
Journal of Functional Analysis 178, 343�371 (2000)

Equivalence of Hardy Submodules Generated
by Polynomials1

Kunyu Guo

Department of Mathematics, Fudan University, Shanghai, 200433,
People's Republic of China

E-mail: kyguo�fudan.edu.cn

Communicated by D. Sarason

Received January 4, 2000; accepted June 26, 2000

In this paper, we obtain a complete classification under unitary equivalence for
Hardy submodules on the polydisk which are generated by ideals of polynomials.
Let I be an ideal of polynomials in n variables. Since I is generated by finitely many
polynomials, I has a greatest common divisor p. So, I can be uniquely written as
I= p L which is called the Beurling form of I. Let I1= p1 L1 , I2= p2L2 . We prove
that [I1] and [I2] are unitarily equivalent if and only if there are polynomials q1

and q2 with Z(q1) & Dn=Z(q2) & Dn=< such that | p1q1 |=| p2q2 | on T n, and
[ p1L1]=[ p1 L2]. Consequently, two principal submodules [ p1] and [ p2] are
unitarily equivalent if and only if there are polynomials q1 and q2 with Z(q1) & Dn

=Z(q2) & Dn=< such that | p1q1 |=| p2q2 | on T n. Furthermore, we give a com-
plete similarity classification for submodules generated by homogeneous ideals.
Finally, we point out that in the case of the Hardy module on the unit ball, [I1]
and [I2] are unitarily equivalent if and only if they are equal. If I1 and I2 are
homogeneous ideals, then [I1] and [I2] are quasi-similar if and only if I1=I2 .
� 2000 Academic Press

1. INTRODUCTION

Let T be the unit circle in the complex plane, and let L2(T ) be the
Hilbert space of square integrable functions, with respect to arc-length
measure. Recall that the Hardy space H 2(D) over the open unit disk D is
the closed subspace of L2(T ) spanned by the non-negative powers of the
coordinate function z. If M is a (closed) subspace of H 2(D) that is
invariant for the multiplication operator Mz , then Beurling's theorem says
that there exists an inner function ' such that M='H 2(D). In the language
of Douglas and Paulsen [DP], each submodule M of the Hardy module
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H 2(D) over the disk algebra A(D) has the form M='H 2(D). For the
Hardy module H 2(Dn), the multivariable version, a natural problem is to
consider the structure of submodules. However, one quickly sees that a
Beurling-like characterization is impossible, and hence attention is directed
to investigating equivalence classes of submodules of H 2(Dn) under some
kind of equivalence relation.

Definition. Let M1 , M2 be two submodules of H 2(Dn). We say that

(1) they are unitarily equivalent if there exists a unitary module map
X: M1 � M2 , that is, X is a unitary operator and for any polynomial p,
X( p h)= p X(h), \h # M1 ;

(2) they are similar if there exists an invertible module map
X: M1 � M2 ;

(3) they are quasi-similar if there exist module maps X: M1 � M2

and Y: M2 � M1 with dense ranges.

Agrawal, Clark and Douglas studied unitary equivalence among some
special Hardy submodules on the polydisk in [ACD]. The extension of
their results to general domains in Cn was considered by Agrawl and
Salinas [AS]. Furthermore, for Hardy submodules on the polydisk, some
deep results were obtained by Douglas and Yan in [DY]. Most of these
results require the codimension of the zero variety of the submodule in
question to be at least 2. Based on results and ideas from algebraic
geometry, under mild restrictions, Douglas et al. [DPSY] showed that
submodules obtained from the closures of ideals are quasi-similar if and
only if the ideals coincide. Analytic submodules in several variables exhibit
this phenomenon, called ``rigidity,'' for several reasons. From an analytic
point of view, the appearance of rigidity is natural because of the Hartogs
phenomenon in several variables. From an algebraic point of view, the
reason may be that the submodules are not singly generated. However,
K. Yan [Yan] proved that two submodules of H 2(Dn) each of which is
singly generated by homogeneous polynomial are unitarily equivalent if
and only if the ratio of the moduli of corresponding homogeneous polyno-
mials is constant on T n. In the case of the Hardy module H 2(Bn) on the
unit ball Bn , the corresponding problem was considered by Chen and
Douglas [CD]. They showed that two homogeneous principal submodules
are quasi-similar if and only if the corresponding homogeneous polyno-
mials coincide. Hong and Guo [HG] studied equivalence of homogeneous
principal submodules on bounded complete Reinhardt domains.

In the present paper, using the characteristic space theory developed by
the author [Guo1], we obtain a complete classification under unitary
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equivalence for Hardy submodules on the polydisk that are generated by
ideals of polynomials. Let I be an ideal of polynomials in n variables. Since
I is generated by finitely many polynomials, I has a greatest common
divisor p, which is unique except for a constant factor. So, I can be
uniquely written as I= pL, the ideal L having the greatest common divisor
1. We call I= pL the Beurling form of I. For an ideal I, we let [I ] is the
submodule of H 2(Dn) generated by I. It is easy to see that [I ] equals the
closure of I in H 2(Dn). Let I1= p1L1 , I2= p2L2 . We prove that [I1] and
[I2] are unitarily equivalent if and only if there are polynomials q1 and q2

with Z(q1) & Dn=Z(q2) & Dn=< such that | p1q1 |= | p2q2 | on T n, and
[ p1L1]=[ p1 L2]. A straightforward corollary is that two principal
submodules [ p1] and [ p2] are unitarily equivalent if and only if there are
polynomials q1 and q2 with Z(q1) & Dn=Z(q2) & Dn=< such that | p1q1 |
=| p2q2 | on T n. Furthermore, we give a complete classification under
similarity for submodules generated by homogeneous ideals.

In the case of Hardy submodules on the unit ball Bn , we point out that
[I1] and [I2] are unitarily equivalent only if they are equal. If I1 and I2

are homogeneous ideals, then [I1] and [I2] are quasi-similar only if
I1=I2 .

This paper is organized as follows. In Section 2, we develop some basic
properties of analytic submodules with finite rank by using the charac-
teristic space theory in [Guo1]. These results will be used in the proof of
the classification theorem in Section 3. In Section 4, we use some techni-
ques developed in Sections 2 and 3 to study similarity and quasi-similarity
of submodules generated by polynomials. In the last Section, we consider
the case of Hardy submodules on the unit ball.

2. SOME BASIC PROPERTIES OF ANALYTIC SUBMODULES
WITH FINITE RANK

To prove the classification theorem in Section 3, we develop some basic
properties of analytic submodules with finite rank. First let us recall some
terminology from [DPSY, Guo1] which will be used throughout this
section.

Let 0 be a bounded nonempty open subset of Cn, and let Hol(0) denote
the ring of analytic functions on 0. We use C to denote the polynomial
ring on Cn. Let X be Banach space contained in Hol(0). We call X a
reproducing 0-space if X contains 1 and if for each w # 0 the evaluation
functional Ew( f )= f (w) is a continuous linear functional on X. We say
that X is a reproducing C-module on 0 if X is a reproducing 0-space, and
for each p # C and each x # X, px is in X. Note that, by a simple application
of the closed graph theorem, the operator Tp defined to be multiplication
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by p is bounded on X. Note also that C/X follows from the fact that 1
is in X. For * # Cn, one says that * is a virtual point of X provided that the
homomorphism p [ p(*) defined on C extends to a bounded linear func-
tional on X. Since X is a reproducing 0-space, every point in 0 is a virtual
point. We use vp(X ) to denote the collection of virtual points; then
vp(X )$0. Finally we say that X is an analytic Hilbert module on 0 if the
following conditions are satisfied:

(1) X is a reproducing C-module on 0;

(2) C is dense in X;

(3) vp(X )=0.

