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Let T be an absolutely continuous contraction acting on a Hilbert space H. For
x, y # H, define x }T y # L1(T) by its Fourier coefficients: x }T y7(n)=(T*nx, y) if
n�0 and x }T y7(n)=(T &nx, y) if n<0. The main technical result of the paper is
that the vanishing condition limn � � (&xn }T w&L1�H

1
0
+&w }T xn&L1�H

1
0
)=0, w # H

implies that limn � � &xn }T w&L1=0, w # H. Using known factorization techniques,
we exhibit a Borel set _T such that for any f # L1(_T), there exist x, y # H such that
f =(x }T y) |_T

. In the case where T # A & C00 , this leads to a simple proof of the fact
that for every f # L1(T) there exists x, y # H such that f =x }T y. In this case we
also show, using dilation theory in the unit disk, that every strictly positive lower
semicontinuous function . # L1(T) can be written in the form .=x }T x. Examples
show that this is the best possible result for the class A & C00 . � 1998 Academic Press

1. INTRODUCTION

Let H be a separable, infinite-dimensional complex Hilbert space and let
L(H) denote the algebra of all bounded linear operators on H. A con-
traction T # L(H) is absolutely continuous if T is completely nonunitary
or if the spectral measure of its unitary part is absolutely continuous with
respect to Lebesgue measure. If T # L(H) is an absolutely continuous
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contraction, then, for any x, y # H, there exists a function x }T y # L1 such
that the Fourier coefficients of x }T y satisfy:

(x }T y)7 (n)={(T*nx, y)
(T &nx, y)

n�0
n<0.

We write D for the open unit disk in the complex plane C, and T for
the unit circle. The spaces L p=L p(T), 1�p�� are the usual Lebesgue
function spaces relative to Lebesgue measure m on T. The spaces
H p=H p(T), 1�p�� are the usual Hardy spaces. It is well-known [13]
that the dual space of L1�H 1

0 , where H 1
0=[ f # L1 : �2?

0 f (eit) eint dt=0,
n=0, 1, ...], can be identified by H�. If we denote by [ g] the class of
g # L1 in L1�H 1

0 , the duality is given by the pairing:

( f, [ g]) =|
T

fg dm, f # H�, g # L1.

We denote by A=A(H) the class of all absolutely continuous contrac-
tions T # L(H) for which the Sz.-Nagy-Foias functional calculus
8T : H� � L(H) is an isometry. In 1988, H. Bercovici and B. Chevreau
have proved independently that if T # A, then, for any function f # L1, there
exists x, y # H such that [ f ]=[x }T y], that is, f 7(&n)=(T nx, y), n�0
(see [3], [10]). Notice that if we take f =1, we obtain a nontrivial
invariant subspace for T.

In this paper, we study the possibility of solving exactly equations of the
form f =x }T y (that is, for any n # Z, (x }T y)7 (n)= f 7(n)) where f is a
given function in L1 and where T # L(H) is an absolutely continuous
contraction.

In the case where T=S, where S is the usual shift on H2 (so that
x }S y=xy� for x, y # H 2), this question has been solved by J. Bourgain in
1986, [9]: The above factorization holds for f # L1, f{0 if and only if
log | f | # L1. Notice that if log | f | � L1, we can nevertheless find x, y # H2

such that we have f 7(n)=(x }S y)7 (n), n{1, whereas the Bercovici�
Chevreau Theorem gives f 7(n)=(x }S y)7 (n), n�0.

Recall that if T is an absolutely continuous contraction on H and if _
is a Borel subset of T, then _ is said to be essential for T (cf., Definition 3.1
in [10]) if:

& f (T )&�& f |_&� , f # H�(T).

We will denote by Ess(T ) the maximal essential Borel subset for T (see
Proposition 3.3 of [10]). Also denote by 7T (resp. 7

*T) the support of the
spectral measure of the unitary part of the minimal isometric dilation (resp.
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minimal coisometric extension) of T and by _T the Borel set Ess(T )"
(7T _ 7

*T).
We show (Theorem 4.3) that if f # L1(_T), the equation f =(x }T y) |_T

has
a solution in H_H. More precisely, for any infinite array ( fi, j) i, j�1

consisting of elements of L1(_T), there exist sequences (xi) i�1 , ( yj) j�1 of
H such that fi, j=(xi }T yj) |_T

, i, j�1.
Recall that C0}=C0}(H) is the class of all contractions T # L(H) such

that the sequence (&Tnx&)n�1 converges to zero for every x # H, and that
C} 0 and C00 are defined by C}0=(C0})*, C00=C }0 & C0} . In the case of the
usual shift on H2, 7T=<, but if T # A & C00 , then _T=T, and so T has
the following factorization property:

(1.1) For any infinite array ( fi, j) i, j�1 consisting of elements of L1,
there exist sequences (xi) i�1 , ( yj) j�1 of H such that fi, j=(xi }T yj), i, j�1.

