L^1 -Factorization for C_{00} -Contractions with Isometric Functional Calculus

I. Chalendar

U.F.R. Mathématiques et Informatique, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence Cedex, France E-mail: chalenda@math.u-bordeaux.fr

and

J. Esterle

rovided by Elsevier - Publisher Connector

CORE

E-mail: esterle@math.u-bordeaux.fr

Received February 4, 1997; revised June 9, 1997 and September 16, 1997; accepted September 24, 1997

Let *T* be an absolutely continuous contraction acting on a Hilbert space \mathscr{H} . For $x, y \in \mathscr{H}$, define $x \stackrel{T}{\cdot} y \in L^1(\mathbb{T})$ by its Fourier coefficients: $x \stackrel{T}{\cdot} y^{\wedge}(n) = (T^{*n}x, y)$ if $n \ge 0$ and $x \stackrel{T}{\cdot} y^{\wedge}(n) = (T^{-n}x, y)$ if n < 0. The main technical result of the paper is that the vanishing condition $\lim_{n \to \infty} (\|x_n \stackrel{T}{\cdot} w\|_{L^1/H_0^1} + \|w \stackrel{T}{\cdot} x_n\|_{L^{1/H_0^1}}) = 0$, $w \in \mathscr{H}$ implies that $\lim_{n \to \infty} \|x_n \stackrel{T}{\cdot} w\|_{L^1} = 0$, $w \in \mathscr{H}$. Using known factorization techniques, we exhibit a Borel set σ_T such that for any $f \in L^1(\sigma_T)$, there exist $x, y \in \mathscr{H}$ such that $f = (x \stackrel{T}{\cdot} y)_{|\sigma_T}$. In the case where $T \in \mathbb{A} \cap C_{00}$, this leads to a simple proof of the fact that for every $f \in L^1(\mathbb{T})$ there exists $x, y \in \mathscr{H}$ such that $f = x \stackrel{T}{\cdot} y$. In this case we also show, using dilation theory in the unit disk, that every strictly positive lower semicontinuous function $\varphi \in L^1(\mathbb{T})$ can be written in the form $\varphi = x \stackrel{T}{\cdot} x$. Examples show that this is the best possible result for the class $\mathbb{A} \cap C_{00}$.

1. INTRODUCTION

Let \mathscr{H} be a separable, infinite-dimensional complex Hilbert space and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H} . A contraction $T \in \mathscr{L}(\mathscr{H})$ is absolutely continuous if T is completely nonunitary or if the spectral measure of its unitary part is absolutely continuous with respect to Lebesgue measure. If $T \in \mathscr{L}(\mathscr{H})$ is an absolutely continuous

contraction, then, for any $x, y \in \mathcal{H}$, there exists a function $x \stackrel{T}{:} y \in L^1$ such that the Fourier coefficients of $x \stackrel{T}{:} y$ satisfy:

$$(x \stackrel{T}{\cdot} y)^{\wedge} (n) = \begin{cases} (T^{*n}x, y) & n \ge 0\\ (T^{-n}x, y) & n < 0. \end{cases}$$

We write \mathbb{D} for the open unit disk in the complex plane \mathbb{C} , and \mathbb{T} for the unit circle. The spaces $L^p = L^p(\mathbb{T})$, $1 \leq p \leq \infty$ are the usual Lebesgue function spaces relative to Lebesgue measure m on \mathbb{T} . The spaces $H^p = H^p(\mathbb{T})$, $1 \leq p \leq \infty$ are the usual Hardy spaces. It is well-known [13] that the dual space of L^1/H_0^1 , where $H_0^1 = \{f \in L^1: \int_0^{2\pi} f(e^{it}) e^{int} dt = 0, n = 0, 1, ...\}$, can be identified by H^∞ . If we denote by [g] the class of $g \in L^1$ in L^1/H_0^1 , the duality is given by the pairing:

$$\langle f, [g] \rangle = \int_{\mathbb{T}} fg \, dm, \quad f \in H^{\infty}, \quad g \in L^1.$$

We denote by $\mathbb{A} = \mathbb{A}(\mathscr{H})$ the class of all absolutely continuous contractions $T \in \mathscr{L}(\mathscr{H})$ for which the Sz.-Nagy-Foias functional calculus $\Phi_T: H^{\infty} \to \mathscr{L}(\mathscr{H})$ is an isometry. In 1988, H. Bercovici and B. Chevreau have proved independently that if $T \in \mathbb{A}$, then, for any function $f \in L^1$, there exists $x, y \in \mathscr{H}$ such that $[f] = [x^T, y]$, that is, $f^{\wedge}(-n) = (T^n x, y), n \ge 0$ (see [3], [10]). Notice that if we take f = 1, we obtain a nontrivial invariant subspace for T.

In this paper, we study the possibility of solving exactly equations of the form $f = x^{\frac{T}{2}} y$ (that is, for any $n \in \mathbb{Z}$, $(x^{\frac{T}{2}} y)^{\wedge} (n) = f^{\wedge}(n)$) where f is a given function in L^1 and where $T \in \mathscr{L}(\mathscr{H})$ is an absolutely continuous contraction.

In the case where T = S, where S is the usual shift on H^2 (so that $x \stackrel{S}{\cdot} y = x\overline{y}$ for $x, y \in H^2$), this question has been solved by J. Bourgain in 1986, [9]: The above factorization holds for $f \in L^1$, $f \neq 0$ if and only if $\log |f| \in L^1$. Notice that if $\log |f| \notin L^1$, we can nevertheless find $x, y \in H^2$ such that we have $f^{(n)} = (x \stackrel{S}{\cdot} y)^{(n)}$, $n \neq 1$, whereas the Bercovici–Chevreau Theorem gives $f^{(n)} = (x \stackrel{S}{\cdot} y)^{(n)}$, $n \in 0$.

Recall that if T is an absolutely continuous contraction on \mathscr{H} and if σ is a Borel subset of \mathbb{T} , then σ is said to be essential for T (cf., Definition 3.1 in [10]) if:

$$\|f(T)\| \ge \|f_{|\sigma}\|_{\infty}, \qquad f \in H^{\infty}(\mathbb{T}).$$

We will denote by Ess(T) the maximal essential Borel subset for T (see Proposition 3.3 of [10]). Also denote by Σ_T (resp. Σ_{*T}) the support of the spectral measure of the unitary part of the minimal isometric dilation (resp.

minimal coisometric extension) of T and by σ_T the Borel set $Ess(T) \setminus (\Sigma_T \cup \Sigma_{*T})$.