Remark. Notice that the conditions (2) and (3) are equivalent to the
following statement: for each * � 0, U* , the maximal ideal of functions in
C that vanish at *, is dense in X. In fact, if for each * � 0, U* is dense in
X, then the condition (2) is immediate. If there is a *0 � 0, with *0 # vp(X ),
then there exists a constant c0 such that for any polynomial p, | p(*0)|�
c0 &p&. Since the maximal ideal U*0

is dense in X, it follows that there exists
a sequence [ pn](/U*0

) converges to 1 in the norm of X. However,

1=| pn(*0)&1|�c0 &pn&1&.

This contradiction says that vp(X )=0. In the opposite direction, suppose
that there is a *0 � 0 such that U*0

is not dense in X. Then there exists a
bounded linear functional x* on X that annihilates U*0

. Therefore for any
polynomial p,

x*( p)=x*( p& p(*0))+ p(*0) x*(1)= p(*0) x*(1).

By condition (2), x*(1){0. This insures that there exists a constant c0

such that | p(*0)|�c0 &p& for each polynomial p. This contradicts condition
(3). We thus achieve the opposite implication.

Most ``natural'' reproducing 0-spaces are analytic Hilbert modules on 0.
The basic examples are the Hardy module and the Bergman module on the
polydisk (and on the unit ball). In the following we will use submodule to
mean a closed subspace of X that is invariant under the multiplications of
polynomials. Let M be a submodule of an analytic Hilbert module X on 0.
The zero variety of M is defined by

Z(M)=[z # 0 : f (z)=0, \f # M].

For * # 0, set

M*=[q # C : q(D) f |*=0, \f # M],
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where q(D) is the linear partial differential operator � am1 } } } mn

(�m1+m2+ } } } +mn��zm1
1 �zm2

2 } } } �zmn
n ) if q=� am1 } } } mn

zm1
1 zm2

2 } } } zmn
n . From

[Guo1], we know that M* is invariant under the action by the basic
partial differential operators [���z1 , ���z2 , ..., ���zn], and M* is called the
characteristic space of M at *. The envelope of M at *, M e

* , is defined by

M e
*=[ f # X : q(D) f |*=0, \q # M*].

Then M e
* is a submodule of X, and M e

* $M.
It is well known that ``rank'' is one of important invariants of Hilbert

modules. Recall that a submodule M of the analytic Hilbert module X is
finitely generated if there exists a finite set of vectors x1 , x2 , ..., xn in M
such that Cx1+Cx2+ } } } +Cxn is dense in M. The minimum cardinality
of such a set is called the rank of M, and denoted by rank(M ). If
rank(M)=1, we call M a principal submodule. By Beurling's theorem,
each submodule of H 2(D) is principal. Even more generally, for any
analytic Hilbert module X on a domain in the complex plane C, the sub-
module generated by some set of polynomials is principal because every
ideal of polynomials of one variable is principal. However, for the Hardy
module H 2(Dn) in several variables, there exist submodules with any rank.

Let * # Cn. We denote by O* the ring of all germs of analytic functions
at *. For detailed information about O* we refer to [DY, Kr]. We sum-
marize some properties of O* . First O* is a unique factorization domain
(UFD), and the units of O* are those germs which are nonvanishing at *.
Second, O* is a Noetherian local ring of Krull dimension n.

Let I be an ideal of O* . As in the case of analytic submodules, we define
the characteristic space of I by

I*=[q # C : q(D) f |*=0, \f # I ].

The envelope of I, I e
* is defined by

I e
*=[ f # O* : q(D) f |*=0, \q # I*].

It is easy to check that I e
* is an ideal of O* , and I e

* $I. Furthermore, by the
reasoning in the proof of Theorem 2.1 in [Guo1], we have

I e
*= ,

j�1

(I+M j
*),

where M* is the maximal ideal of O* , that is, M*=[ f # O* : f (*)=0]. Now
using Krull's Theorem [ZS, Vol. (I), p.217, Theorem 12'] or Lemma 2.11
in [DPSY], we have the following proposition.
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Proposition 2.1. Let I be an ideal of O* . Then

I=I e
*.

Hence I is completely determined by its characteristic space.

Let X be an analytic Hilbert module on 0(/C n), and let * # 0. For
f # X we denote by f* the element of O* defined by the restriction of f to a
neighborhood of *. For a submodule M of X, we denote by M (*) the
ideal of O* generated by [ f* : f # M]. Let f1 , f2 , ..., fm be in X. Write
[ f1 , f2 , ..., fm] for the submodule generated by f1 , f2 , ..., fm .

Lemma 2.2. Let * # 0. Then

[ f1 , f2 , ..., fm] (*)= f1* O*+ f2*O*+ } } } + fm*O* .

Proof. From the inclusion

f1* O*+ f2*O*+ } } } + fm*O* /[ f1 , f2 , ..., fm] (*),

we see that

[[ f1 , f2 , ..., fm] (*)]* /( f1* O*+ f2*O*+ } } } + fm*O*)* .

For f # [ f1 , f2 , ..., fm], there exist polynomials p (1)
n , p (2)

n , ..., p (m)
n such that

f = lim
n � �

( p (1)
n f1+ p (2)

n f2+ } } } + p (m)
n fm)

in the norm of X. It is easy to check that for every polynomial q and each
w # 0, the linear functional on X, f [ q(D) f |w , is continuous. Let q be in
( f1*O*+ f2*O*+ } } } + fm* O*)* . Since

q(D)( p(1)
n f1+ p (2)

n f2+ } } } + p (m)
n fm) |*=0,

this implies that

q(D) f |*=0.

It follows that

( f1*O*+ f2*O*+ } } } + fm* O*)* /[ f1 , f2 , ..., fm]* .

It is easy to see that

[ f1 , f2 , ..., fm]*=[[ f1 , f2 , ..., fm](*)]* ,
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and hence

[[ f1 , f2 , ..., fm] (*)]*=( f1*O*+ f2* O*+ } } } + fm*O*)* .

Applying Proposition 2.1, we obtain that

[ f1 , f2 , ..., fm] (*)= f1* O*+ f2*O*+ } } } + fm*O* .

Theorem 2.3. Let M be the submodule of X generated by f1 , f2 , ..., fm .
Then for each f # M, there are g1 , g2 , ..., gm in Hol(0) such that

f =f1 g1+ f2 g2+ } } } + fm gm .

Proof. The proof of Theorem 2.3 is based on sheaf theory (see [Kr,
Chaps., 6, 7]). Let O denote the sheaf of germs of analytic functions on 0.
The sheaf F=F(M) generated by M is defined as follows. For * # 0,
F*=M (*). From Lemma 2.2, we see that F is the subsheaf of O generated
by f1 , f2 , ..., fm . Consider the exact sequence of sheafs

0 � R �
i

Om �
:

F � 0,

where :(g1* , g2* , ..., gm*)=�m
i=1 fi* gi* , R is the kernel sheaf and i is the

inclusion. The Oka Coherence Theorem [Kr, Theorem 7.1.8] implies that
R is coherent, so by Theorem B of Cartan [Kr, Theorem 7.1.7], H 1(0, R)
=0. Now the long exact cohomology sequence [Kr, Theorem 6.2.22] gives

H 0(0, Om) w�
:* H 0(0, F) w�

$* H 1(0, R)=0.