This property of the class A & C00 was never explicitly stated in the
literature, but it can be deduced immediately from Corollary 6.9 in [7] and
Proposition 4.2 in [6] (see Remark 1, Section 5). The main new technical
result of the paper is given by Theorem 3.2 which says that if T # L(H) is
an absolutely continuous contraction and if (un)n is a sequence of elements
of H verifying limn � � (&[un }T w]&+&[w }T un]&)=0 for every w # H, then
limn � � &un }T w&1=0 for every w # H. Using this theorem, we can prove
that every T # A & C00 satisfies (1.1) following the standard Scott Brown's
approximation scheme developed in [8] (see Theorem B, below).

In the last section we discuss factorizations of the form f =x }T x
for positive functions f # L1. We show that, if f is strictly positive and
lower semi-continuous, such a factorization holds for every T # A & C00

(examples show that this result is the best possible for the class A & C00).
The theory of contractions in the class A & C00 is based on the following

three results.

Theorem A (Theorem 10 in [4]). Let T # L(H) be an absolutely
continuous contraction. For any f # L1(Ess(T )) there exist some sequences
(xn)n , ( yn)n in H which converge weakly to 0 and such that:

{
lim

n � �
& f&xn }T yn&1=0

&xn& &yn&�& f &1 , n�1.

Theorem B (Corollary of Proposition 7.2 in [8]). Let E, F, G be
complex Banach spaces and let . : E_F � G be a bilinear map. Suppose that
there exists K>0 such that for any z # G, there exists a sequence (xn , yn)n

of elements of E_F verifying:
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lim
n � �

&.(xn , yn)&z&=0

{&xn & &yn &�K &z& n�1
lim

n � �
(&.(x, yn)&+&.(xn , y)&)=0 x # E, y # F.

Then, for any infinite array (zi, j) i, j�1 of elements of G and any =>0, there
exist sequences (ui) i�1 in E and (vj) j�1 in F such that:

{
.(ui , vj)=zi, j i, j�1

:
i, j�1

&ui& &vj&�(K+=) :
i, j�1

&zi, j &.

Theorem C (Proposition 2.7 in [12]). Let T # L(H) be a contraction
in the class C00 and let (xn)n be a sequence of elements of H which converges
weakly to 0. Then, for any w # H, we have:

lim
n � �

(&[xn }T w]&+&[w }T xn]&)=0.

The proof of our main result, Theorem 3.2, is based on approximations
of functions in BMOA by functions in H� due to S. V. Kisliakov
([17, 18]) and rediscovered independently by J. Bourgain (Lemma 1 in
[9]) and also on the classical functional model of absolutely continuous
contractions (cf. [20]):

For a separable Hilbert space D, we denote by L2(D) the classes of
measurable functions u : T � D such that:

&u&2 :=\ 1
2? |

2?

0
(u(eit), u(eit)) D dt+

1�2

<�,

where ( } , } ) D denotes the scalar product in D. We denote by L�(D) the
set of all essentially bounded functions in L2(D). If f # L�=L�(T), we can
define the multiplication operator Mf on L2(D) by:

(Mf u)(!)= f (!) u(!), u # L2(D), ! # T.

In particular, if z denotes the identity map of T (z(!)=!, ! # T), then Mz

is a unitary operator. It follows from [20] that for every absolutely con-
tinuous contraction T, there exists a Hilbert space D and a subspace
H/L2(D) such that:

v H is semi-invariant for Mz , i.e. PHM n
z | H=(PH Mz | H)n, n�1 and

v PH Mz | H is unitarily equivalent to T.
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In this situation, for every x and y in H, we have:

(x }T y)(!)=(x(!), y(!))D , a.e. on T.

Also, it follows from Proposition 5 in [2] that D and H can be chosen so
that L�(D) & H is dense in H.

The fact that L�(D) & H is dense in H allows us to reduce the proof
of Theorem 3.2 to the case where w # L�(D) & H. We can then use
approximation results of Section 2. In this section we present, in a slightly
more general form, the method of Kisliakov�Bourgain to approximate,
with respect to L2-norm, functions in H p, p>4 (and thus functions in
BMOA) by functions in H � with some control on the H�-norm.

The results of Section 5 are based on the theory of compressions for
contractions in the class A+0

(see [6]). Recall that K is said to be a
semi-invariant subspace for T # L(H) (write K # SI(T )) if K=M & N=

where N/M and M, N # Lat(T ) (Lat(T ) denotes, as usual the lattice of
all invariant subspaces for T). If K # SI(T ), the operator TK :=PKT |K ,
where PK denotes the orthogonal projection of H onto K, is called the
compression of T to K and we also say that T dilates TK . Remark that
if K # SI(T) and if x, y # K, then x }T y=x }TK y. In [6] it is proved that
if T # A+0

, then T has a compression which is unitarily equivalent to an
arbitrary diagonal operator with eigenvalues in the open unit disk.

2. APPROXIMATION BY H� IN H p AND BMOA

We denote by N+=N+(D) the Smirnoff class, which can be defined as
the algebra of all holomorphic functions f in D such that f =Ag where A
is an inner function and where g is an outer function (see, for example,
Theorem 4.14 in [19]).

Lemma 2.1. Let f be a function of N+ and let $�1. Then there exists
a function g # H�, &g&��$, such that:

& f& g&2��2+$2

? \|E$

| f (eit)|2 dt+
1�2

where

E$=[t # [0, 2?); | f (eit)|>$].

