JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 195, 71-81 (1995)

Some Properties of a Class of Analytic Functions

SHUSEN DING*

Department of Mathematics, The Florida State University, Tallahassee, Florida 32306-3027

AND

Y1 Ling aNp GEJUN BaO

Department of Mathematics, Harbin Institute of Technology,
Harbin, People’s Republic of China

Submitted by H. M. Srivastava

Received February 8, 1994

Let A be the class of functions f(z), which are analytic in the unit disc
U = {z:]|z] < 1}, with f{0) = f'(0) — 1 = 0. In this paper we introduce a new
subclass Q,(B) of & and study some properties of Q,(8). Hence we extend the
results of MacGregor, Chen, and Chichra. We also get a new univalent criterion
and some interesting properties of Hadamard products.  © 1995 Academic Press, Inc.

1. INTRODUCTION

Let
Ps = {p(z):p(z)is analyticin U and p(0) = 1,Re(p(z)) > B, B < 1},

and define ¢(a, c; z) by

dla,c;z) = zgizﬁz””, z€e U, c#0,-1,-2,..,
n=0 (C)n

and we shall use notation ¢(a, c) = ¢(a, c; z) for convenience. We define
L(a, ¢) by

L(a,o)f = d(a,0) xf(z), flr) €A, M
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where (1), = ['(n + A)/T(A). “*” denotes the Hadamard product.

The operator L(a, c) is called the Carlson—Shaffer operator and was
applied extensively to the theory of generalized hypergeometric functions
in {8] and {9] where some very strong results were achieved. It is known
in [1] that L(a, c¢) maps A into itself. If a # 0, —1, =2, ..., then L(a, ¢) has
a continuous inverse L(c, a) and L(c, a) maps & into & injectively. Clearly,
L(a, a) is the unit operator and

L(a,c) = L(a,b)L(b,c) = L(b, ¢)L(a,b), b,c#0,-1,-2, ...
Also, if ¢ > a > 0, we have

L(@,0)f = fr (a)lfﬁ?— 3 [ w1 — W fluz) du. )

If a, b, and c are real numbers other than 0, —1, —2, ..., the hypergeomet-
ric series

a-b a-(a+1)-b-(b+1) ,
i = +—.——-—-— +...+ +..-
Fa,b,c;2) =1 1-c’ 1:2:¢c(c+1) z

represents an analytic function in U [2, p. 281], and if ¢ > b > 0, we have

Fla,c;z) = F(E)Frﬁ_?—“?}} j (‘) (1 = 0PN — 1z) " d. 3)

Also, in the theory of Gauss hypergeometric functions, it is well-known that

n

F(l,c,c+1;-1)=¢ Z (c—+1)n
n=0

%[“’(z“%)“"(%ﬂ

in terms of the psi (or digamma) function

p—

V(@) = or  logl(e) = [(w@ae

Now, we introduce the following new family:

QQ(B)={fE&Q:Re [(1 —a))i(zz—)Jraf'(z)] >B,a20,[3<1}.
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It is easy to see that Q, (8) C 0.,(B) for a; > a, = 0. Thus, for a = 1,
0=8<10.B) C QOB ={f€ A:Re(f'(z)) > B, 0= <1}, and
hence Q,(B) is a univalent class. MacGregor [3] proved that Q,(0) was a
univalent class in |z| < V2 — 1. Ming-Po Chen [4] obtained the sharp radius
of univalency for Qy(B8) (0 = B < 1). Later, Chichra [5] got the sharp
univalent radius for Q,(0) (0 < a < 1).

In our present paper, we extend the above results. We also get a new
univalent criterion. Finally, we obtain some interesting properties of Hada-
mard product for Q,(B).

2. PRELIMINARIES
We get the following Lemma 1 from [6] and Lemma 2 from [4].

LemMA 1. If the function f(z) is analytic in |z| < R and Re(f'(z)) > 0
for |z| < R, then f(z) is univalent in |z| < R.