So :* is surjective. This says that for every f # M, there exist g1 , g2 , ..., gm

in Hol(0) such that

f =f1 g1+ f2 g2+ } } } + fm gm .

The proof is complete.

In Douglas and Paulsen's book [DP, p. 42, Problem 2.23], it is asked
when a principal submodule of H 2(Dn) is the closure of an ideal of
polynomials. Combining Theorem 2.3 with the characteristic space theory
of polynomials (see [Guo1]), one can characterize when a principal
submodule is generated by polynomials.

Let X be an analytic Hilbert module on 0. For an ideal I of polynomials,
we let [I ] denote the closure of I in X and let Z(I ) be the zero variety of
I, that is, Z(I )=[z # C n : p(z)=0, \p # I ].
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Theorem 2.4. Let I= p L be the Beurling form of I. If [I ] is principal,
then Z(L) & 0=<. Equivalently, if Z(L) & 0{<, then rank([I ])�2.

Proof. Let [ p1 , p2 , ..., pk] be a set of generators of L. Then the greatest
common divisor GCD[ p1 , p2 , ..., pk]=1. Now suppose that there exists
* # 0 such that pi (*)=0 for i=1, 2, ..., k. Decompose pi= pi$pi" such that
each prime factor of pi$ vanishes at *, and pi"(*){0, and p=q1 q2 such that
each prime factor of q1 vanishes at *, and q2(*){0. Since [I ] is principal,
this says that there exists some f in X such that

[ f ]=[ pp1 , pp2 , ..., ppk].

By Theorem 2.3, there exist analytic functions on 0, g1 , g2 , ..., gk ,
h1 , h2 , ..., hk such that

pp1= fg1 , pp2= fg2 , ..., ppk= fgk , and f = :
k

i=1

h i pp i .

Therefore,

:
k

i=1

hi g i=1.

So, the functions g1 , g2 , ..., gk have no common zero in 0. This implies
that there is some gs such that gs(*){0. From the equality pps= fgs one
has

[ pps]*=[ f ]* .

According to Theorem 2.1 in [Guo1],

q1 p$sC=[ pps]
e
*=[ f ]e

*.

However, for each i, [ f ]* /[ pp i]* and hence for every i,

[ f ]e
*#[ ppi]

e
*=q1 pi$C.

So, for every i,

q1 p$sC#q1 p i$C.

Thus each pi$ is divisible by p$s . So, every pi is divisible by p$s . This is
impossible. Thus, p1 , p2 , ..., pk have no common zero in 0, that is,
Z(L) & 0=<. The proof is complete.

Corollary 2.5. Let I= pL be the Beurling form of the ideal I. If every
algebraic component of Z(I ) has a nonempty intersection with 0, then [I ]
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is principal if and only if I= pC. In particular, if I is prime, and
Z(I ) & 0{<, then [I ] is principal if and only if I= pC, and p is prime.

Proof. If [I ] is principal, then by Theorem 2.4, Z(L) & 0=<. So for
each * # 0,

[I ]*=[ pC]* .

From Corollary 2.3 in [Guo1], we see that I#pC, and hence I= pC. The
opposite direction is obvious.

When n=2, one can obtain a more detailed result. We will need a
lemma due to Yang (see [Yang]).

Lemma 2.6. Suppose p1 , p2 , ..., pk are polynomials in two variables such
that the greatest common divisor GCD( p1 , p2 , ..., pk)=1. Then the ideal
( p1 , p2 , ..., pk) generated by p1 , p2 , ..., pk is finite codimensional.

Therefore on C 2, every ideal I= pL is ``almost principal'' because L is of
finite codimension.

Corollary 2.7. Let X be an analytic Hilbert module on 0(/C 2), and
let I= pL be the Beurling form of I. Then [I ] is principal if and only if
[I ]=[ p].

Proof. Let [I ] be principal. By Theorem 2.4, Z(L) & 0=<. Using
Lemma 2.6, we see [L]=X. So [I ]=[ p].

Let X be an analytic Hilbert module on 0. Then naturally, the ring C

of polynomials is endowed with the topology induced by X. In this topol-
ogy, an ideal I is closed if and only if [I ] & C=I. Following the language
in [DPSY], closed ideals are also called contracted. For ``natural'' analytic
Hilbert modules it would be interesting to classify the contracted ideals. In
particular, for H 2(Dn), Douglas and Paulsen conjectured that if I is
contracted, then each algebraic component of Z(I ) has a nonempty
intersection with Dn (see [DPSY, DP]). When n=2, this conjecture was
affirmed by R. Gelca [Ge1].

Let 0 be a bounded complete Reinhart domain (i.e., a bounded domain
with the property that for *=(*1 , *2 , ..., *n) # 0, if |zi |�1, i=1, 2, ..., n,
then (z1*1 , z2*2 , ..., zn*n) # 0.) For a polynomial p, we denote by d( p) the
sum of the degrees of p in each variable. The following lemma is due to
R. Gelca [Ge1, Ge2].

Lemma 2.8. Let 0 be a bounded complete Reinhart domain. If p is a
polynomial having no zeros in 0, then for every r in (1�2, 1) and
(z1 , z2 , ..., zn) # 0� , | p(z1 , z2 , ..., zn)�p(rz1 , rz2 , ..., rzn)|�2d( p).
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The next proposition will be used in Section 3 several times. It first was
proved for n=2 by R. Gelca [Ge1]. Here we give a simple proof by using
the Dominated Convergence Theorem.

Proposition 2.9. Let p be a polynomial having no zeros in Dn. Then pC

is dense in H 2(Dn).

Proof. Let

fr(z1 , z2 , ..., zn)= p(z1 , z2 , ..., zn)�p(rz1 , rz2 , ..., rzn).

Then for 1<r<1�2, fr # pH 2(Dn). Let [rn]n be a sequence such that rn � 1
as n � �. Now by Lemma 2.8, the family frn

is uniformly bounded, and
frn

� 1 almost everywhere on Tn. By the Dominated Convergence
Theorem, frn

converges to 1 in the norm of H 2(Dn). The conclusion follows
because the ring of polynomials is dense in H 2(Dn).

Remark. By the same as the proof, we have that if Z( p) & Bn=<, then
pC is dense in the Hardy space H 2(Bn) on the unit ball Bn .

Proposition 2.10. Let I be an ideal of polynomials on C 2. If Z(I ) & D2

=<, then there exists a polynomial q # I such that Z(q) & D2=<.

Proof. Let I= p L be the Beurling form of I. Obviously, Z( p) & D2

=<. To complete the proof, we will find a polynomial h in L such that
Z(h) & D2=<. Since L is of finite codimension, and Z(L) & D2=<, there
exist finitely many zeros *1 , *2 , ..., *k of L, which lie in C 2"D2. Now
decompose L as

L= ,
k

i=1

Lk ,

where Li are U*i
-primary for i=1, 2, ..., k. From [AM], we see that there

is a positive integer m such that

Um
*i

/Li , i=1, 2, ..., k.

Since *i=(*$i , *i") � D2, |*i$|�1 or |*i"|�1. For each i, we may suppose
that |*i$|�1. This implies that >k

i=1 (z&*i$)
m has no zero in D2, and

>k
i=1 (z&*i$)

m # L. Set

q= p `
k

i=1

(z&*i$)
m,

which gives the desired conclusion.