Proof. Consider the analytic function g in D defined by g= fG where
G is the outer function

G(z)=exp {(1�2?) |
E$

(log $&log | f (eit)| ) \eit+z
eit&z+ dt= .

If we set F$=[t # [0, 2?); | f (eit)|�$], then we get:
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{ | g(eit)|=| f (eit)|,
| g(eit)|=$,

t # F$

elsewhere.

Thus, the function g belongs to H� and &g&��$. It is clear that:

2? & f& g&2
2=|

E$

|( f &g)(eit)| 2 dt+|
F$

|( f &g)(eit)| 2 dt.

Remark that:

|
F$

|( f &g)(eit)|2 dt=|
F$

| f (eit)| 2 |1&G(eit)| 2 dt.

If we define the function . in T by:

{.(eit)=0,
.(eit)=log $&log | f (eit)|

t # F$

elsewhere,

then G(eit)=exp [.(eit)+i.~ (eit)], t # [0, 2?) where .~ denotes the Hilbert
transform of .. Since G(eit)=exp [i.~ (eit)], t # F$ , we get:

|
F$

|( f &g)(eit)| 2 dt�$2 |
F$

|1&exp i.~ (eit)| 2 dt.

Using the inequality |1&eix| 2�2x2, x # R, we obtain that:

|
F$

|( f &g)(eit)|2 dt�2$2 |
F$

|.~ (eit)| 2 dt�2$2 |
T

|.~ (eit)| 2 dt.

Since the Hilbert transform is an isometry with respect to the L2-norm and
since .(eit)=0, t # F$ , it follows that:

|
F$

|( f &g)(eit)| 2 dt�2$2 |
E$

|.(eit)| 2 dt.

Since $�1, it is clear that |.(eit)| 2�| f (eit)| 2 for any t # E$ , which implies
that:

|
F$

|( f &g)(eit)| 2 dt�2$2 |
E$

| f (eit)| 2 dt.
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Moreover, we easily get that:

|
E$

|( f &g)(eit)| 2 dt�4 |
E$

| f (eit)|2 dt,

and the lemma follows. K

Proposition 2.2. 1. Let p>4 and let f # H p. For any = # (0, 1] there
exists a function g # H� such that:

{& f& g&2<= & f &p

&g&�<cp =2�(4& p) & f &p where 0<cp�61�( p&4).

2. Let = # (0, 1�2] and let f # BMOA. Then there exists a function
g # H � and a numerical constant d>0 such that:

{
& f& g&2�= & f &BMO

&g&��d log \1
=+ & f &BMO .

Proof. For the first assertion, we may suppose that & f &p�1. Since
H p/N+ for p>0, there exists a function g # H �, &g&��$, such that:

& f& g&2��2+$2

? \|E$

| f (eit)| 2 dt+
1�2

(1)

where E$=[t # [0, 2?); | f (eit)|>$]. Applying Ho� lder's inequality, we
obtain that:

|
E$

| f (eit)| 2 dt�\|E$

| f (eit)| p dt+
2�p

m(E$)1&2�p. (2)

Moreover, since & f & p
p �(1�2?) �E$

| f (eit)| p dt�(1�2?) $ pm(E$), we obtain
m(E$)�2?�$ p. Hence, we get, for p>4:

& f& g&2�
- 4+2$2

$ p�2&1 �
- 6

$( p&4)�2 .

For = # (0, 1], set $=(- 6�=)2�( p&4). The first assertion follows.
For the second assertion, we may suppose that & f &BMO�1. By using (1)

and (2) for p=3 (for example) and since BMOA/�p>0 H p, we get:

& f& g&2�K$1�2m(E$)1�6
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for some positive constant K>0. Moreover, by the John�Nirenberg
Theorem (see [16]), there exists a numerical constant k>0 such that:

m(E$)<
1
k

exp(&k$).

Hence, we have for some constant c0>0:

{& f& g&2�c0 $1�2 exp \&k$
6 +

&g&��$.

For = small enough set $=6�k log(1�=2). We easily get that:

{
& f& g&2�=

&g&��d log \1
=+

for some positive constant d>0, which completes the proof of the
lemma. K

Corollary 2.3 ([9, 17, 18]). Let = # (0, 1�2] and let f # L�. Then there
exist g+ # H�, g& # H �

0 such that:

{
& f&(g++ g&)&2�=& f &�

&g+&�+&g&&��c log \1
=+ & f &�

where c is a numerical constant.

Proof. For f # L2 denote by f� (n) the n th Fourier coefficient of f and set
P+( f )(eit)=�n�0 f� (n) eint, P&( f )(eit)=�n<0 f� (n) eint. Since P+(H�)/
BMOA and since L� embeds continuously in BMO (see [15, p. 223]), the
corollary follows immediately from Proposition 2.2. K

3. VANISHING CONDITIONS

Recall that if T is an absolutely continuous contraction, there exists a
w*-w* continuous L�-functional calculus 9T : L� � L(H). This func-
tional calculus is defined by the formula:

( f (T ) x, y)=( f, x }T y) , x, y # H, f # L�.
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It is easy to check that this functional calculus is not multiplicative unless
T is a unitary operator. For H�, we obtain the usual Sz.-Nagy-Foias
functional calculus 8T . Also, for . # H �, 9T (.)=8T*(.~ ) where .~ (z)=
�n�0 .̂(&n) zn (see [5], p. 12).