LEMMA 2. Let the function f(z) € Qu(0); then

Re(f'(z)) Z%ﬁ for 0= r<%’ 4)
and
Re(f'(2)) = (Tzrr—i’-)i for % =r<l, )

where r = |z|. The results are sharp.
LEmma 3. z[p(c,c+ 1)) =co(c +1,c + 1) — (¢ — Dé(c,c + 1).

Proof. Since

¢(C9C + 1) = i'_(cl—z’”l = i __i__zrﬂ»l,

=(c+ 1), sontc



74 DING, LING, AND BAO

we have

Y

c
dle,c+ D)= - + 1)z
z[@(c,c + 1)] 2 C(n 1)z

=cdlc+1,c+1)—(c—1Dglc,c+1).
Lemma 4. Ifp(z) € P(B) (B < 1), then

Re[p(z) - p(uz)] = —2(1 - B)(”i“%—(l%ru“r)’

where r = |z|, 0 < u < 1. This result is sharp.
Proof. Note

1 1 - —Q-wr
Re(l—z—l—uz)—(1+r)(1+ur) ©)

In fact, let z = r cos @ + ir sin 6, § € [0, 27]; then

Re (- 1 )=Re 1 - 1
11—z 1—uz 1—rcos@—irsin8 1—urcos@—iursiné

- 1—-rcosé@ _ 1 —urcos@
1—2rcos@+r®> 1—2urcos@+ u??

_ (I —u)[rcos 6 = r’(1 + u) + ur’cos 6]
(1 =2rcos 8+ r¥)(1 — 2urcos 8 + u*r?)

o (I —wfrcosm — r’(1 + u) + ur’cos )
(1 =2rcos@ + r*)(1 — 2urcosm + u’r?)
__—Q- wr

(1 +r)1+ur)

And if p(z) € Py, by the Herglotz formula
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where w(x) is a probability measure on |x| = 1. Thus, by (6) and (7), we have

Re[p(z) — p(uz)]

Re [ fm=1 1+ (1 -28)xz dulx) - fu|=1 1+ (1 —2B)xuz dﬂ(x)]

1-xz 1—xuz
1 1
" i Re [2(1 =B (1 “xz 1- xuz)] dp(x)
= ~2(1 - ) L

A+ +ur)
Finally, the result is sharp for the function po(z) defined by po(z) =
1+ (1 -28)z)/(1 - 2).

3. MaIN REsuULTS

THEOREM 1. Leta = 0, B8 < 1. If f(z) € O.(B), then
(i)

—_ — 2
Re(f'(z)) = LT (4B (?J’;)z(zﬁ D o=r< % )
and
— 2 - 4
Re(f(o) =Bt G0 i )
fora=0,8<1;
(i)
Re(f'(2)= (28— 1) +2(1 ~ B) 7+ 20 = )1 — BF(L,e.c+ 15 =7)

(10)

fora >0, 8 < 1. Where ¢ = 1/a, r = |z|. The results are sharp.

Proof. (i) Let f(z) € Qu(B), B < 1, it is easy to know that F(z) =
(f(z) — Bz)/(1 — B) € Qy(0). By Lemma 2, we see that (8) and (9) are true.
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(i) Let f(z) € Q.(B), > 0,8 <1, and
(1 -2+ o) = (2 (1)
We know that p(z) € P,. Using (1) and (11), we get
z2p(2) = (1 — )f(2) + azf'(2)
-1 (L+1.2) 00,

that is,

fz) = (1 Ly 1) [zp(2)]

Let ¢ = 1/«; then

f(z) = L(c,c + D[zp(2)]. (12)

By Lemma 3, we have

2f'(z) ={zld(c,c + D]’} * [zp(2)]
=cL(c+1,¢c+ D[zp(2)] — (¢ — D L(c,c + D[zp(z)] (13)
=czp(z) — (¢ — 1)L(c,c + D]zp(2)}.