However, for n>2, we do not know if the same conclusion is true.

352 KUNYU GUO



Conjecture. Let n>2, and I be an ideal of polynomials on C n. If Z(I ) & Dn

=<, then there exists a polynomial q in I such that Z(q) & Dn=<.

Remark. The preceding Conjecture implies Douglas and Paulsen's con-
jecture [DPSY, DP]. That is, if I is contracted in H 2(Dn), then each
algebraic component of I meets Dn nontrivially. In fact, first let I=�m

j=1 Ij

be an irredundant primary decomposition of I. We may suppose that there
are I1 , I2 , ..., Ik such that Z(I j) & Dn=< for j=1, 2, ..., k, and Z(Ij) &
Dn{< for j=k+1, ..., m. By the preceding Conjecture, there exists a poly-
nomial q # I1I2 } } } Ik such that Z(q) & Dn=<. Therefore Proposition 2.9
implies that

H 2(Dn)=[qC]=[I1I2 } } } Ik].

From the inclusions

I1I2 } } } Ik \ ,
m

j=k+1

Ij+/I/ ,
m

j=k+1

Ij ,

we see that

[I ]=_ ,
m

j=k+1

Ij& .

By [DPSY, Theorem 2.7], [I ] & C=�m
j=k+1 Ij . This contradicts the con-

tractedness of I. It follows that the preceding Conjecture implies Douglas
and Paulsen's conjecture.

3. UNITARY EQUIVALENCE OF HARDY SUBMODULES
GENERATED BY POLYNOMIALS

In this section we will prove the classification theorem for Hardy sub-
modules on the polydisk generated by polynomials. Let p1 and p2 be two
polynomials in n variables. We say that p1 , p2 are modulus equivalent if
there exist two polynomials q1 , q2 with Z(q1) & Dn=Z(q2) & Dn=< such
that | p1 q1 |=| p2 q2 | on T n. If p1 and p2 are modulus equivalent we will
write p1

�� p2 .

Theorem 3.1. Let I1= p1L1 , I2= p2L2 be two ideals of polynomials.
Then [I1] and [I2] are unitarily equivalent if and only if p1

�� p2 and
[ p1L1]=[ p1 L2].

To prove Theorem 3.1, we will need several lemmas.
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Lemma 3.2. Let f =p�q be a rational function, where p and q are without
common factors. If f is analytic on Dn, then Z(q) & Dn=<.

Proof. In fact, if there is a * # Dn such that q(*)=0, then p(*)=
f (*) q(*)=0. Let pmi

i be the primary factors of p with * # Z( pi),
i=1, 2, ..., s. Then by [Guo1, Corollary 2.2], we see that

( p)e
*= pm1

1 pm2
2 } } } pms

s C,

where ( p) is the ideal of C generated by p, and ( p)e
* is the envelope of ( p)

at *. Let ( p)* and ( fp)* denote the characteristic spaces of ( p) and ( fp) at
* (cf. [Guo1]), respectively, where ( fp) is the ideal of Hol(Dn) generated
by fp. Since

( p)*=( fq)* #(q)* ,

we have

( p)e
*/(q)e

*.

So,

pm1
1 pm2

2 } } } pms
s C/qn1

1 qn2
2 } } } qnt

t C,

where qni
i are the primary factors of q with * # Z(qi), i=1, 2, ..., t. Therefore

there exists a polynomial r such that

pm1
1 pm2

2 } } } pms
s =r qn1

1 qn2
2 } } } qnt

t .

This is contradictory to our assumption.

Let f # Hol(Dn). For each w # T n, the slice function fw on D is defined by
fw(z)= f (zw), \z # D.

We will now give a modification of Theorem 5.2.2 in Rudin's book
[Ru1]; the proof is similar to that of Rudin [Ru1].

Lemma 3.3. Let f be in the Nevanlinna class on Dn, and let the slice
functions fw be rational ( in one variable) for almost all w # T n. Then f is a
rational function (of n variables).

Proof. First of all, for a rational function r= p�q in one variable, we
define the degree of r is the maximum of deg p, deg q, provided that the
common factors of p, q have first been cancelled. If for almost all w # T n,
deg fw=0, it is easy to verify that f =c for some constant c. Thus, without
a loss of generality, we assume that there exist a subset E of T n with
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mn(E )>0 and a natural number k such that deg fw=k for w # E (here mn

is the Lebesgue measure on T n, divided by (2?)n in order to have
mn(T n)=1.) Let f =��

i=0 Fi be the homogeneous expansion of f. Notice
that fw is analytic on the unit disk D. Thus by Lemma 3.2, for each w # E,
fw(z) is uniquely written as

fw(z)=
;k(w) zk+;k&1(w) zk&1+ } } } +;0(w)

:k(w) zk+:k&1(w) zk&1+ } } } +1
.

This implies that for every w # E, the infinite system of linear equations

Fm(w)+Fm&1(w) x1+ } } } +Fm&k(w) xk=0, (m>k) (C)

has a unique solution (:1(w), :2(w), ..., :k(w)). This uniqueness ensures that
the vectors

vm(w)=(Fm&1(w), ..., Fm&k(w)) (m>k)

span all of C k if w # E. Now let w0 # E. It follows that there exist vectors
vm1

(w0), vm2
(w0), ..., vmk

(w0) which are linearly independent. Consider the
determinant r(w) of these k vectors vm1

(w), vm2
(w), ..., vmk

(w). Then r(w) is
a polynomial and r(w0){0. Notice that Z(r) & T n is a null-measurable
subset of T n. If we write E $ for E&Z(r) & T n, then mn(E $)=mn(E )>0.
On E $, we can use the corresponding k equations

Fmt
(w)+Fmt&1(w) x1+ } } } +Fmt&k(w) xk=0 (t=1, 2, ..., k),

to solve for the :i . By Cramer's rule, there are rational functions
h1 , h2 , ..., hk , whose denominators have no zeros on E $, such that
:i (w)=hi (w) for all w # E $, i=1, 2, ..., k. The equalities

hi$=F i+Fi&1 h1+ } } } +F0hi (i=0, 1, ..., k), (CC)

then define rational functions h$0, h$1, ..., h$k , whose denominators have no
zeros on E $, such that

fw(z)= f (zw)=
h$0(w)+h$1(w) z+ } } } +h$k(w) zk

1+h1(w) z+ } } } +hk(w) zk

for w # E $. Since f is in the Nevanlinna class, f (w)=limr � 1 f (rw) exist for
almost all w # T n. It follows that there exists a subset E" of E $ such that
mn(E")>0, and on E",

f (w)(1+h1(w)+ } } } +hk(w))=h$0(w)+h$1(w)+ } } } +h$k(w).
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Since hi , h j$ are rational functions for all i and j, we multiply the two sides
of the above equality by a polynomial p so that the functions p(w)
(1+h1(w)+ } } } +hk(w)) and p(w)(h$0(w)+h$1(w)+ } } } +h$k(w)) become
polynomials. Therefore, there exist polynomials q1 and q2 such that on E",

f (w) q1(w)=q2(w).

By Rudin [Ru1, Theorem 3.3.5], we see that E" is a determining set for
Nevanlinna functions. Therefore for almost all w # T n,

f (w) q1(w)=q2(w).