In this section we use Corollary 2.3 to obtain ``vanishing conditions.''
Remark that we do not use the full strength of BMO estimates.

Let T be an absolutely continuous contraction. We use the same nota-
tions as in the introduction. We thus identify H with a closed subspace of
L2(D) semi-invariant for the multiplication operator Mz such that
L�(D) & H is dense in H, and we identify T with the compression of Mz

to H. For x in L�(D), set &x&�=ess sup! # T &x(!)&.

Lemma 3.1. Let T # L(H) be an absolutely continuous contraction. Let
f # L� and let x # L�(D) & H. Then we have:

& f (T ) x&�& f2& &x&� .

Proof. We have for y # H,

|( f (T) x, y)|=|( f, x }T y) |

=
1

2? } |
2?

0
f (eit) (x(eit), y(eit)) D dt }

�& f &2 &x&� &y&.

The lemma follows. K

Theorem 3.2. Let T # L(H) be an absolutely continuous contraction
and let (xn)n be a sequence of elements of H. The following assertions are
equivalent:

(i) lim
n � �

&xn }T w&1=0, w # H

(ii) lim
n � �

(&[xn }T w]&+&[w }T xn]&)=0, w # H.

Remark. Since y }T z=z }T y, y, z # H, we have &y }T z&1=&z }T y&1 .

Proof. We only have to prove that if &[xn }T w]&+&[w }T xn]& � 0 for
every w # H, then limn � � &xn }T w&1=0 for every w # H. Assume that the
sequence (xn)n�1 satisfies Condition (ii) and let w # H. We have

|(xn , w)|=|(1, [xn }T w]) |�&[xn }T w]&,
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and so the sequence (xn)n�1 converges weakly to 0. Let w # L�(D) & H.
Then there exists a function .n # L�, &.n&�=1 such that &xn }T w&1=
(.n(T) w, xn). Assume that lim supn � � &xn }T w&1>0. Without loss of
generality, we may suppose that for n�1, &xn }T w&1�{>0, &xn&�1,
&w&��1. By Corollary 2.3, there exist g+

n # H�, g&
n # H �

0 , such that:

{
&.n& gn &2�

{
3

where gn= g+
n + g&

n

&g+
n &�+&g&

n &��c log \3
{+ .

We have:

(.n(T) w, xn)=((.n& gn)(T ) w, xn)+(gn(T ) w, xn).

By Lemma 3.1 and Schwartz inequality, we get |((.n& gn)(T ) w, xn)|�{�3.
Also,

(gn(T ) w, xn)=(g+
n (T ) w, xn)+(g&

n (T ) w, xn)

=(g+
n , [w }T xn])+(g&

n , [xn }T w]).

Since the sequences (g+
n )n and (g&

n )n are bounded in H � and in H �
0

respectively, and since limn � � (&[xn }T w]&+&[w }T xn]&)=0, we have
|(gn(T) w, xn)|�{�3 if n is large enough. Hence we obtain |(.n(T ) w, xn)|
�2{�3<{ if n is large enough, contradicting the assertion &xn }T w&1�{.
The theorem follows then from the fact that L�(D) & H is dense in H. K

The next Corollary yields information about the continuity of the
L�-functional calculus 9T in the particular case where T # C00 .

Corollary 3.3. Let T be in the class C00 . Then, for any sequence
(.n)n�1 in L� such that .n w�w V 0, we have limn � � &.n(T) x&=0, x # H.

Proof. We will prove the corollary by showing that if (.n)n�1 is a
bounded sequence in L� such that lim supn � � &.n(T ) x&>0 for some
x # H, then the sequence (.n)n�1 is not w*-convergent to 0. In this situa-
tion, there exists a sequence ( yn)n�1 of elements of H satisfying &yn&=1
and

&.n(T ) x&=|(.n(T ) x, yn)|=|(.n , x }T yn) |.

Recall (see, for example, [12, Proposition 2.7]) that if T # C0 } (resp.
T # C } 0) and if (zn)n�1 converges weakly to 0, then limn � � &[w }T zn]&=0
(resp. limn � � &[zn }T w]&=0) for any w # H. We can assume, without loss
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of generality, that $=infn�1 &.n(T) x&>0 and that there exists y # H such
that ( yn)n�1 converges weakly to y. Set zn= y& yn . Since T # C00 , it
follows then from Theorem 3.2 that limn � � &x }T zn&1=0. Since the
sequence (.n)n�1 is bounded in L�, we have:

lim
n � �

|(.n , x }T zn) |=0.

Also,

(.n(T ) x, y)=(.n , x }T yn)+(.n , x }T zn).

Hence,

lim inf
n � �

|(.n(T) x, y)|=lim inf
n � �

|(.n , x }T yn) |

with

lim inf
n � �

|(.n , x }T yn) |=lim inf
n � �

&.n(T ) x&�$>0.