We show (Theorem 4.3) that if $f \in L^1(\sigma_T)$, the equation $f = (x^T y)_{|\sigma_T|}$ has a solution in $\mathscr{H} \times \mathscr{H}$. More precisely, for any infinite array $(f_{i,j})_{i,j \ge 1}$ consisting of elements of $L^1(\sigma_T)$, there exist sequences $(x_i)_{i \ge 1}$, $(y_j)_{j \ge 1}$ of \mathscr{H} such that $f_{i,j} = (x_i^T y_j)_{|\sigma_T}$, $i, j \ge 1$. Recall that $C_0 = C_0(\mathscr{H})$ is the class of all contractions $T \in \mathscr{L}(\mathscr{H})$ such

Recall that $C_{0.} = C_{0.}(\mathscr{H})$ is the class of all contractions $T \in \mathscr{L}(\mathscr{H})$ such that the sequence $(||T^nx||)_{n \ge 1}$ converges to zero for every $x \in \mathscr{H}$, and that $C_{.0}$ and C_{00} are defined by $C_{.0} = (C_{0.})^*$, $C_{00} = C_{.0} \cap C_{0.}$. In the case of the usual shift on H^2 , $\Sigma_T = \emptyset$, but if $T \in \mathbb{A} \cap C_{00}$, then $\sigma_T = \mathbb{T}$, and so T has the following factorization property:

(1.1) For any infinite array $(f_{i,j})_{i,j\geq 1}$ consisting of elements of L^1 , there exist sequences $(x_i)_{i\geq 1}$, $(y_j)_{j\geq 1}$ of \mathscr{H} such that $f_{i,j} = (x_i^T y_j), i, j \geq 1$.

This property of the class $\mathbb{A} \cap C_{00}$ was never explicitly stated in the literature, but it can be deduced immediately from Corollary 6.9 in [7] and Proposition 4.2 in [6] (see Remark 1, Section 5). The main new technical result of the paper is given by Theorem 3.2 which says that if $T \in \mathscr{L}(\mathscr{H})$ is an absolutely continuous contraction and if $(u_n)_n$ is a sequence of elements of \mathscr{H} verifying $\lim_{n\to\infty} (\|[u_n^T w]\| + \|[w^T u_n]\|) = 0$ for every $w \in \mathscr{H}$, then $\lim_{n\to\infty} \|u_n^T w\|_1 = 0$ for every $w \in \mathscr{H}$. Using this theorem, we can prove that every $T \in \mathbb{A} \cap C_{00}$ satisfies (1.1) following the standard Scott Brown's approximation scheme developed in [8] (see Theorem B, below).

In the last section we discuss factorizations of the form $f = x^T x$ for positive functions $f \in L^1$. We show that, if f is strictly positive and lower semi-continuous, such a factorization holds for every $T \in \mathbb{A} \cap C_{00}$ (examples show that this result is the best possible for the class $\mathbb{A} \cap C_{00}$).

The theory of contractions in the class $\mathbb{A} \cap C_{00}$ is based on the following three results.

THEOREM A (Theorem 10 in [4]). Let $T \in \mathscr{L}(\mathscr{H})$ be an absolutely continuous contraction. For any $f \in L^1(Ess(T))$ there exist some sequences $(x_n)_n$, $(y_n)_n$ in \mathscr{H} which converge weakly to 0 and such that:

$$\begin{cases} \lim_{n \to \infty} \|f - x_n^T y_n\|_1 = 0 \\ \|x_n\| \|y_n\| \le \|f\|_1, \quad n \ge 1. \end{cases}$$

THEOREM B (Corollary of Proposition 7.2 in [8]). Let E, F, G be complex Banach spaces and let $\varphi: E \times F \to G$ be a bilinear map. Suppose that there exists K > 0 such that for any $z \in G$, there exists a sequence $(x_n, y_n)_n$ of elements of $E \times F$ verifying:

$$\begin{cases} \lim_{n \to \infty} \|\varphi(x_n, y_n) - z\| = 0\\ \|x_n\| \|y_n\| \leqslant K \|z\| & n \ge 1\\ \lim_{n \to \infty} (\|\varphi(x, y_n)\| + \|\varphi(x_n, y)\|) = 0 & x \in E, \quad y \in F \end{cases}$$

Then, for any infinite array $(z_{i,j})_{i,j\ge 1}$ of elements of G and any $\varepsilon > 0$, there exist sequences $(u_i)_{i\ge 1}$ in E and $(v_j)_{j\ge 1}$ in F such that:

$$\begin{cases} \varphi(u_i, v_j) = z_{i, j} & i, j \ge 1 \\ \sum_{i, j \ge 1} \|u_i\| \|v_j\| \le (K+\varepsilon) \sum_{i, j \ge 1} \|z_{i, j}\|. \end{cases}$$

THEOREM C (Proposition 2.7 in [12]). Let $T \in \mathscr{L}(\mathscr{H})$ be a contraction in the class C_{00} and let $(x_n)_n$ be a sequence of elements of \mathscr{H} which converges weakly to 0. Then, for any $w \in \mathscr{H}$, we have:

$$\lim_{n \to \infty} \left(\left\| \left[x_n \stackrel{T}{\cdot} w \right] \right\| + \left\| \left[w \stackrel{T}{\cdot} x_n \right] \right\| \right) = 0.$$

The proof of our main result, Theorem 3.2, is based on approximations of functions in BMOA by functions in H^{∞} due to S. V. Kisliakov ([17, 18]) and rediscovered independently by J. Bourgain (Lemma 1 in [9]) and also on the classical functional model of absolutely continuous contractions (cf. [20]):

For a separable Hilbert space \mathscr{D} , we denote by $L^2(\mathscr{D})$ the classes of measurable functions $u: \mathbb{T} \to \mathscr{D}$ such that:

$$\|u\|_{2} := \left(\frac{1}{2\pi}\int_{0}^{2\pi} \langle u(e^{it}), u(e^{it})\rangle_{\mathscr{D}} dt\right)^{1/2} < \infty,$$

where $\langle \cdot, \cdot \rangle_{\mathscr{D}}$ denotes the scalar product in \mathscr{D} . We denote by $L^{\infty}(\mathscr{D})$ the set of all essentially bounded functions in $L^{2}(\mathscr{D})$. If $f \in L^{\infty} = L^{\infty}(\mathbb{T})$, we can define the multiplication operator M_{f} on $L^{2}(\mathscr{D})$ by:

$$(M_f u)(\xi) = f(\xi) u(\xi), \qquad u \in L^2(\mathcal{D}), \qquad \xi \in \mathbb{T}.$$

In particular, if z denotes the identity map of $\mathbb{T}(z(\xi) = \xi, \xi \in \mathbb{T})$, then M_z is a unitary operator. It follows from [20] that for every absolutely continuous contraction T, there exists a Hilbert space \mathscr{D} and a subspace $\mathscr{H} \subset L^2(\mathscr{D})$ such that:

- \mathscr{H} is semi-invariant for M_z , *i.e.* $P_{\mathscr{H}}M_{z|\mathscr{H}}^n = (P_{\mathscr{H}}M_{z|\mathscr{H}})^n$, $n \ge 1$ and
- $P_{\mathscr{H}}M_{z \mid \mathscr{H}}$ is unitarily equivalent to T.