So, for every z # Dn, we have

f (z) q1(z)=q2(z).

Now let us assume that the common factors of q1 and q2 have been can-
celled. Thus by Lemma 3.2, f (z)=q2(z)�q1(z) is a rational function, and
Z(q1) & Dn=<, completing the proof.

Let P be a prime ideal in the polynomial ring C. The height of P is
defined to be the maximal length l of all properly increasing chains of
prime ideals

0=P0 /P1 } } } /Pl=P.

Since the ring C is Noetherian every prime ideal has finite height and the
height of an arbitrary ideal is defined to be the minimum of the heights of
its associated prime ideals. For an ideal I, one has dimC Z(I )=n&l, where
l is the height of I, dimC Z(I ) the complex dimension of the zero variety of
I (cf. [DPSY]). It is well known that analytic varieties in C n of codimension
at least 2 are removable singularities for analytic functions, (cf. [KK]).
This says that if height I�2, then Z(I ) is a removable singularity.

Lemma 3.4. Assume that I is an ideal of polynomials such that the
greatest common divisor GCD(I ) of I is equal to 1. Then height I�2.

Proof. Let I=� l
i=1 Ii be an irredundant primary decomposition of I

with its associated prime ideals P1 , P2 , ..., Pl . For a prime ideal P, it is not
difficult to verify that height P=1 if and only if P is principal. Now sup-
pose that some Pi is principal, that is, there is some prime polynomial pi

such that Pi= piC. Since

I= ,
l

i=1

Ii �I i �Pi= pi C,
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every polynomial in I is divisible by pi . This is impossible. We thus
conclude that height Pi�2 for i=1, 2, ..., l. So, height I�2.

A straightforward corollary of Lemma 3.4 is

Lemma 3.5. Let I= pL be the Beurling form of the ideal I. If there is a
function . # L�(T n) such that .I/H 2(Dn), then .p is in H �(Dn).

Proof. By Lemma 3.4, we see that the submodule [L] satisfies the con-
dition (*)in [DY](see [DY, Definition 5]). Since .p[L]/H 2(Dn), using
Theorem 1 in [DY], we obtain .p # H �(Dn).

Proof of Theorem 3.1. ( O ) By assumption, there is a unimodular
function ' such that

p1 q1='p2 q2 .

Since each qi is a generator of H 2(Dn) (see Proposition 2.9), we see that

[I1]=[ p1L1]=[ p1 L2]=[ p1 q1L2]='[ p2 q2 L2]='[ p2 L2]='[I2],

and hence [I1] and [I2] are unitarily equivalent.

( o ) Suppose that [I1] and [I2] are unitarily equivalent. Thus there
exists a unimodular function ' such that

'[I1]=[I2].

Let [ p2 q1 , ..., p2 qk] be a set of generators of I2 , and hence a set of
generators of [I2]. By Theorem 2.3, every function g(z) in [I2] has form
g(z)= p2(z) #(z), where #(z) is analytic on Dn. From Lemma 3.5, 'p1 #
H �(Dn). This implies that for each f # L1 , there is an unique analytic
function hf on Dn such that

('p1)(z) f (z)= p2(z) hf (z).

Now for f1 # L1 , we define an analytic function on Dn "Z( f1) by

,f1
(z)=

hf1
(z)

f1(z)
, \z # Dn"Z( f1).

For another f2 # L1 , we also define an analytic function on Dn"Z( f2) by

,f2
(z)=

hf2
(z)

f2(z)
, \z # Dn"Z( f2).
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Since

('p1)(z) f1(z) f2(z)= p2(z) hf1
(z) f2(z)= p2(z) hf2

(z) f1(z), \z # Dn,

we have

,f1
(z)=,f2

(z), \z # Dn"Z( f1) _ Z( f2).

The above argument shows that for any z # Dn"Z(L1), we can define
,(z)=hf (z)�f (z) for any f # L1 with f (z){0 and , is independent of f, and
,(z) is analytic on Dn"Z(L1).

From Lemma 3.4, one sees that height L1�2, and hence by [KK],
Dn & Z(L1) is a removable singularity for analytic functions. This shows
that ,(z) extends to an analytic function on all of Dn. Now we regard ,(z)
as an analytic function on Dn, and notice that for f # L1 ,

('p1)(z) f (z)= p2(z) ,(z) f (z).

It follows that

('p1)(z)= p2(z) ,(z).

For 0<r<1,

log |('p1)(rz)|=log | p2(rz)|+log |,(rz)|.

Because ('p1)(z), p2(z) are bounded analytic functions on Dn, we conclude
that [log |,r |]0<r<1 is a bounded set in L1(dmn). Thus , is in the
Nevanlinna class.

Also notice that

'� [I2]=[I1].

Just as in the above discussion, there is a Nevanlinna class function �(z)
on Dn such that

('� p2)(z)= p1(z) �(z).

Since

('p1)('� p2)= p2 p1 ,�

on T n, one sees that ,�=1 on T n. By the same reasoning, one shows that
,(z) �(z) is also in the Nevanlinna class. This implies that ,(z) �(z)=1. It
follows that 1

,(z) is in the Nevanlinna class. Now by [Ru1], for almost all
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w # T n, the slice function ,w(z)=,(zw) is in the Nevanlinna class on D,
and hence by [Gar], there are singular inner functions ' (w)

1 , ' (w)
2 and outer

functions f (w)
1 , f (w)

2 in H 2(D) such that

,w=
f (w)

1 ' (w)
1

f (w)
2 ' (w)

2

.

So,

('p1)w(z) ' (w)
2 (z) f (w)

2 (z)=' (w)
1 (z) f (w)

1 (z) p2w(z), \z # D.

Since the inner factor of p2w(z) is a finite Blaschke product, and ' (w)
2 (z) is

singular, ' (w)
1 (z) is divisible by ' (w)

2 (z). Since 1
,(z) is in the Nevanlinna class,

and by Lemma 3.5, '� p2 # H �(Dn). From the equality '� p2= 1
, p1 , as above,

'(w)
2 (z) is divisible by ' (w)

1 (z). So, there exists a unimodular constant cw such
that

,w=cw
f (w)

1

f (w)
2

.

Now let p(z, w) be the Poisson kernel for Dn. Then

('p1)(z)=|
T n

p(z, w)('p1)(w) dmn(w).

This implies that

|('p1)(z)|= } |Tn
p(z, w)('p1)(w) dmn(w) }�|

T n
p(z, w) | p1(w)| dmn(w).

Set

p1
t(z)=|

T n
p(z, w) |p1(w)| dmn(w).

Then p1
t(z) extends to a continuous function on D� n, and p1

t(w)=| p1(w)| on
T n. For w # T n, let ('p1)*w be the radial limit of ('p1)w(z). Thus, one has

|('p1)*w(ei%)|�| p1w(ei%)|.

We denote the outer factor of ('p1)w(z) by f� w (z), and the inner factor by
'w
t(z). Let p (w)

1 , p (w)
2 be the outer factors of p1w , p2w , and let ' (w)

p1
, ' (w)

p2
be
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inner factors of p1w , p2w , respectively. It is easy to see that p (w)
1 , p (w)

2 are
polynomials in one variable, and ' (w)

p1
, ' (w)

p2
are finite Blaschke products. By

the equality

f� w (z) 'w
t(z) f (w)

2 (z)=cw f (w)
1 (z) p(w)

2 (z) ' (w)
p2

(z),

we see that there is a unimodular constant c$w such that

f� w (z) f (w)
2 (z)=c$w f (w)

1 (z) p (w)
2 (z).