Since the L�-functional calculus 9T : f � f (T) is w*-w* continuous from
L� into L(H), the sequence (.n)n�1 is not w*-convergent to 0 in L�,
and the corollary follows. K

4. L1-FACTORIZATION

We discuss here factorizations of the form f =x }T y where f is a given
function in L1 and where T is an absolutely continuous contraction.

The notation and terminology employed herein agree with those in [11,
20]. Recall that the minimal unitary dilation U # L(U) of an absolutely
continuous contraction T is also absolutely continuous.

The minimal isometric dilation U+ of T is the restriction of U # L(U) to
the subspace U+=Span[UnH, n�0], which is invariant for U. The
operator U+ has a Wold decomposition U+=S

*
�R corresponding to a

decomposition of U+ as S
*

�R, where S
*

# L(S
*

) is a unilateral shift of
some multiplicity and R # L(R) is an absolutely continuous unitary
operator.

The minimal coisometric extension B of T is the compression of U to the
subspaces B=Span[UnH, n�0]=Span[U*nH, n�0], invariant for U*
(hence semi-invariant for U). The operator B has a Wold decomposition
B=S*�R

*
corresponding to a decomposition of B as S�R

*
, where

S # L(S) is a unilateral shift of some multiplicity and where R
*

# L(R
*

)
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is an absolutely continuous unitary operator. We denote by Q, Q
*

, A, A
*

the orthogonal projections of U onto S, S
*

, R, R
*

respectively.
Throughout this section, expressions such as maximality, uniqueness,

and equality of Borel subsets of T are to be interpreted as satisfied up to
Borel subsets of Lebesgue measure zero.

We denote by 7T (resp. 7
*T) the support of the spectral measure of R

(resp. R
*

).
The following lemma is a direct consequence of Theorem 3.2.

Lemma 4.1. Let T # L(H) be an absolutely continuous contraction
and let (xn)n be a sequence of elements of H which converges to 0 in
the weak topology. Assume that limn � �(&Axn&+&A

*
xn&)=0. Then

limn � � &xn }T w&1=0 for every w # H.

Proof. By Proposition 2.7 in [12], we know that:

lim
n � �

&[Qw }B Qxn]&=0= lim
n � �

&[Q
*

xn }U+ Q
*

w]&.

Also, for w # H,

[w }T xn]=[Qw }B Qxn]+[A
*

w }B A
*

xn] and,

[xn }T w]=[Q
*

xn }U+ Q
*

w]+[Axn }U+ Aw].

Hence limn � �(&[xn }T w]&+&[w }T xn]&)=0 for every w # H. The result
follows then from Theorem 3.2. K

Recall that if T is an absolutely continuous contraction on H and if _
is a Borel subset of T, then _ is said to be essential for T (cf., Definition 3.1
in [10]) if:

& f (T )&�& f |_&� , f # H�(T).

We will denote by Ess(T ) the maximal essential Borel subset for T (see
Proposition 3.3 in [10]).

Lemma 4.2. Let T # L(H) be an absolutely continuous contraction. For
any function f # L1(Ess(T )"(7T _ 7

*T)), there exist two sequences of
elements of H, (xn)n and ( yn)n bounded by & f &1�2

1 such that:

{
lim

n � �
& f&xn }T yn &1=0

lim
n � �

(&xn }T w&1+&yn }T w&1)=0, w # H.
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Proof. Using the standard functional process of approximation of
Bercovici (see [3, 11]), we see that if f # L1(Ess(T )) there exist in H two
sequences (un)n and (vn)n which converge to 0 in the weak topology and
such that:

{
lim

n � �
& f&un }T vn&1=0

&un &�& f &1�2
1 and &vn&�& f &1�2

1 , n�1.

By Lemma 4.1, it is sufficient to prove that, if f =0 a.e. on 7T _ 7
*T , we

have:

lim
n � �

(&A
*

un&+&A
*

vn&+&Aun&+&Avn &)=0.

Set _=Ess(T )"(7T _ 7
*T) and denote by /_ the characteristic function of

_. We have:

un }T vn=Qun }B Qvn+A
*

un }B A
*

vn .

Identifying again H to a closed subspace of L2(D), we obtain /_A
*

un=0.
Hence /_(un }T vn)=/_Qun }B /_Qvn .

Moreover, we have

&/_Qun&�&Qun&�&un&�& f &1�2
1 , (3)

&/_Qvn &�&Qvn&�&vn&�& f &1�2
1 . (4)

Given that f # L1(_), it is clear that limn � � & f&/_(un }T vn)&1=0, that is,
limn � � & f&/_Qun }B /_Qvn)&1=0. It follows from this that

lim
n � �

&/_ Qun&=& f &1�2
1 = lim

n � �
&/_Qvn&,

which implies that, by (3):

{
lim

n � �
&un&= lim

n � �
&Qun&

lim
n � �

&vn&= lim
n � �

&Qvn &.

It follows from the equalities

&un&2=&A
*

un&2+&Qun&2, &vn&2=&A
*

vn&2+&Qvn&2,

that limn � � &A
*

un &=0=limn � � &A
*

vn&.
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The proof of limn � � &Aun&=0=limn � � &Avn& uses similar arguments
and is left to the reader. The starting point is the equality:

un }T vn=Q
*

un }U+ Q
*

vn+Aun }U+ Avn . K

Let f =( fi, j) i, j�1 be an infinite array of functions in L1. We define
& f &1 # [0, �] by the formula & f &1=�i, j�1 & fi, j &1 . We can now
formulate our main result:

Theorem 4.3. Let T # L(H) be an absolutely continuous contraction
and let =>0.