In this situation, for every x and y in \mathcal{H} , we have:

$$(x \stackrel{T}{\cdot} y)(\xi) = \langle x(\xi), y(\xi) \rangle_{\mathscr{D}},$$
 a.e. on $\mathbb{T}.$

Also, it follows from Proposition 5 in [2] that \mathscr{D} and \mathscr{H} can be chosen so that $L^{\infty}(\mathscr{D}) \cap \mathscr{H}$ is dense in \mathscr{H} .

The fact that $L^{\infty}(\mathcal{D}) \cap \mathcal{H}$ is dense in \mathcal{H} allows us to reduce the proof of Theorem 3.2 to the case where $w \in L^{\infty}(\mathcal{D}) \cap \mathcal{H}$. We can then use approximation results of Section 2. In this section we present, in a slightly more general form, the method of Kisliakov-Bourgain to approximate, with respect to L^2 -norm, functions in H^p , p > 4 (and thus functions in BMOA) by functions in H^{∞} with some control on the H^{∞} -norm.

The results of Section 5 are based on the theory of compressions for contractions in the class $\mathbb{A}_{\mathbf{R}_0}$ (see [6]). Recall that \mathscr{K} is said to be a semi-invariant subspace for $T \in \mathscr{L}(\mathscr{H})$ (write $K \in SI(T)$) if $\mathscr{H} = \mathscr{M} \cap \mathscr{N}^{\perp}$ where $\mathscr{N} \subset \mathscr{M}$ and $\mathscr{M}, \mathscr{N} \in Lat(T)$ (Lat(T) denotes, as usual the lattice of all invariant subspaces for T). If $\mathscr{H} \in SI(T)$, the operator $T_{\mathscr{H}} := P_{\mathscr{H}} T_{|\mathscr{H}}$, where $P_{\mathscr{H}}$ denotes the orthogonal projection of \mathscr{H} onto \mathscr{H} , is called the compression of T to \mathscr{H} and we also say that T dilates $T_{\mathscr{H}}$. Remark that if $\mathscr{H} \in SI(T)$ and if $x, y \in \mathscr{H}$, then $x \stackrel{?}{=} y = x \stackrel{T_{\mathscr{H}}}{=} y$. In [6] it is proved that if $T \in \mathbb{A}_{\mathbf{R}_0}$, then T has a compression which is unitarily equivalent to an arbitrary diagonal operator with eigenvalues in the open unit disk.

2. APPROXIMATION BY H^{∞} IN H^{p} AND BMOA

We denote by $N^+ = N^+(\mathbb{D})$ the Smirnoff class, which can be defined as the algebra of all holomorphic functions f in \mathbb{D} such that f = Ag where Ais an inner function and where g is an outer function (see, for example, Theorem 4.14 in [19]).

LEMMA 2.1. Let f be a function of N^+ and let $\delta \ge 1$. Then there exists a function $g \in H^{\infty}$, $\|g\|_{\infty} \le \delta$, such that:

$$\begin{split} \|f - g\|_{2} &\leqslant \sqrt{\frac{2 + \delta^{2}}{\pi}} \left(\int_{E_{\delta}} |f(e^{it})|^{2} dt \right)^{1/2} \qquad \text{where} \\ E_{\delta} &= \{ t \in [0, 2\pi); \, |f(e^{it})| > \delta \}. \end{split}$$

Proof. Consider the analytic function g in \mathbb{D} defined by g = fG where G is the outer function

$$G(z) = \exp\left\{ (1/2\pi) \int_{E_{\delta}} (\log \delta - \log |f(e^{it})|) \left(\frac{e^{it} + z}{e^{it} - z}\right) dt \right\}.$$

If we set $F_{\delta} = \{ t \in [0, 2\pi); |f(e^{it})| \leq \delta \}$, then we get:

$$\begin{cases} |g(e^{it})| = |f(e^{it})|, & t \in F_{\delta} \\ |g(e^{it})| = \delta, & \text{elsewhere.} \end{cases}$$

Thus, the function g belongs to H^{∞} and $||g||_{\infty} \leq \delta$. It is clear that:

$$2\pi \|f - g\|_2^2 = \int_{E_{\delta}} |(f - g)(e^{it})|^2 dt + \int_{F_{\delta}} |(f - g)(e^{it})|^2 dt.$$

Remark that:

$$\int_{F_{\delta}} |(f-g)(e^{it})|^2 dt = \int_{F_{\delta}} |f(e^{it})|^2 |1 - G(e^{it})|^2 dt.$$

If we define the function φ in \mathbb{T} by:

$$\begin{cases} \varphi(e^{it}) = 0, & t \in F_{\delta} \\ \varphi(e^{it}) = \log \delta - \log |f(e^{it})| & \text{elsewhere,} \end{cases}$$

then $G(e^{it}) = \exp \{\varphi(e^{it}) + i\tilde{\varphi}(e^{it})\}, t \in [0, 2\pi)$ where $\tilde{\varphi}$ denotes the Hilbert transform of φ . Since $G(e^{it}) = \exp \{i\tilde{\varphi}(e^{it})\}, t \in F_{\delta}$, we get:

$$\int_{F_{\delta}} |(f-g)(e^{it})|^2 dt \leq \delta^2 \int_{F_{\delta}} |1 - \exp i\tilde{\varphi}(e^{it})|^2 dt.$$

Using the inequality $|1 - e^{ix}|^2 \leq 2x^2$, $x \in \mathbb{R}$, we obtain that:

$$\int_{F_{\delta}} |(f-g)(e^{it})|^2 dt \leq 2\delta^2 \int_{F_{\delta}} |\tilde{\varphi}(e^{it})|^2 dt \leq 2\delta^2 \int_{\mathbb{T}} |\tilde{\varphi}(e^{it})|^2 dt.$$

Since the Hilbert transform is an isometry with respect to the L^2 -norm and since $\varphi(e^{it}) = 0$, $t \in F_{\delta}$, it follows that:

$$\int_{F_{\delta}} |(f-g)(e^{it})|^2 dt \leq 2\delta^2 \int_{E_{\delta}} |\varphi(e^{it})|^2 dt.$$

Since $\delta \ge 1$, it is clear that $|\varphi(e^{it})|^2 \le |f(e^{it})|^2$ for any $t \in E_{\delta}$, which implies that:

$$\int_{F_{\delta}} |(f-g)(e^{it})|^2 dt \leq 2\delta^2 \int_{E_{\delta}} |f(e^{it})|^2 dt$$

Moreover, we easily get that:

$$\int_{E_{\delta}} |(f-g)(e^{it})|^2 dt \leq 4 \int_{E_{\delta}} |f(e^{it})|^2 dt,$$

and the lemma follows.