Since

| f� w (e i%)|=|('p1)*w(e i%)|�| p1w(ei%)|=| p (w)
1 (ei%)|,

by [Gar], we obtain

| f� w (z)|�| p (w)
1 (z)|, \z # D.

It follows that

|c$w f (w)
1 (z) p (w)

2 (z)|=| f� w (z) f (w)
2 (z)|�| p (w)

1 (z) f (w)
2 (z)|, \z # D.

This implies that

|,w(z)|�
| p (w)

1 (z)|
| p (w)

2 (z)|
.

From the equality ('� p2)(z)= 1
,(z) p1(z), and the fact '� p2 # H �(Dn), similar

reasoning shows that

1
|,w(z)|

�
| p (w)

2 (z)|
| p (w)

1 (z)|
.

We thus conclude that

|,w(z)|=
| p (w)

1 (z)|
| p (w)

2 (z)|
.

Because ,w(z)=cw( f (w)
1 (z)�f (w)

2 (z)), and f (w)
1 (z) and f (w)

2 (z) are outer, there
is a unimodular constant c"w such that

,w(z)=cw
f (w)

1 (z)
f (w)

2 (z)
=c"w

p (w)
1 (z)

p (w)
2 (z)

.
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Hence, for almost all w # T n, ,w is rational function in one variable. From
Lemma 3.2 and Lemma 3.3, we see that there exist polynomials q1(z), q2(z)
with Z(q1) & Dn=Z(q2) & Dn=< such that

,(z)=
q2(z)
q1(z)

.

Since 'p1=,p2 , we conclude that

| p1 q1 |=| p2 q2 |.

Next we will show that [ p1L1]=[ p1 L2]. By the equality | p1 q1 |=
| p2 q2 |, there is a unimodular function '$, such that p2 q2='$p1 q1 . Because
each qi is a generator of H 2(Dn) for i=1, 2 (see Proposition 2.9), we have

[I2]=[ p2L2]=[ p2 q2L2]='$[ p1 q1 L2]='$[ p1 L2].

Since [I1] and [I2] are unitarily equivalent, [ p1L1] and [ p1L2] are
unitarily equivalent. Thus, there is a unimodular function ' such that

'[ p1L1]=[ p1L2].

As in the above proof, we see that there exists a Nevanlinna class function
,(z) which does not vanish at any point in Dn, with 1

,(z) also in the
Nevanlinna class, such that 'p1=,p1 . Also as above, for almost all w # T n,
there exists a unimodular constant cw such that

,w(z)=cw
p (w)

1 (z)
p (w)

1 (z)
=cw .

So, ,w(z)=,(0). Since for almost all w # T n,

,(w)= lim
r � 1

,(rw)= lim
r � 1

,w(r)=,(0),

we conclude that ,(z) is a nonzero constant. So, ' is a unimodular
constant. This gives that [ p1 L1]=[ p1L2]. The proof of Theorem 3.1 is
completed.

Corollary 3.6. Let p1 , p2 be two polynomials. Then [ p1] and [ p2] are
unitarily equivalent if and only if p1

�� p2 .

Let p, q be two polynomials such that the zero set of each of their prime
factors meets Dn nontrivially. For two such polynomials, in [Guo1], the
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author conjectured that if [ p] and [q] are unitarily equivalent, then there
exists an invertible analytic function f in H �(Dn) such that | p|

|q|
=| f | on T n.

The next example shows that this conjecture is not true in general. Let

p(z1 , z2)=z1+z2+2z1z2 , q(z1 , z2)=z1+z2&2z1 z2

be two polynomials on C 2. Since on T 2,

|z1+z2+2z1z2 |
|z1+z2&2z1z2 |

=
|z1+z2+2|
|z1+z2&2|

,

one sees that [ p] and [q] are unitarily equivalent. However, because

lim
(z1 , z2) � (&1, &1)

|z1+z2+2|
|z1+z2&2|

=0,

there is not any invertible analytic function f in H �(Dn) such that | p|
|q|

=| f |
on T n.

Lemma 3.7. Let f # Hol(Dn). If for almost all w # T n, the slice function
fw(z)= f (zw) is a polynomial, then f is a polynomial.

Proof. The proof is similar to that of Corollary 3.6 in [Guo1]. For
completeness, we give the details of the proof. Let f=F0+F1+ } } } be f 's
homogeneous expression. For almost all w # T n, since

fw(z)= :
n e 0

Fn(zw)= :
n e 0

Fn(w) zn,

there exists a measurable subset T� n of T n with mn(T� n)=1 such that, for
each w # T� n, there is a natural number n(w) which satisfies Fn(w)=0 if
n�n(w). Assume that there exist infinitely many Fk1

, ..., Fkn
, ... that are not

zero. Since

T� n� .
�

i=1

(Z(Fki
) & T n)

and each Z(Fki
) & T n is null-measurable on T n, this leads to a contra-

diction. We therefore conclude that there exist only finitely many F i's
such that Fi{0, that is, f is a polynomial. This completes the proof of
Lemma 3.7.

Corollary 3.8. Let p be a polynomial, and let q be a homogeneous
polynomial. Then [ p] and [q] are unitarily equivalent if and only if there
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exists a polynomial r with Z(r) & Dn=< such that | p|= |rq| on T n. In par-
ticular, if p, q are homogeneous, then [ p] and [q] are unitarily equivalent if
and only if there exists a constant c such that | p|=c |q| on T n.

Proof. By Corollary 3.6, sufficiency is obvious. If [ p] and [q] are
unitarily equivalent, Corollary 3.6 says that there exist two polynomials
q1 , q2 with Z(q1) & Dn=Z(q1) & Dn=< such that on T n,

| p|
|q|

=
|q1 |
|q2 |

.

For any z # Dn, set

r(z)=
q1(z)
q2(z)

.

Since q1w , q2w are outer functions in H 2(D), there exists a unimodular
constant cw such that for any z # D,

q2w(z) p(w)(z)=cw q1w(z) q(w),

where p(w)(z) is the outer factor of pw(z). Thus,

rw(z)=
q1w(z)
q2w(z)

=c� w
p(w)(z)
q(w)

for almost all w # T n. Since p(w)(z) is a polynomial, Lemma 3.7 implies that
r(z) is a polynomial, and Z(r) & Dn=<. The remaining case is obvious.
This completes the proof of Corollary 3.8.

Combining Theorem 3.1 with Corollary 3.8, we immediately obtain

Corollary 3.9. Let I= pL be the Beurling form of the ideal I. Then
[I ] and H 2(Dn) are unitarily equivalent if and only if there exists a polyno-
mial r with Z(r) & Dn=< such that | p|=|r| on T n, and L is dense in
H 2(Dn).

Remark. In Corollary 3.9, the condition | p|= |r| is a very restrictive
condition on p. Here, we give an exact characterization for those p for
which there exists a polynomial r with Z(r) & Dn=< such that | p|=|r| on
T n. Decompose p= p1 p2 such that the zero set of each prime factor of p1

meets Dn nontrivially, and each of p2 does not. We call p1 the Dn-factor of
p. From Proposition 2.9 and Corollary 3.9, we see that p has the property
mentioned above if and only if p1 has. Thus, for simplicity, we may assume
that the zero set of each prime factor of p meets Dn nontrivially. Let q be
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a polynomial. We use q~ to denote the polynomial whose coefficients are the
complex conjugates of the coefficients of q. Therefore on T n, q(w)=q~ (w� ).
Now for a polynomial p with the property mentioned above, by [Ru1,
Theorem 5.2.4], there exist a polynomial q with Z(q) & Dn=<, and a
monomial {(z) such that {(z) q~ ( 1

z) is a polynomial and

p(z)
r(z)

=
{(z) q~ (1�z)

q(z)
, \z # Dn.