Then, for any infinite array ( fi, j) i, j�1 of functions in L1(_T) where
_T=Ess(T )"(7T _ 7

*T), there exist some sequences (xi) i�1 and ( yj) j�1 of
elements of H, bounded by (1+=) & f &1�2

1 , such that fi, j=(xi }T yj) |_T
(i�1,

j�1).
In particular, for any function f # L1(_T), there exist x # H, y # H such

that f =(x }T y) |_T
and &x& &y&�(1+=) & f &1 .

Proof. By Lemma 4.2 we know that for any f # L1(_T), there exist two
sequences of elements of H, (xn)n and ( yn)n bounded by & f &1�2

1 such that:

{
lim

n � �
& f&xn }T yn &1=0

lim
n � �

(&xn }T w&1+&yn }T w&1)=0, w # H.

In particular, we get:

{
lim

n � �
& f&(xn }T yn) |_T

&1=0

lim
n � �

(&(xn }T w) |_T
&1+&( yn }T w) |_T

&1)=0, w # H.

The proof of the theorem is now an immediate consequence of Proposi-
tion 7.2 of [8] applied to the sesquilinear map 4 : H_H � L1(_T) defined
by the formula 4(x, y)=(x }T y) |_T

. K

In the case where T # A & C00 , we have 7T=<=7
*T and Ess(T )=T.

Indeed, T # C0 } (resp. T # C } 0) if and only if 7
*T=< (resp. 7T=<) and

T # A if and only if T=Ess(T). We obtain the following corollary.

Corollary 4.4. Let T # L(H) be in the class A & C00 and let =>0.
Then, for any infinite array ( fi, j)i, j�1 of functions in L1, there exist some

sequences (xi) i�1 and ( yj) j�1 of elements of H, bounded by (1+=) & f &1�2
1 ,

such that fi, j=xi }T yj (i�1, j�1).
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In particular, for any function f # L1, there exist x # H, y # H such that
f =x }T y and &x& &y&�(1+=) & f &1 .

Recall that the class A+0
consists in those absolutely continuous contrac-

tions T for which given any family ( fi, j) i, j�1 of elements of L1�H 1
0 , there

exist two sequences (xi) i�1 and ( yj) j�1 of elements of H such that
fi, j=[xi }T yj] (i, j�1). By Proposition 4.2 of [6], if T # A+0

, there exists
a compression TM of T which is in the class A & C00 , see below. Using
Corollary 4.4 and the equality x }TM y=x }T y for any x, y # M, we see that
the assertion of Corollary 4.4 is still true under the relaxed hypothesis
T # A+0

. In the other direction, Corollary 4.4 can be deduced immediately
from [6, 7] since A & C00 /A+0

(see Remark 1, Section 5).

5. SPATIAL FACTORIZATIONS FOR THE CLASS A & C00

We discuss here factorizations of the form f =x }T x, where T # A & C00 .
If 4=(*n)n is a sequence of complex numbers, we will say that an operator
T # L(H) is 4-diagonal if there exists an orthonormal basis (en)n�1 of H

such that Ten=*n en (n�1). Now we state as a lemma a basic result from
[6].

Lemma 5.1 ([6], Proposition 4.2). Let T # A+0
. Then for every sequence

4=(*n)n�1 of elements of D, there exists a compression TM of T which is
4-diagonal.

For r # [0, 1) denote by Pr(t)=(1&r2)�|1&reit| 2 the usual Poisson
kernel, and for *=rei% # D, set:

P*(eit)=Pr(%&t)=
1&|*| 2

|1&*� eit| 2 .

We will need the following standard fact.

Lemma 5.2. Let f�0 be a continuous function on T. Then for every =>0
there exists c1 , ..., cn�0 and *1 , ..., *n # D such that:

" f & :
n

k=1

ckP*k"�<=.

Proof. For r # [0, 1), set:

fr(eit)= :
n # Z

r |n|f� (n) eint=
1

2? |
2?

0
f (eis) Pr(t&s) ds.
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Then fr=1�2? �2?
0 f (eis) Preis ds, the integral being computed in the Bochner

sense in C(T), and there exists =>0 such that & f& fr&�<=�2. Now there
exists a Riemann sum g=1�2? �n

j=1 (sj+1&sj) f (eisj) Preisj such that
& fr& g&�<=�2, and the lemma follows.

Recall that a sequence 4=(*n)n�1 of elements of D is dominating if
&u&�=supn�1 |u(*n)| for every u # H�(D). Denote by l1

+ the set of all
sequences (cn)n�1 of non-negative real number such that �n�1 cn<�. We
identify as usual functions on T which agree almost everywhere.

Theorem 5.3. Let f # L1"[0]. Then the following conditions imply each
other.

1. f is lower semi-continuous (l.s.c.) and strictly positive on T.