PROPOSITION 2.2. 1. Let p > 4 and let $f \in H^p$. For any $\varepsilon \in (0, 1]$ there exists a function $g \in H^{\infty}$ such that:

$$\begin{cases} \|f - g\|_2 < \varepsilon \|f\|_p \\ \|g\|_{\infty} < c_p \varepsilon^{2/(4-p)} \|f\|_p \qquad \text{where} \quad 0 < c_p \leq 6^{1/(p-4)} \end{cases}$$

2. Let $\varepsilon \in (0, 1/2]$ and let $f \in BMOA$. Then there exists a function $g \in H^{\infty}$ and a numerical constant d > 0 such that:

$$\begin{cases} \|f-g\|_{2} \leq \varepsilon \|f\|_{BMO} \\ \|g\|_{\infty} \leq d \log \left(\frac{1}{\varepsilon}\right) \|f\|_{BMO}. \end{cases}$$

Proof. For the first assertion, we may suppose that $||f||_p \leq 1$. Since $H^p \subset N^+$ for p > 0, there exists a function $g \in H^\infty$, $||g||_{\infty} \leq \delta$, such that:

$$\|f - g\|_{2} \leq \sqrt{\frac{2 + \delta^{2}}{\pi}} \left(\int_{E_{\delta}} |f(e^{it})|^{2} dt \right)^{1/2}$$
(1)

where $E_{\delta} = \{t \in [0, 2\pi); |f(e^{it})| > \delta\}$. Applying Hölder's inequality, we obtain that:

$$\int_{E_{\delta}} |f(e^{it})|^2 dt \leq \left(\int_{E_{\delta}} |f(e^{it})|^p dt \right)^{2/p} m(E_{\delta})^{1-2/p}.$$
 (2)

Moreover, since $||f||_p^p \ge (1/2\pi) \int_{E_{\delta}} |f(e^{it})|^p dt \ge (1/2\pi) \delta^p m(E_{\delta})$, we obtain $m(E_{\delta}) \le 2\pi/\delta^p$. Hence, we get, for p > 4:

$$\|f-g\|_2 \leqslant \frac{\sqrt{4+2\delta^2}}{\delta^{p/2-1}} \leqslant \frac{\sqrt{6}}{\delta^{(p-4)/2}}.$$

For $\varepsilon \in (0, 1]$, set $\delta = (\sqrt{6}/\varepsilon)^{2/(p-4)}$. The first assertion follows.

For the second assertion, we may suppose that $||f||_{BMO} \leq 1$. By using (1) and (2) for p = 3 (for example) and since BMOA $\subset \bigcap_{p>0} H^p$, we get:

$$\|f-g\|_2 \leqslant K\delta^{1/2} m(E_\delta)^{1/6}$$

for some positive constant K>0. Moreover, by the John-Nirenberg Theorem (see [16]), there exists a numerical constant k>0 such that:

$$m(E_{\delta}) < \frac{1}{k} \exp(-k\delta).$$

Hence, we have for some constant $c_0 > 0$:

$$\begin{cases} \|f - g\|_2 \leqslant c_0 \delta^{1/2} \exp\left(\frac{-k\delta}{6}\right) \\ \|g\|_{\infty} \leqslant \delta. \end{cases}$$

For ε small enough set $\delta = 6/k \log(1/\varepsilon^2)$. We easily get that:

$$\begin{cases} \|f - g\|_2 \leq \varepsilon \\ \|g\|_{\infty} \leq d \log\left(\frac{1}{\varepsilon}\right) \end{cases}$$

for some positive constant d > 0, which completes the proof of the lemma.

COROLLARY 2.3 ([9, 17, 18]). Let $\varepsilon \in (0, 1/2]$ and let $f \in L^{\infty}$. Then there exist $g^+ \in H^{\infty}$, $g^- \in \overline{H_0^{\infty}}$ such that:

$$\begin{cases} \|f - (g^+ + g^-)\|_2 \leq \varepsilon \|f\|_{\infty} \\ \|g^+\|_{\infty} + \|g^-\|_{\infty} \leq c \log\left(\frac{1}{\varepsilon}\right) \|f\|_{\infty} \end{cases}$$

where c is a numerical constant.

Proof. For $f \in L^2$ denote by $\hat{f}(n)$ the *n*th Fourier coefficient of *f* and set $P_+(f)(e^{it}) = \sum_{n \ge 0} \hat{f}(n) e^{int}$, $P_-(f)(e^{it}) = \sum_{n < 0} \hat{f}(n) e^{int}$. Since $P_+(H^{\infty}) \subset$ BMOA and since L^{∞} embeds continuously in BMO (see [15, p. 223]), the corollary follows immediately from Proposition 2.2.

3. VANISHING CONDITIONS

Recall that if T is an absolutely continuous contraction, there exists a w*-w* continuous L^{∞} -functional calculus $\Psi_T: L^{\infty} \to \mathscr{L}(\mathscr{H})$. This functional calculus is defined by the formula:

$$(f(T) x, y) = \langle f, x \stackrel{T}{:} y \rangle, \qquad x, y \in \mathcal{H}, f \in L^{\infty}.$$

It is easy to check that this functional calculus is not multiplicative unless T is a unitary operator. For H^{∞} , we obtain the usual Sz.-Nagy-Foias functional calculus Φ_T . Also, for $\varphi \in \overline{H^{\infty}}$, $\Psi_T(\varphi) = \Phi_{T^*}(\tilde{\varphi})$ where $\tilde{\varphi}(z) = \sum_{n \ge 0} \hat{\varphi}(-n) z^n$ (see [5], p. 12).

In this section we use Corollary 2.3 to obtain "vanishing conditions." Remark that we do not use the full strength of BMO estimates.

Let T be an absolutely continuous contraction. We use the same notations as in the introduction. We thus identify \mathscr{H} with a closed subspace of $L^2(\mathscr{D})$ semi-invariant for the multiplication operator M_z such that $L^{\infty}(\mathscr{D}) \cap \mathscr{H}$ is dense in \mathscr{H} , and we identify T with the compression of M_z to \mathscr{H} . For x in $L^{\infty}(\mathscr{D})$, set $\|x\|_{\infty} = \operatorname{ess} \sup_{\xi \in \mathbb{T}} \|x(\xi)\|$.

LEMMA 3.1. Let $T \in \mathcal{L}(\mathcal{H})$ be an absolutely continuous contraction. Let $f \in L^{\infty}$ and let $x \in L^{\infty}(\mathcal{D}) \cap \mathcal{H}$. Then we have:

$$||f(T) x|| \leq ||f_2|| ||x||_{\infty}.$$

Proof. We have for $y \in \mathcal{H}$,

$$\begin{split} |(f(T) x, y)| &= |\langle f, x \stackrel{?}{\cdot} y \rangle| \\ &= \frac{1}{2\pi} \left| \int_{0}^{2\pi} f(e^{it}) \langle x(e^{it}), y(e^{it}) \rangle_{\mathscr{D}} dt \right| \\ &\leq \|f\|_{2} \|x\|_{\infty} \|y\|. \end{split}$$

The lemma follows.