So,

p(z) q(z)={(z) q~ \1
z+ r(z), \z # Dn.

Since the zero set of each prime factor of p meets Dn nontrivially, and
Z(r) & Dn=<, r | pq implies r | q. It follows that there is a polynomial h
with Z(h) & Dn=< such that

p(z) h(z)={(z) q~ \1
z+ \z # Dn.

Therefore p is the Dn-factor of {(z) q~ ( 1
z). Conversely, it is easy to check that

if p is the Dn-factor of some {(z) q~ ( 1
z), then p has the property mentioned

above. We thus conclude that a polynomial p has the property mentioned
above if and only if there exists a polynomial q with Z(q) & Dn=< such
that p(z) and {(z) q~ ( 1

z) have the same Dn-factor, where {(z) is a monomial
such that {(z) q~ ( 1

z) is a polynomial.

Definition. An ideal I is said to be homogeneous if the relation p # I
implies that all homogeneous components of p are in I. Equivalently, an
ideal I is homogeneous if and only if I is generated by homogeneous
polynomials.

Let I be homogeneous, and I=qL be the Beurling form of I. Then it is
easy to check that both q and L are homogeneous.

The next corollary generalizes Theorem 2 in [Yan].

Corollary 3.10. Let I1 , I2 be homogeneous, and I1= p1L1 , I2= p2L2

be their Beurling forms. Then [I1] and [I2] are unitarily equivalent if and
only if there exists a constant c such that | p1 |=c| p2 | on T n and L1=L2 .

Proof. From Theorem 3.1, the sufficiency is immediate. Now assume
that [I1] and [I2] are unitarily equivalent. Then as in the proof of
Corollary 3.8, one sees that there exists a constant c such that | p1 |=c | p2 |
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on T n. Note that both p1 L1 and p1 L2 are homogeneous, and hence by
[ZS, Vol. (II), p. 153, Theorem 9 and its Corollary], each of their
associated prime ideals is homogeneous. Now combining Theorem 3.1 with
[DPSY, Theorem 2.7], the equality [ p1L1]=[ p1L2] implies that p1L1=
p1 L2 , and therefore L1=L2 , completing the proof.

Now let us endow the ring C with the topology induced by the Hardy
space H 2(Dn). It is easy to see that studying the unitary equivalence of
submodules generated by ideals and by their closures is the same thing. For
an ideal I, we write I� for the closure of I under the Hardy topology.

The following theorem is an equivalent form of Theorem 3.1.

Theorem 3.11. Let I1 ,I2 be two ideals of polynomials, and let I� 1= p1 L1 ,
I� 2= p2 L2 be the Beurling forms of their closures. Then [I1] and [I2] are
unitarily equivalent if and only if p1 �� p2 and L1=L2 .

Proof. It is easy to see that the sufficiency is obvious. Now suppose that
[I1] and [I2] are unitarily equivalent, that is, [I� 1] and [I� 2] are unitarily
equivalent. By Theorem 3.1, one immediately obtains that p1

�� p2 , and
[ p1L1]=[ p1 L2], [ p2 L2]=[ p2L1]. Since p1L1 , p2L2 are closed ideals,
we have

p1L1 $p1L2 , p2L2 $p2L1 .

The above inclusions imply that L1=L2 .

When n=2 we can give simpler conditions for [I1] and [I2] to be
unitarily equivalent.

Theorem 3.12. Let I1 and I2 be ideals in two variables, and let I1=
p1 L1 , I2= p2 L2 be their Beurling forms. Then the submodules [I1], [I2] of
H 2(D2) are unitarily equivalent if and only if p1

�� p2 and L1 =L2 .

Proof. It is easy to see that the sufficiency is obvious. Now we decom-
pose p1 as the product of p$1 and p1" such that the zero set of each of the
prime factors of p$1 meets D2 nontrivially, and each of p1" does not.
Combining Lemma 2.6 with [DPSY, Proposition 2.9], we see that p1L1 =
p$1 L1 , and p1L2 = p$1 L2 . Thus, if [I1] and [I2] are unitarily equivalent,
then by Theorem 3.1 one immediately obtains that p1

�� p2 , and

p$1 L1 =[ p1L1] & C=[ p1L2] & C= p$1 L2 .

This gives that L1 =L2 , completing the proof.
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4. SIMILARITY OF HARDY SUBMODULES GENERATED
BY POLYNOMIALS

In this section, we consider the similarity problem by the methods used
in Sections 2 and 3.

Let I1= p1 L1 , I2= p2 L2 be two ideals of polynomials, and let both
module maps X: [I1] � [I2] and Y: [I2] � [I1] have dense range. Then
by [DY], there exist ,, � # L�(T n) such that X=M, , Y=M� . By Lemma
3.5, f =,p1 , g=�p2 are in H �(Dn). As in the proof of Theorem 3.1, there
are analytic functions r1 and r2 such that f =r1 p2 , g=r2 p1 .

Lemma 4.1. Under the above statements, both r1 and r2 have no zero
points in Dn.

Proof. Suppose that there exists a point z0 # Dn such that r1(z0)=0.
From Lemma 2.2, we obtain

[ fL1](z0)=[r1 p2L1](z0)=r1z0
p2z0

L (z0)
1 =[ p2L2](z0)= p2z0

L(z0)
2 ,

and

[ gL2](z0)=[r2 p1L2] (z0)=r2z0
p1z0

L(z0)
2 =[ p1L1] (z0)= p1z0

L (z0)
1 ,

where L (z0)
i denote the ideals of Oz0

generated by [ pz0
: p # Li], and r iz0

, piz0

denote the elements of Oz0
defined by the restriction of ri , pi to neighbor-

hoods of z0 , i=1, 2. From the above equalities, we obtain

L(z0)
2 =r1z0

r2z0
L (z0)

2 .

By Nakayama's lemma (see [AM, Proposition 2.6]), this is impossible,
and hence r1 has no zeros in Dn. For the same reason, r2 has no zeros
in Dn.

Proposition 4.2. Let I1= p1 L1 , I2= p2 L2 be two ideals of polynomials
such that each of their algebraic components meets Dn nontrivially. If [I1]
and [I2] are quasi-similar, then L1=L2 .

Proof. By the assumptions, there exist module maps X: [I1] � [I2]
and Y: [I2] � [I1] with dense ranges. Thus, there exist ,, � # L�(T n) such
that X=M, , Y=M� . Then by Lemma 4.1, there are analytic functions r1

and r2 , each of which has no zeros in Dn such that ,p1=r1 p2 , �p2=r2 p1 .
Note that ,p1 , �p2 are in H �(Dn). We thus have that for * # Dn,

( p2L2)*=[ p2L2]*=[,p1L1]*=[r1 p2L1]*=[ p2 L1]*=( p2L1)*
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and

( p1L1)*=[ p1L1]*=[�p2 L2]*=[r2 p1L2]*=[ p1L2]*=( p1L2)* ,

where ( p1L1)* and ( p2L2)* are the characteristic spaces of the ideals p1L1

and p2L2 at *, respectively (cf. [Guo1]). Using [Guo1, Corollary 2.3], we
see that

p2 L2 #p2L1 , p1L1 #p1L2

and hence L1=L2 , which proves the assertion.