If ¢ > 1, from (2), (13), and Lemma 4, we get

Re(f'(z)) = Re [cp(z) —clc—1) ﬁ) up(uz) du]

= Re[p(2)] + c(c — 1) [, u'Re[ p(2) = p(uz)] du

>1_:.Q;2_§)_r — ! c-1 —- _________(_____EL_
= e =D [ju20 AaTndzan™

1 -1~ ZB)r+ 2(1 - B)c(c — l)j] uc! [ 1 . 1 ]du

1+7r 1+r 1+ur

=B -1)+2(1 -

'B)J01 + ur du
(14)
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If 0 < ¢ = 1, from (2) and (13), we have

Re(f'(z)) = Re [CP(Z) —c(c—-1 J'; u'p(uz) du]

= cRe[p(z)] + ¢(1 = ¢) j; ue ' Re[ p(uz)] du (15)
= C%{—rgﬁ—)r +c(1-c¢) f;u”" leu
=@B-1+20 -+ 2e(1 - (1 - B) [

By using (3), from (14) and (15), we deduce (10).
That the result is sharp follows from

11 )ﬂ:—-f@—z—z-e 0.(8).

fo(Z):L<—-1——+1 1

a o

This completes the proof of our theorem.

From [4] we know that there exists f(z) € Qy(B) (B < 1) such that f(z)
is not univalent. But in the following theorem, we shall prove that f(z) €
Q.(B) is univalent for 0 < @ < 1 and B8 > B, where 0 < 3y < 1. And we
shall also prove that f(z) € Q,(B) is univalent for the case that a > 1 and
B is larger than some negative number.

THEOREM 2. Ifa > 0and By < B < 1, then f(z) € Q,(B) is univalent,

where

1
2-c-2(1-o)F(l,¢c,c+1;-1)

Bo=1- forc= é’ (16)

and the constant 3y cannot be replaced by any smaller one.

Proof. 'We note that the right sides in both (14) and (15) are decreasing
with respect to r. So if f(z) € Q,(8) and @ > 0, 8 < 1, by (9) we have

Re(f(2))z(2B-1D+ (1 =B)c+2(1 -c)(1 - B)F(1l,c,c +1;-1)
=1-(1-B)2—c—2(1-c)F(1,c,c+1;-1)], (17)
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where ¢ = 1/a. But

1 c-1

F(1,c,c+1;—1)=cj du

ol +u

1 1 uc
= - 4 ———e .
2 JO(l+u)2du

From
1 uc 1 1 1
0<fo(1 n u)zd“<jo(1 Tap =y
we get
1
§<F(1,c,c+ 1;-1) <1,
SO

2—-c—-2(1-c)F(l,¢c,c+1;-1)>0. (18)
Thus, by (17) we have
Re(f'(2))>1-(1—-Bo)[2—c—-2(1—c)F(1,c,c+1;,-1)] =0

for 8 > B,. By Lemma 1, we have proved that f(z) € Q,(8) is univalent
for « > 0 and B > By. Note $ < F(1,¢, ¢ + 1; ~1) < 1, it is easy to see
that f(z) € Q,(B) is univalent in the case either 0 <a<land 0 < B <
lora=land 8 =<0.

In order to show that the result is sharp, we consider the following
function

z+ (1 -28)z?

1
], a>0,8<1,c=~-
1-z2 o

fo(z) = L{c,c+1) [

It is easy to see that fy(z) € Q.(B). By (13), we get

file) = L= 28)2 2+ (1~ 23)22]’
1-z

1-1z

—(c—=1)L(c,c+1) [
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fo(-D=1-(1-B)2-c—2(1 -c)F(1,c,c+ 1; -1)].
If B8 < By, by (18) we have

fo(-1)<1-(A-B2-c—2(1 -c)F(1l,c,c +1; -1)] =0,

and f;(0) = 1. So there exists a point z = —rg, such that f'(—#;) = 0. Then
fo(z) is not univalent when 8 < B, as required.