THEOREM 3.2. Let $T \in \mathscr{L}(\mathscr{H})$ be an absolutely continuous contraction and let $(x_n)_n$ be a sequence of elements of \mathscr{H} . The following assertions are equivalent:

> (i) $\lim_{n \to \infty} \|x_n \stackrel{T}{\cdot} w\|_1 = 0, \qquad w \in \mathscr{H}$ (ii) $\lim_{n \to \infty} (\|[x_n \stackrel{T}{\cdot} w]\| + \|[w \stackrel{T}{\cdot} x_n]\|) = 0, \qquad w \in \mathscr{H}.$

Remark. Since $y \stackrel{\text{T}}{:} z = \overline{z \stackrel{\text{T}}{:} y}$, $y, z \in \mathscr{H}$, we have $||y \stackrel{\text{T}}{:} z||_1 = ||z \stackrel{\text{T}}{:} y||_1$.

Proof. We only have to prove that if $\|[x_n \overset{T}{\cdot} w]\| + \|[w \overset{T}{\cdot} x_n]\| \to 0$ for every $w \in \mathscr{H}$, then $\lim_{n \to \infty} \|x_n \overset{T}{\cdot} w\|_1 = 0$ for every $w \in \mathscr{H}$. Assume that the sequence $(x_n)_{n \ge 1}$ satisfies Condition (ii) and let $w \in \mathscr{H}$. We have

$$|(x_n, w)| = |\langle 1, [x_n \stackrel{T}{\cdot} w] \rangle| \leq ||[x_n \stackrel{T}{\cdot} w]||,$$

and so the sequence $(x_n)_{n \ge 1}$ converges weakly to 0. Let $w \in L^{\infty}(\mathcal{D}) \cap \mathcal{H}$. Then there exists a function $\varphi_n \in L^{\infty}$, $\|\varphi_n\|_{\infty} = 1$ such that $\|x_n^T w\|_1 = (\varphi_n(T) w, x_n)$. Assume that $\lim \sup_{n \to \infty} \|x_n^T w\|_1 > 0$. Without loss of generality, we may suppose that for $n \ge 1$, $\|x_n^T w\|_1 \ge \tau > 0$, $\|x_n\| \le 1$, $\|w\|_{\infty} \le 1$. By Corollary 2.3, there exist $g_n^+ \in H^{\infty}$, $g_n^- \in \overline{H_0^{\infty}}$, such that:

$$\begin{cases} \|\varphi_n - g_n\|_2 \leq \frac{\tau}{3} \quad \text{where} \quad g_n = g_n^+ + g_n^- \\ \|g_n^+\|_\infty + \|g_n^-\|_\infty \leq c \log\left(\frac{3}{\tau}\right). \end{cases}$$

We have:

$$(\varphi_n(T) w, x_n) = ((\varphi_n - g_n)(T) w, x_n) + (g_n(T) w, x_n).$$

By Lemma 3.1 and Schwartz inequality, we get $|((\varphi_n - g_n)(T) w, x_n)| \le \tau/3$. Also,

$$(g_n(T) w, x_n) = (g_n^+(T) w, x_n) + (g_n^-(T) w, x_n)$$
$$= \langle g_n^+, [w^{\frac{T}{2}} x_n] \rangle + \overline{\langle \overline{g_n^-}, [x_n^{\frac{T}{2}} w] \rangle}.$$

Since the sequences $(g_n^+)_n$ and $(g_n^-)_n$ are bounded in H^{∞} and in $\overline{H_0^{\infty}}$ respectively, and since $\lim_{n\to\infty} (\|[x_n^T w]\| + \|[w^T x_n]\|) = 0$, we have $|(g_n(T)w, x_n)| \leq \tau/3$ if *n* is large enough. Hence we obtain $|(\varphi_n(T)w, x_n)| \leq 2\tau/3 < \tau$ if *n* is large enough, contradicting the assertion $\|x_n^T w\|_1 \geq \tau$. The theorem follows then from the fact that $L^{\infty}(\mathcal{D}) \cap \mathcal{H}$ is dense in \mathcal{H} .

The next Corollary yields information about the continuity of the L^{∞} -functional calculus Ψ_T in the particular case where $T \in C_{00}$.

COROLLARY 3.3. Let T be in the class C_{00} . Then, for any sequence $(\varphi_n)_{n \ge 1}$ in L^{∞} such that $\varphi_n \xrightarrow{w*} 0$, we have $\lim_{n \to \infty} \|\varphi_n(T) x\| = 0$, $x \in \mathcal{H}$.

Proof. We will prove the corollary by showing that if $(\varphi_n)_{n \ge 1}$ is a bounded sequence in L^{∞} such that $\limsup_{n \to \infty} \|\varphi_n(T) x\| > 0$ for some $x \in \mathscr{H}$, then the sequence $(\varphi_n)_{n \ge 1}$ is not w*-convergent to 0. In this situation, there exists a sequence $(y_n)_{n \ge 1}$ of elements of \mathscr{H} satisfying $\|y_n\| = 1$ and

$$\|\varphi_n(T) x\| = |(\varphi_n(T) x, y_n)| = |\langle \varphi_n, x \stackrel{T}{\cdot} y_n \rangle|.$$

Recall (see, for example, [12, Proposition 2.7]) that if $T \in C_0$. (resp. $T \in C_{.0}$) and if $(z_n)_{n \ge 1}$ converges weakly to 0, then $\lim_{n \to \infty} \|[w^T z_n]\| = 0$ (resp. $\lim_{n \to \infty} \|[z_n^T w]\| = 0$) for any $w \in \mathcal{H}$. We can assume, without loss

of generality, that $\delta = \inf_{n \ge 1} \|\varphi_n(T) x\| > 0$ and that there exists $y \in \mathcal{H}$ such that $(y_n)_{n \ge 1}$ converges weakly to y. Set $z_n = y - y_n$. Since $T \in C_{00}$, it follows then from Theorem 3.2 that $\lim_{n \to \infty} \|x^{\frac{T}{2}} z_n\|_1 = 0$. Since the sequence $(\varphi_n)_{n \ge 1}$ is bounded in L^{∞} , we have:

$$\lim_{n\to\infty} |\langle \varphi_n, x \stackrel{T}{\cdot} z_n \rangle| = 0.$$

Also,

$$(\varphi_n(T) x, y) = \langle \varphi_n, x \stackrel{T}{\cdot} y_n \rangle + \langle \varphi_n, x \stackrel{T}{\cdot} z_n \rangle.$$

Hence,

$$\liminf_{n \to \infty} |(\varphi_n(T) x, y)| = \liminf_{n \to \infty} |\langle \varphi_n, x^T y_n \rangle|$$

with

$$\liminf_{n \to \infty} |\langle \varphi_n, x \stackrel{?}{:} y_n \rangle| = \liminf_{n \to \infty} ||\varphi_n(T) x|| \ge \delta > 0.$$

Since the L^{∞} -functional calculus $\Psi_T: f \to f(T)$ is w*-w* continuous from L^{∞} into $\mathscr{L}(\mathscr{H})$, the sequence $(\varphi_n)_{n \ge 1}$ is not w*-convergent to 0 in L^{∞} , and the corollary follows.