2. For every T # A+0
, there exists x # H such that x }T x= f.

3. For every dominating sequence 4=(*n)n�1 of elements of D, there
exists (cn)n�1 # l1

+ such that f =��
n=1 cnP*n .

Proof. Denote by F the set of all finite sums �n
k=1 ckP*k , where

c1 , ..., cn�0, *1 , ..., *n # D and denote by G the set of all functions . # L1

which can be written under the form .=��
n=1 cn P*n where (cn)n�1 # l1

+

and where *n # D (n�1). Clearly ��
n=1 .n # G if .n # G for n�1 and if

��
n=1 .n # L1. Let f be a strictly positive continuous function on T. Then

$=inf [ f (!), ! # T]>0. It follows from Lemma 5.2 that there exists
.1 # F such that &$�2� f&.1&$�$�2, so that $�2� f&.1�2$. By
using the same argument, we can construct by induction a sequence .n of
elements of F such that:

$
2n� f&(.1+ } } } +.n)�

$
2n&2 , n�1.

Hence we have:

f (!)&
$

2n&2�.1(!)+ } } } +.n(!)� f (!) for n�1, ! # D.

So, we have proved that f =��
n=1 .n # G. Now assume that f # L1 is

strictly positive and l.s.c. on T. Then $=min! # T f (!)>0. There exists a
sequence ( fn)n of non-negative continuous functions on T such that
f &$=��

n=1 fn . Set gn= fn+$�2n (n�1). Then gn # G, and so
f =��

n=1 gn # G. Hence there exists a sequence 4=(*n)n�1 of elements of
D and (cn)n�1 # l+

1 such that f =�n�1 cn P*n .
Let T # A+0

. It follows from Lemma 5.1 that there exists a closed sub-
space M of H semi-invariant for T such that the compression S=TM is
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4-diagonal. Let (en)n�1 be an orthonormal basis of M such that Sen=*n en

(n�1). An immediate computation shows that en }S em=$n, mP*n for n�1,
m�1. Hence we have:

x }T x=x }S x= :
�

n=1

|(x, en)| 2 P*n , x # M.

Taking (x, en)=c1�2
n for n�1, we see that x }T x= f, and Condition (2) is

satisfied.
Now, let f # L1"[0] satisfying Condition (2), let 4=(*n)n�1 be a domi-

nating sequence in D and set Ten=*n en where (en)n�1 is an orthonormal
basis of the separable Hilbert space H. Then T # C00 and since
u(T ) en=u(*n) en for u # H�, we see that T # A. Since f satisfies Condi-
tion (2), there exists x # H such that x }T x= f. The same computation as
above shows that x }T x=��

n=1 cnP*n where (cn)n�1=(|(x, en)| 2)n�1 # l1
+

and so f satisfies Condition (3).
Now, if f =��

n=1 cn P*n with (cn)n�1 # l1
+ , (*n)n�1 /D, we can assume

that c1>0. Set fp=� p
n=1 cn P*n . Then f (!)=limp � � fp(!) for ! # T and fp

is strictly positive and continuous for every p�1. Hence f is strictly
positive and lower semi-continuous on T, which concludes the proof of the
theorem. K

Remarks. 1. As in the introduction, we say that an absolutely con-
tinuous contraction T has Property (1.1) if for any infinite array ( fi, j) i, j�1

consisting of elements of L1, there exist sequences (xi) i�1 , ( yj) j�1 of H

such that fi, j=xi }T yj , i, j�1. First notice that T has Property (1.1) if and
only if there exists a compression of T, say TM , which has Property (1.1).
Let (+n)n�1 /D be a dominating sequence for T and let 4=(*n)n�1 /D
be a sequence such that the set [n�1; *n=+m] is infinite for m�1. Let S
be a 4-diagonal operator. It follows immediately from Lemma 5.1 that
every T # A+0

dilates S. Since the essential spectrum of S is dominating for
T, we have S # (BCP)=�0�%<1 (BCP)% (see the definitions in [7],
p. 354). Applying Corollary 6.9 of [7], we obtain that S has Property (1.1).
So every T # A+0

has Property (1.1) whereas the definition of the class A+0

only gives sequences (ui) i�1 and (vj) j�1 of vectors in H satisfying the much
weaker condition [ui }T vj]=[ fij] (i, j�1). The present paper gives a new
proof of this fact. By means of Theorem 3.2, we deduce from Theorem A,
B and C that every T # A & C00 has Property (1.1). The fact that
Property (1.1) holds for any T # A+0

follows then immediately from
Lemma 5.1 (consider a sequence 4=(*n)n�1 /D which is dominating for
T). A partial result in this direction was given in [14].

2. For x=(xn)n�1 # l2, y=( yn)n�1 # l2, set x } y=(xn } yn)n�1. An
easy computation shows that if a sequence (x( p))p�1 of elements of l2
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converges to 0 in the weak* topology, then limp � � &x ( p) } y&1=0 for every
y # l2. Now, let 4=(*n)n�1 /D be dominating for T. For g # L�(T)
denote by P(g) the Poisson integral of g. Then the non-tangential limits of
P(g) agree with g almost everywhere on T, and so for p�1:

&g&�=sup
n�p

|P(g)(*n)|=sup
n�p } |T

P*n g dm }.
Since &P*&1=1 for every * # D, this implies as well known that the closed
absolutely convex hull of the sequence (P*n)n�p equals the closed unit ball
of L1 for every p�1. Let f # L1. We deduce from the above observation
that for every =>0 and every p�1, there exists a sequence (cn)n�p # l1

such that:

{
:

n�p

|cn |<& f1&+=

f = :
n�p

cn P*n .