The following theorem strengths [Yan, Theorem 1].

Theorem 4.3. Let I1= p1L1 , I2= p2L2 be homogeneous ideals. Then the
following are equivalent:

(1) [I1] and [I2] are similar;
(2) [I1] and [I2] are quasi-similar;
(3) there exists a constant c such that c<| p1 |�| p2 |<c&1 on T n, and

L1=L2 .

Proof. (1) O (2). This is obvious.

(2) O (3). Because p1L1 and p2L2 are homogeneous ideals, each of
their associated prime ideals is homogeneous (cf. [ZS, Vol. (II), p. 153,
Theorem 9 and its Corollary]). We apply Proposition 4.2 to obtain
L1=L2 . We use some techniques in [Yan]. Let both module maps
X: [I1] � [I2] and Y: [I2] � [I1] have dense range. Then there exist
,, � # L�(T n) such that X=M, , Y=M� . By Lemma 3.5, f =,p1 , g=�p2

are in H �(Dn). Since p1 is homogeneous, from the equality f =,p1 , we see
that

| f (w)|�&,&� | p1(w)| a.e. on T n.

Therefore,

| fw(e i%)|�&,&� | p1(w)|,

for almost all w # T n. This leads to the inequality

| fw(z)|�&,&� | p1(w)|, z # D,

for almost all w # T n, and hence for all w # T n, we have the inequality

| fw(z)|�&,&� | p1(w)|, z # D.
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Suppose there is a sequence wn � w0 such that

| p1(wn)|
| p2(wn)|

� 0.

By Lemma 4.1, f =r1 p2 . Now for every fixed z{0, z # D, we have

|r1(zwn)|=
| f (zwn)|
| p2(zwn)|

�
&,&� | p1(wn)|
| p2(wn)| |z|k � 0,

where k=deg p2 . This implies that r1(zw0)=0. From Lemma 4.1, this is
impossible, and hence there exists a positive constant c$ such that

c$<
| p1 |
| p2 |

on T n. Similarly, there exists a positive constant c" such that

c"<
| p2 |
| p1 |

on T n. Thus, there exists a constant c such that

c<
| p1 |
| p2 |

<c&1

on T n.

(3) O (1). Set ,= p2 �p1 and �= p1 �p2 . It is easy to see that module
maps

M, : [I1] � [I2], M� : [I2] � [I1]

give similarity between [I1] and [I2].
From Theorem 4.3, one sees that under the conditions of Theorem 4.3,

quasi-similarity implies similarity. We do not know if there exists an
example of two submodules generated by polynomials that are quasi-
similar, but not similar.

Furthermore, from Proposition 4.2 and Theorem 4.3, one sees that
question about the similarity of submodules can be reduced to question
about the similarity of principal submodules. Then one wants to know
when two principal submodules are similar.
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Proposition 4.4. Let p1 and p2 be two polynomials. If there exist
polynomials q1 , q2 with Z(q1) & Dn=Z(q2) & Dn=< such that c<| p1q1 |�
| p2q2 |<c&1 for some constant c, then [ p1] and [ p2] are similar.

Proof. Set ,= p1q1 �p2q2 . Then c<|,|<c&1. Since piq i is a generator
of [ pi] for i=1, 2,

,[ p2]/[ p1] and ,&1[ p1]/[ p2].

It follows that the maps defined by

X, : [ p2] � [ p1], X, f =,f; X,&1 : [ p1] � [ p2], X,&1 f =,&1f

are module maps. It is easy to see

X, X,&1=1, X,&1 X,=1.

So, [ p1] and [ p2] are similar.

The preceding Proposition 4.4 and Corollary 3.6 thus suggest the following
conjecture.

Conjecture. If [ p1] and [ p2] are similar, then there exist polynomials
q1 , q2 with Z(q1) & Dn=Z(q2) & Dn=< such that c<| p1q1 |�| p2q2 |<c&1

for some constant c. That is, the conditions in Proposition 4.4 are also
necessary.

5. THE CASE OF HARDY SUBMODULES ON THE UNIT BALL Bn

We conclude this paper with a look at the case of Hardy submodules on
the unit ball Bn . In [CD], X. M. Chen and R. G. Douglas proved that two
homogeneous principal submodules of H 2(Bn) are quasi-similar if and only
if the corresponding homogeneous polynomials are equal. Combining this
fact with Yan's work [Yan], one finds that the classification of submodules
depends heavily on the geometric properties of domains.

By the methods of Section 3, we can obtain corresponding results in the
case of Hardy submodules on the unit ball Bn . However, on the unit ball
Bn , one has a special conclusion for polynomials.

Proposition 5.1. Let p1 , p2 be two polynomials on C n(n>1). If | p1 |=
| p2 | on �Bn (the boundary of Bn), then there is a unimodular constant c such
that p1=cp2 .
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The proof of Proposition 5.1 is based on the remarkable Theorem 14.3.3
in Rudin's book [Ru2]. Assume n>1. Let 0 be a bounded domain in C n,
and let A(0)=C(0� ) & Hol(0) be the so called 0-algebra. If f # A(0),
g # A(0), and | f (*)|�| g(*)| for each boundary point * of 0, then | f (z)|�
| g(z)| for every z # 0. Also notice that if p is a polynomial, and Z( p) & Bn=<,
then p is a generator of H 2(Bn) (see the remark following Proposition 2.9).
Thus, combining Proposition 5.1 with the methods in Section 3, in case of
Hardy submodules on the unit ball Bn , our result is

Theorem 5.2. Let I1= p1L1 , I2= p2L2 be the Beurling forms of I1 and
I2 . Then the following are equivalent:

(1) [I1] and [I2] are unitarily equivalent;

(2) there exist polynomials q1 and q2 with Z(q1) & Bn=Z(q2) & Bn

=< such that p1q1= p2 q2 , and [ p1 L1]=[ p1L2];

(3) [I1]=[I2].

Corollary 5.3. Let p1 , p2 be two polynomials. Then [ p1] and [ p2] are
unitarily equivalent if and only if there exist polynomials q1 and q2 with
Z(q1) & Bn=Z(q2) & Bn=< such that p1q1= p2 q2 . In particular, if the
zero set of each of the prime factors of pi meets Bn nontrivially for i=1, 2,
then [ p1] and [ p2] are unitarily equivalent if and only if there is a constant
c such that p1=cp2 .

From Theorem 5.2, we see that there is more rigidity among submodules
of H 2(Bn) than in the case of H 2(Dn). Furthermore, From the proof of
Theorem 4.3 and Proposition 5.1, we have

Theorem 5.4. Let I1 , I2 be homogeneous ideals. Then the following are
equivalent:

(1) [I1] and [I2] are unitarily equivalent;

(2) [I1] and [I2] are similar;

(3) [I1] and [I2] are quasi-similar;

(4) I1=I2 .

Based on Theorems 5.2 and 5.4, one thus conjectures.

Conjecture. Let I1 and I2 be two ideals of polynomials, and let [I1],
[I2] be the submodules of H 2(Bn) generated by I1 , I2 respectively. If [I1]
and [I2] are quasi-similar, then [I1]=[I2].
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