4. L^1 -FACTORIZATION

We discuss here factorizations of the form $f = x \stackrel{T}{\cdot} y$ where f is a given function in L^1 and where T is an absolutely continuous contraction.

The notation and terminology employed herein agree with those in [11, 20]. Recall that the minimal unitary dilation $U \in \mathscr{L}(\mathscr{U})$ of an absolutely continuous contraction T is also absolutely continuous.

The minimal isometric dilation U_+ of T is the restriction of $U \in \mathscr{L}(\mathscr{U})$ to the subspace $\mathscr{U}_+ = \operatorname{Span}\{U^n \mathscr{H}, n \ge 0\}$, which is invariant for U. The operator U_+ has a Wold decomposition $U_+ = S_* \oplus R$ corresponding to a decomposition of \mathscr{U}_+ as $\mathscr{S}_* \oplus \mathscr{R}$, where $S_* \in \mathscr{L}(\mathscr{S}_*)$ is a unilateral shift of some multiplicity and $R \in \mathscr{L}(\mathscr{R})$ is an absolutely continuous unitary operator.

The minimal coisometric extension *B* of *T* is the compression of *U* to the subspaces $\mathscr{B} = \text{Span}\{U^n \mathscr{H}, n \leq 0\} = \text{Span}\{U^{*n} \mathscr{H}, n \geq 0\}$, invariant for U^* (hence semi-invariant for *U*). The operator *B* has a Wold decomposition $B = S^* \oplus R_*$ corresponding to a decomposition of \mathscr{B} as $\mathscr{S} \oplus \mathscr{R}_*$, where $S \in \mathscr{L}(\mathscr{S})$ is a unilateral shift of some multiplicity and where $R_* \in \mathscr{L}(\mathscr{R}_*)$

is an absolutely continuous unitary operator. We denote by Q, Q_* , A, A_* the orthogonal projections of \mathcal{U} onto \mathcal{S} , \mathcal{S}_* , \mathcal{R} , \mathcal{R}_* respectively.

Throughout this section, expressions such as maximality, uniqueness, and equality of Borel subsets of \mathbb{T} are to be interpreted as satisfied up to Borel subsets of Lebesgue measure zero.

We denote by Σ_T (resp. Σ_{*T}) the support of the spectral measure of R (resp. R_*).

The following lemma is a direct consequence of Theorem 3.2.

LEMMA 4.1. Let $T \in \mathscr{L}(\mathscr{H})$ be an absolutely continuous contraction and let $(x_n)_n$ be a sequence of elements of \mathscr{H} which converges to 0 in the weak topology. Assume that $\lim_{n\to\infty} (\|Ax_n\| + \|A_*x_n\|) = 0$. Then $\lim_{n\to\infty} \|x_n^{T}w\|_1 = 0$ for every $w \in \mathscr{H}$.

Proof. By Proposition 2.7 in [12], we know that:

$$\lim_{n \to \infty} \| [Qw^{\underline{B}} Qx_n] \| = 0 = \lim_{n \to \infty} \| [Q_* x_n^{U_+} Q_* w] \|.$$

Also, for $w \in \mathcal{H}$,

$$[w^{T} x_{n}] = [Qw^{B} Qx_{n}] + [A_{*}w^{B} A_{*}x_{n}] \quad \text{and,}$$
$$[x_{n}^{T} w] = [Q_{*}x_{n}^{U_{+}} Q_{*}w] + [Ax_{n}^{U_{+}} A_{w}].$$

Hence $\lim_{n\to\infty} (\|[x_n^T w]\| + \|[w^T x_n]\|) = 0$ for every $w \in \mathcal{H}$. The result follows then from Theorem 3.2.

Recall that if T is an absolutely continuous contraction on \mathcal{H} and if σ is a Borel subset of \mathbb{T} , then σ is said to be essential for T (cf., Definition 3.1 in [10]) if:

$$\|f(T)\| \ge \|f_{|\sigma}\|_{\infty}, \qquad f \in H^{\infty}(\mathbb{T}).$$

We will denote by Ess(T) the maximal essential Borel subset for T (see Proposition 3.3 in [10]).

LEMMA 4.2. Let $T \in \mathscr{L}(\mathscr{H})$ be an absolutely continuous contraction. For any function $f \in L^1(Ess(T) \setminus (\Sigma_T \cup \Sigma_{*T}))$, there exist two sequences of elements of \mathscr{H} , $(x_n)_n$ and $(y_n)_n$ bounded by $||f||_1^{1/2}$ such that:

$$\begin{cases} \lim_{n \to \infty} \|f - x_n \stackrel{T}{\cdot} y_n\|_1 = 0\\ \lim_{n \to \infty} (\|x_n \stackrel{T}{\cdot} w\|_1 + \|y_n \stackrel{T}{\cdot} w\|_1) = 0, \qquad w \in \mathscr{H}. \end{cases}$$

Proof. Using the standard functional process of approximation of Bercovici (see [3, 11]), we see that if $f \in L^1(Ess(T))$ there exist in \mathscr{H} two sequences $(u_n)_n$ and $(v_n)_n$ which converge to 0 in the weak topology and such that:

$$\begin{cases} \lim_{n \to \infty} \|f - u_n \stackrel{?}{\cdot} v_n\|_1 = 0 \\ \|u_n\| \leqslant \|f\|_1^{1/2} \quad \text{and} \quad \|v_n\| \leqslant \|f\|_1^{1/2}, \quad n \ge 1. \end{cases}$$

By Lemma 4.1, it is sufficient to prove that, if f = 0 a.e. on $\Sigma_T \cup \Sigma_{*T}$, we have:

$$\lim_{n \to \infty} \left(\|A_*u_n\| + \|A_*v_n\| + \|Au_n\| + \|Av_n\| \right) = 0.$$

Set $\sigma = Ess(T) \setminus (\Sigma_T \cup \Sigma_{*T})$ and denote by χ_{σ} the characteristic function of σ . We have:

$$u_n \stackrel{T}{\cdot} v_n = Q u_n \stackrel{B}{\cdot} Q v_n + A_* u_n \stackrel{B}{\cdot} A_* v_n.$$

Identifying again \mathscr{H} to a closed subspace of $L^2(\mathscr{D})$, we obtain $\chi_{\sigma}A_*u_n = 0$. Hence $\chi_{\sigma}(u_n \stackrel{T}{\cdot} v_n) = \chi_{\sigma} Q u_n \stackrel{B}{\cdot} \chi_{\sigma} Q v_n.$

