2(cocs — 3 +ca)el +0 (eﬁ)) .

So, using (7)

F@n) (7' (@n) + F'(2041)) = 2(F' (@)’ ( + e + (2 + g) e +0 (eﬁ)) ‘

Hence,

F(@n) (f'(2n) + ['(2n41))
21" (zn) ' (zn41)

1
:en—§(:3ei-l—0(eﬁ),

and therefore,

f@n) (f'(@n) + f'(2n41))
2f"(@n)f' (2n41)

=z, — (en - —;-C3ei+0(eﬁ)) ,

Tnt+l = Tn —

or subtracting « from both sides of this equation we get
e _ l 3 0] 4
ntl = 5 Calp + (en) )

which shows that harmonic Newton’s method is of third order for simple zeros.
Now consider the midpoint Newton’s method defined by (6). It is clear that

T + Zn41 _

5 o= %—L + E [c2el + (2¢3 — 265) €5] + O (en) - (11)

2

By expanding f'((2 + 2.+1)/2) about o and using (11) we obtain

7 (mn +2Zn+1> = f'(a) + {_622 + % [cael + (2c3 — 2c3) €3] } #(a)

(12)
+% {€2 +2c¢3} " (a) + Z% eS f"" (@) + O (eh) .

Hence, direct division of {7) by (12) gives us

f(xn) = }-C —c2l e o4
Fl(zn + 2ns1)/2) ”+(4 3 2) 34+0(en)-

Using this in (6) and subtracting o from both sides we get

1
Tpyl ~Q=Tp — Q— (en+ <ZC3-c§> efl-{—O(efL))

or 1
€nt1 = (C% ~ 1 CB) e+ 0 (eﬁ) )

which shows that the midpoint Newton’s method converges cubically.
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Table 1.
Fz) | 2o N coc NOFE
CN[AN|[HN|MN| CN | AN | HN | MN | CN | AN | HN | MN
a —0.5 97 6 52 10 2.00 | 3.00 { 3.00 { 3.00 | 194 18 | 156 30
1 5 3 3 3 2.00 | 3.00 | 3.00 | 3.00 10 9 9 9
2 50 4| 3| 4 |200|300(300[300] 10{ 12| 9] 12
b | 1 6| 4| 3| 4 |200|300|ND |300] 12| 12] 9] 12
3 6| 3| 3| 4 |200| ND|ND|300]| 12/ o 9] 12
c | 2 5 4] 4| 3 [200[300[300[301] 10| 12] 12| o9
3 6| 4| 4| 4 |200]300|300|ND| 12] 12| 12| 12
d |1 4] 2| 3] 3 |200|27 |300]300] s
17 | 4| 3| 3| 3 |200|301|300[300]| s 9
03 | 5| 4| 4| 4 |200]|300]300]|300| 10 12| 12| 12
e | 0 o 15| 5| 6 |200]300|300|300]| 18] 45| 15| 18
15 | 7| 5] 4| 5 |200)|300]|300]|300]| 14] 15| 12| 15
25 | 6| 4| 3| 4 |200]300](301]300( 12| 12| 9| 12
3 6| 4| 4| 4 |200]300(300]|300] 12 12| 12] 12
35 | 7| 5| 4] 5 |200|300[300|300]| 14] 15] 12| 15
£ | 15 | 16467 7 | 59 | 200 | 3.00 | 3.00 | 3.00 | 32| 1401 | 21| 177
25 | 7| 5| 5| 5 |200|300[300]|300] 14| 15| 15| 15
30 | o|l 6| 5| 6 ]200|300]300]|300| 18] 18| 15| 18
35 | 10| 7| 6| 6 |200]|300|300](300]| 20/ 21| 18] 18
¢ | 15 | 27| Nc| 13 [ Nc[200] - [300] - | 54| - | 39| -
25 | 8| 5| 5| 5 |200/|300|300]30] 16| 15| 15] 15
30 | 9| 6| 5| 6 |200]|300]|300]300| 18] 18| 15| 18
3.5 12 8 7 7 2.00 | 3.00 | 3.00 | 3.00 24 24 21 21
b -2 8| 6| 5] 5 |200]|300]|300]|300| 16] 18| 15| 15
-3 4] 9| 8| o |200|300|300|300] 28| 27| 24| 27
i | 35 | 12| 8| 7| 7 |200]300[300]|300]| 24| 24| 21| 21
325 8| 6] 5| 5 |200[300]|300[300] 16| 18] 15| 15
i |—05 | 16| 11| 9| 10 | 200300300300 32| 33| 27| 30
K |-2 1| 7] 6] 7 |200]|300]|300]|300]| 22| 21| 18] 21
I | 14 | 84| 55| 44 | 52 | 1.00 | 1.00 | 1.00 | 1.00 | 168 | 165 | 132 | 156
1 |119| 70| 63 | 74 | 1.00| 1.00 | 1.00 | 1.0 | 238 | 237 | 189 | 202

5. NUMERICAL RESULTS AND CONCLUSIONS
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In this section, we present the results of some numerical tests to compare the efficiencies of
the methods. We employed CN method, AN method of Fernando et al. {1}, and HN and MN
methods that we developed. Numerical computations reported here have been carried out in a
MAPLE V environment rounding to 64 significant digits. The stopping criterion has been taken
as [Tny1 — al + | f(zny1)] < 10714, and the following test functions have been used (see [1,5]).

(a) x° +4z? — 10, o = 1.365230013414097,

(b) sinz — 2?2 + 1, o = 1.404491648215341,

(c) 2% —e® — 3z + 2, o = 0.2575302854398608,

(d) cosz — z, o = 0.7390851332151607,

() (x—1)°%~1,a=2,

() @-1°-1a=2

(g) (z—-1)8~1,a=2,

(h) ze® —sin®z + 3cosz + 5, @ = —1.207647827130919,
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(1) ez2+7z—30 _ 1’ o= 3’

() oz — (1 +0.1m)), a =1,

() oz = (m+1), a=1,

Q) (z-23z+2)4% a1 =2, and ap = ~2.
In Table 1, we give the number of iterations (N) and the number of function evaluations (NOFE)
required to satisfy the stopping criterion, and the computational order of convergence (COC)
taken as: py if 100|pn ~ pn—1]/ min{pp, pn-1} < 10 and p; if N = 2 where p, = In|{zp1 —
a)/(zn —a)|/In|(z, — @)/ (Zn—1 — &)|- The notation ND (not defined) has been used if 100|p, —
Pr—1|/ min{pn, pn—1} > 10.

All numerical results are in accordance with the theory and the basic advantage of the vari-
ants of Newton’s method based on means or integration methods that they do not require the
computation of second- or higher-order derivatives although they are of third order (for simple
7€r0s).

As far as the numerical results are considered, for most of the cases HN method requires
the least number of function evaluations while AN and MN methods require almost the same
number of function evaluations. The AM and MN methods did not converge (NC) to the root
for the function in (g) for z¢ = 1.5 in 1000 iterations. Although the roots of the function
in (1) are not simple, and hence all the methods converge linearly, we have used it to see the
effectiveness of the methods in case of multiple roots. While the CN and HN methods converge
quite slowly for the function in (a) for g = —0.5, the AN and MN methods, especially AN
method, converge quite slowly for the function in (f) for g = 1.5, which shows the importance of
the initial approximations and the functions although all the methods stem from the same fact:
approximation to the same indefinite integral.
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