In other terms, we can construct a sequence (c( p))p�1 (where c( p)=(c ( p)
n )n�1)

of elements of l1 such that c ( p)
n =0 for n�p, limp � � �n�1 |c ( p)

n |=& f &1 and
f =�n�1 c ( p)

n P*n for every p�1.
Let T be a 4-diagonal operator and let (en)n�1 be an orthonormal basis

of H such that Ten=*n en , n�1. For p�1, n�1, let : ( p)
n and let ; ( p)

n be
complex numbers such that |: ( p)

n |=|; ( p)
n |=|c ( p)

n | 1�2 and such that : ( p)
n } ; ( p)

n

=c ( p)
n . Set :( p)=(: ( p)

n )n�1 , ; ( p)=(; ( p)
n )n�1 , xp=�n�1 : ( p)

n en and yp=
�n�1 ; ( p)

n en . We easily check that:

{
xp }T yp= :

n�1

c ( p)
n P*n= f

lim
p � �

&xp&= lim
p � �

&: ( p)
n &2=& f &1�2

1

lim
p � �

&yp&= lim
p � �

&; ( p)
n &2=& f &1�2

1 .

Clearly, the sequence (:( p))p�1 converges to 0 for the weak* topology on
l2, and so &w }T xp &1��n�1 |(w, en)| |: ( p)

n | � 0 ( p � �) for every w # H.
By analogous computations we show that limp � � &w }T yp&1=0 for every
w # H. We can now apply directly Proposition 7.2 of [8] to show that T
has Property (1.1).

It follows from Lemma 5.1 that every contraction T # A+0
has a

4-diagonal compression and we obtain an other proof of the fact that T
has Property (1.1), based on dilation theory, which does no depend on the
elaborated construction of [7].
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3. Here are other examples of contractions T # A & C00 such that
x }T x is l.s.c. and strictly positive for every non-zero x # H. Let
x=(w(n))n�1 be a strictly decreasing sequence of positive real numbers
such that limn � � w(n)=0 and limn � � w(n)1�n=1. For f # Hol(D), denote
by f� (n) the n th Taylor coefficient of f at the origin. Consider the weighted
Hardy space

Hw={f # Hol(D); & f &w :=\ :
n�0

| f� (n)| 2 w2(n)+
1�2

<�= .

Denote by :: z � z the identity map on D and denote by S: f � :f the
usual shift operator on Hw . Clearly, _(S)=D� and S # A & C00 . An easy
computation shows that:

{S* p:n=
w2(n)

w2(n& p)
:n& p for n�p

S* p:n=0 for n<p.

Set 2=(1&SS*)1�2, D=(1&S*S)1�2. We obtain for any f # Hw :

{
Df = :

n�0
\1&

w2(n+1)
w2(n) +

1�2

f� (n) :n

2f =f� (0)+ :
n�1

\1&
w2(n)

w2(n&1)+
1�2

f� (n) :n.

For |z|<1, set

f� (z)= :
n�0

znDS nf= :
n�0

\1&
w2(n+1)

w2(n) +
1�2

\ :
n

p=0

f� ( p) zn& p+ :n

and

f�
*

(z)= :
n�0

zn2S*nf

= :
p�0

f� ( p) w2( p) z p

+ :
n�1

1
w(n) \

1
w2(n)

&
1

w2(n&1)+
1�2

\ :
p�0

f� (n+ p) w2(n+ p) z p+ :n.

Then f� and f�
*

belong to the vector-valued Hardy space H2(D, Hw), the
maps f � f� and f � f�

*
are isometries from Hw onto closed subspaces M

and N of H2(D, Hw) which are invariant for the backward shift T
on H2(D, Hw). Also S is unitarily equivalent to T |M and S* is unitarily
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equivalent to T |N . Let h # H2(D, Hw). It is a standard fact that the non-
tangential limit h(eit) exists almost everywhere on T, that �2?

0 &h(eit)&2 dt<�,
and that we have for h, l # H2(D, Hw):

(h, l)=
1

2? |
2?

0
(h(eit), l(eit)) dt.

Hence (h }T l )(eit)=(h(e&it), l(e&it)) almost everywhere on T. Since
f }S g= f� }T g~ and since f }S* g= f�

*
}T g~

*
for f, g # Hw , we obtain, almost

everywhere on T, for any f # Hw :

( f }S f )(eit)= :
n�0

(w2(n)&w2(n+1)) } :
n

p=0

f� ( p) eipt }
2

= } :
p�0

f� ( p) w2( p) eipt }
2

+ :
n�1

\ 1
w2(n)

&
1

w2(n&1)+ } :
p�0

f� (n+ p) w2(n+ p) eipt }
2

.

It follows then immediately from the first equality that if f is a non-zero
function of Hw , then f }S f is l.s.c. and strictly positive on T.
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