Moreover, we have

$$\|\chi_{\sigma} Q u_n\| \le \|Q u_n\| \le \|u_n\| \le \|f\|_1^{1/2},$$
(3)

$$\|\chi_{\sigma} Q v_n\| \le \|Q v_n\| \le \|v_n\| \le \|f\|_1^{1/2}.$$
(4)

Given that $f \in L^1(\sigma)$, it is clear that $\lim_{n \to \infty} ||f - \chi_{\sigma}(u_n^T v_n)||_1 = 0$, that is, $\lim_{n \to \infty} ||f - \chi_{\sigma}Qu_n^P \chi_{\sigma}Qv_n)||_1 = 0$. It follows from this that

$$\lim_{n\to\infty} \|\chi_{\sigma} Q u_n\| = \|f\|_1^{1/2} = \lim_{n\to\infty} \|\chi_{\sigma} Q v_n\|,$$

which implies that, by (3):

$$\begin{cases} \lim_{n \to \infty} \|u_n\| = \lim_{n \to \infty} \|Qu_n\| \\ \lim_{n \to \infty} \|v_n\| = \lim_{n \to \infty} \|Qv_n\|. \end{cases}$$

It follows from the equalities

$$||u_n||^2 = ||A_*u_n||^2 + ||Qu_n||^2, \qquad ||v_n||^2 = ||A_*v_n||^2 + ||Qv_n||^2,$$

that $\lim_{n\to\infty} \|A_*u_n\| = 0 = \lim_{n\to\infty} \|A_*v_n\|$.

The proof of $\lim_{n\to\infty} ||Au_n|| = 0 = \lim_{n\to\infty} ||Av_n||$ uses similar arguments and is left to the reader. The starting point is the equality:

$$u_n \stackrel{T}{\cdot} v_n = Q_* u_n \stackrel{U_+}{\cdot} Q_* v_n + A u_n \stackrel{U_+}{\cdot} A v_n. \quad \blacksquare$$

Let $f = (f_{i,j})_{i,j \ge 1}$ be an infinite array of functions in L^1 . We define $||f||_1 \in [0, \infty]$ by the formula $||f||_1 = \sum_{i,j \ge 1} ||f_{i,j}||_1$. We can now formulate our main result:

THEOREM 4.3. Let $T \in \mathscr{L}(\mathscr{H})$ be an absolutely continuous contraction and let $\varepsilon > 0$.

Then, for any infinite array $(f_{i, j})_{i, j \ge 1}$ of functions in $L^1(\sigma_T)$ where $\sigma_T = Ess(T) \setminus (\Sigma_T \cup \Sigma_{*T})$, there exist some sequences $(x_i)_{i \ge 1}$ and $(y_j)_{j \ge 1}$ of elements of \mathscr{H} , bounded by $(1 + \varepsilon) ||f||_1^{1/2}$, such that $f_{i, j} = (x_i^T y_j)_{|\sigma_T}$ $(i \ge 1, j \ge 1)$.

In particular, for any function $f \in L^1(\sigma_T)$, there exist $x \in \mathcal{H}$, $y \in \mathcal{H}$ such that $f = (x^T y)_{|\sigma_T}$ and $||x|| ||y|| \leq (1 + \varepsilon) ||f||_1$.

Proof. By Lemma 4.2 we know that for any $f \in L^1(\sigma_T)$, there exist two sequences of elements of \mathscr{H} , $(x_n)_n$ and $(y_n)_n$ bounded by $||f||_1^{1/2}$ such that:

$$\begin{cases} \lim_{n \to \infty} \|f - x_n^{T} y_n\|_1 = 0\\ \lim_{n \to \infty} (\|x_n^{T} w\|_1 + \|y_n^{T} w\|_1) = 0, \qquad w \in \mathcal{H}. \end{cases}$$

In particular, we get:

$$\begin{cases} \lim_{n \to \infty} \|f - (x_n^{T} y_n)|_{\sigma_T}\|_1 = 0\\ \lim_{n \to \infty} (\|(x_n^{T} w)|_{\sigma_T}\|_1 + \|(y_n^{T} w)|_{\sigma_T}\|_1) = 0, \qquad w \in \mathscr{H}. \end{cases}$$

The proof of the theorem is now an immediate consequence of Proposition 7.2 of [8] applied to the sesquilinear map $\Lambda: \mathscr{H} \times \mathscr{H} \to L^1(\sigma_T)$ defined by the formula $\Lambda(x, y) = (x \stackrel{T}{\cdot} y)_{|\sigma_T}$.

In the case where $T \in \mathbb{A} \cap C_{00}$, we have $\Sigma_T = \emptyset = \Sigma_{*T}$ and $Ess(T) = \mathbb{T}$. Indeed, $T \in C_{0.}$ (resp. $T \in C_{.0}$) if and only if $\Sigma_{*T} = \emptyset$ (resp. $\Sigma_T = \emptyset$) and $T \in \mathbb{A}$ if and only if $\mathbb{T} = Ess(T)$. We obtain the following corollary.

COROLLARY 4.4. Let $T \in \mathcal{L}(\mathcal{H})$ be in the class $\mathbb{A} \cap C_{00}$ and let $\varepsilon > 0$. Then, for any infinite array $(f_{i, j})_{i, j \ge 1}$ of functions in L^1 , there exist some sequences $(x_i)_{i \ge 1}$ and $(y_j)_{j \ge 1}$ of elements of \mathcal{H} , bounded by $(1 + \varepsilon) ||f||_1^{1/2}$, such that $f_{i, j} = x_i \stackrel{?}{:} y_j \ (i \ge 1, j \ge 1)$. In particular, for any function $f \in L^1$, there exist $x \in \mathcal{H}$, $y \in \mathcal{H}$ such that $f = x^{\frac{T}{2}} y$ and $||x|| ||y|| \leq (1 + \varepsilon) ||f||_1$.

Recall that the class $\mathbb{A}_{\mathbf{x}_0}$ consists in those absolutely continuous contractions T for which given any family $(f_{i, j})_{i, j \ge 1}$ of elements of L^1/H_0^1 , there exist two sequences $(x_i)_{i \ge 1}$ and $(y_j)_{j \ge 1}$ of elements of \mathcal{H} such that $f_{i, j} = [x_i^T, y_j]$ $(i, j \ge 1)$. By Proposition 4.2 of [6], if $T \in \mathbb{A}_{\mathbf{x}_0}$, there exists a compression $T_{\mathcal{M}}$ of T which is in the class $\mathbb{A} \cap C_{00}$, see below. Using Corollary 4.4 and the equality $x^{T_{\mathcal{M}}} y = x^T y$ for any $x, y \in \mathcal{M}$, we see that the assertion of Corollary 4.4 is still true under the relaxed hypothesis $T \in \mathbb{A}_{\mathbf{x}_0}$. In the other direction, Corollary 4.4 can be deduced immediately from [6, 7] since $\mathbb{A} \cap C_{00} \subset \mathbb{A}_{\mathbf{x}_0}$ (see Remark 1, Section 5).