CoroLLARY 1. If f(z) € A and

@) | SN S b
Re[ Lrf@|>2]1 T = 0.372,
then f(z) is univalent. The result is sharp.

CoroLLARY 2. Iff(z) € A and

e (1] P p—
Re[zf(Z) Z]>1 3-2F(LER-1)

then f(z) is univalent. The result is sharp.

By using Lemma 1 and Theorem 1, we have the following two theorems
THEOREM 3.

If f(z) € Qu(B) and B < 0, then f(z) is univalent in |z| <
(V4p2 - 68+ 2 + 28 — 1)/(1 — 2B). The result is sharp.

THEOREM 4. Leta>0and B < By. If f(2) € QuB), then f(2) is univalent
in |z| < ry. Here By is defined by (16) and ry is the smallest positive root of
the equation

28-1+2(1 —B)l_Cl_r+2(1—c)(1—B)F(l,c,c+1;—r)=0,

where ¢ = 1/a. The result is sharp.

Remark. Taking 8 = 0,0 < & < 1 in Theorem 4, we have the result of
[5]. From [7], we have the following lemma.

LemMma 5. If pi(z) € P,, p2(2) € Py, a, B < 1, then p, * p,(2) € P,
wheret = 1 — 2(1 — a)(1 — B). The result is sharp.
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THEOREM 5. Let @ > 0, By, B, < 15 if f(z2) € Qu(B1), 8(2) € Qu(B2),
then f x g(z) € Q,(t), where

t=1-4(1-B)1 = B2) +4(1 = B)(1 - B)F(l,c,c +1;-1) forc= :

=
The result is sharp.
Proof. Let f(z) € Q.(B1), g(z) € Q.(B:); by (12) we have
fz)=L(c,c + D[zp:(2)],  8(z) = L(c, ¢ + 1)[zp2(2)],

where ¢ = 1/a, pi(z) € Py, px(z) € Pg,. Then, using Lemma 5 we obtain

f(z) *g(z) = L(c,c + D)[zp1(2)] * L(c, ¢ + 1)[zp2(2)]
= L(c,c + D)[L(c,c + 1)(zp1(2) * zp2(2))] (19)
= L(c,c + D[L(c,c + 1)(z(p1(2) * p2(2)))]
= L(c,c + D[L(c,c + 1)(zps(2))],

where A = 1 — 2(1 = B))(1 — B2), pa(2) = pi(2) * p2(2).
Note that

Re [L(c, c+ 1)(ZPA(Z))] = Re [cf; up(uz) du]

z
1
= cJ.O u*! Re[ pi(uz)] du

> cﬂ)u“‘ 1- (11+—u2}\)u du
=2A-1+2(1 - AN)F(Q,c,c+1;-1) (20)
=1—-4(1-8,)(1-82)

+4(1 - B8)(1 - B)F(l,c,c+1;-1)

=r
From (19) and (20), we have

f*g(z) = L(c,c + D]zp(2)],

where p,(z) = L(c, ¢ + 1)(zp,(z))/z and Re(p,(z)) > t. So we know that
f*8(z) € Q1)
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That the result is sharp is obtained by f(z) = L(c, ¢ + D[z + (1 —
28)z2)/(1 — z) and g(z) = L(c, ¢ + 1)(z + (1 — 2B8,)z3)/(1 - z). The
proof is completed.

CoroLLARY 3. Let a > 0and B < 1. If f(z) € Q.(B), g(z) € Q.(B),
and B = By, where

1
41 - F(l,¢c,c +1;-1)]

forc = l,
o

Bo=1-

then f* g(2) € Q.(B), that is, Q.(B) is closed under the Hadamard product
when 8 > f3,.

Proof. By Theorem 5 and
1-4(1 - By +4(1 - BY¥’F(,c,c+1;,-1)=p ifandonlyif B=g,,

we get the required result immediately.
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