5. SPATIAL FACTORIZATIONS FOR THE CLASS $\mathbb{A} \cap C_{00}$

We discuss here factorizations of the form $f = x^T x$, where $T \in \mathbb{A} \cap C_{00}$. If $\Lambda = (\lambda_n)_n$ is a sequence of complex numbers, we will say that an operator $T \in \mathcal{L}(\mathcal{H})$ is Λ -diagonal if there exists an orthonormal basis $(e_n)_{n \ge 1}$ of \mathcal{H} such that $Te_n = \lambda_n e_n$ $(n \ge 1)$. Now we state as a lemma a basic result from [6].

LEMMA 5.1 ([6], Proposition 4.2). Let $T \in \mathbb{A}_{\aleph_0}$. Then for every sequence $\Lambda = (\lambda_n)_{n \ge 1}$ of elements of \mathbb{D} , there exists a compression $T_{\mathscr{M}}$ of T which is Λ -diagonal.

For $r \in [0, 1)$ denote by $P_r(t) = (1 - r^2)/|1 - re^{it}|^2$ the usual Poisson kernel, and for $\lambda = re^{i\theta} \in \mathbb{D}$, set:

$$P_{\lambda}(e^{it}) = P_{r}(\theta - t) = \frac{1 - |\lambda|^{2}}{|1 - \bar{\lambda}e^{it}|^{2}}$$

We will need the following standard fact.

LEMMA 5.2. Let $f \ge 0$ be a continuous function on \mathbb{T} . Then for every $\varepsilon > 0$ there exists $c_1, ..., c_n \ge 0$ and $\lambda_1, ..., \lambda_n \in \mathbb{D}$ such that:

$$\left\|f-\sum_{k=1}^n c_k P_{\lambda_k}\right\|_{\infty} < \varepsilon.$$

Proof. For $r \in [0, 1)$, set:

$$f_r(e^{it}) = \sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) \ e^{int} = \frac{1}{2\pi} \int_0^{2\pi} f(e^{is}) \ P_r(t-s) \ ds.$$

Then $f_r = 1/2\pi \int_0^{2\pi} f(e^{is}) P_{re^{is}} ds$, the integral being computed in the Bochner sense in $\mathscr{C}(\mathbb{T})$, and there exists $\varepsilon > 0$ such that $||f - f_r||_{\infty} < \varepsilon/2$. Now there exists a Riemann sum $g = 1/2\pi \sum_{j=1}^n (s_{j+1} - s_j) f(e^{is_j}) P_{re^{is_j}}$ such that $||f_r - g||_{\infty} < \varepsilon/2$, and the lemma follows.

Recall that a sequence $\Lambda = (\lambda_n)_{n \ge 1}$ of elements of \mathbb{D} is dominating if $||u||_{\infty} = \sup_{n \ge 1} |u(\lambda_n)|$ for every $u \in H^{\infty}(\mathbb{D})$. Denote by ℓ_+^1 the set of all sequences $(c_n)_{n \ge 1}$ of non-negative real number such that $\sum_{n \ge 1} c_n < \infty$. We identify as usual functions on \mathbb{T} which agree almost everywhere.

THEOREM 5.3. Let $f \in L^1 \setminus \{0\}$. Then the following conditions imply each other.

- 1. *f* is lower semi-continuous (l.s.c.) and strictly positive on \mathbb{T} .
- 2. For every $T \in \mathbb{A}_{\aleph_0}$, there exists $x \in \mathscr{H}$ such that $x \stackrel{T}{\cdot} x = f$.

3. For every dominating sequence $\Lambda = (\lambda_n)_{n \ge 1}$ of elements of \mathbb{D} , there exists $(c_n)_{n \ge 1} \in \ell_+^1$ such that $f = \sum_{n=1}^{\infty} c_n P_{\lambda_n}$.

Proof. Denote by \mathscr{F} the set of all finite sums $\sum_{k=1}^{n} c_k P_{\lambda_k}$, where $c_1, ..., c_n \ge 0, \lambda_1, ..., \lambda_n \in \mathbb{D}$ and denote by \mathscr{G} the set of all functions $\varphi \in L^1$ which can be written under the form $\varphi = \sum_{n=1}^{\infty} c_n P_{\lambda_n}$ where $(c_n)_{n\ge 1} \in \ell_+^1$ and where $\lambda_n \in \mathbb{D}$ $(n \ge 1)$. Clearly $\sum_{n=1}^{\infty} \varphi_n \in \mathscr{G}$ if $\varphi_n \in \mathscr{G}$ for $n \ge 1$ and if $\sum_{n=1}^{\infty} \varphi_n \in L^1$. Let f be a strictly positive continuous function on \mathbb{T} . Then $\delta = \inf \{f(\xi), \xi \in \mathbb{T}\} > 0$. It follows from Lemma 5.2 that there exists $\varphi_1 \in \mathscr{F}$ such that $-\delta/2 \le f - \varphi_1 - \delta \le \delta/2$, so that $\delta/2 \le f - \varphi_1 \le 2\delta$. By using the same argument, we can construct by induction a sequence φ_n of elements of \mathscr{F} such that:

$$\frac{\delta}{2^n} \leqslant f - (\varphi_1 + \dots + \varphi_n) \leqslant \frac{\delta}{2^{n-2}}, \qquad n \ge 1.$$

Hence we have:

$$f(\xi) - \frac{\delta}{2^{n-2}} \leqslant \varphi_1(\xi) + \dots + \varphi_n(\xi) \leqslant f(\xi) \quad \text{for} \quad n \ge 1, \quad \xi \in \mathbb{D}.$$

So, we have proved that $f = \sum_{n=1}^{\infty} \varphi_n \in \mathscr{G}$. Now assume that $f \in L^1$ is strictly positive and l.s.c. on \mathbb{T} . Then $\delta = \min_{\xi \in \mathbb{T}} f(\xi) > 0$. There exists a sequence $(f_n)_n$ of non-negative continuous functions on \mathbb{T} such that $f - \delta = \sum_{n=1}^{\infty} f_n$. Set $g_n = f_n + \delta/2^n$ $(n \ge 1)$. Then $g_n \in \mathscr{G}$, and so $f = \sum_{n=1}^{\infty} g_n \in \mathscr{G}$. Hence there exists a sequence $\Lambda = (\lambda_n)_{n \ge 1}$ of elements of \mathbb{D} and $(c_n)_{n \ge 1} \in \ell_1^+$ such that $f = \sum_{n \ge 1} c_n P_{\lambda_n}$.

Let $T \in \mathbb{A}_{\aleph_0}$. It follows from Lemma 5.1 that there exists a closed subspace \mathscr{M} of \mathscr{H} semi-invariant for T such that the compression $S = T_{\mathscr{M}}$ is

A-diagonal. Let $(e_n)_{n \ge 1}$ be an orthonormal basis of \mathcal{M} such that $Se_n = \lambda_n e_n$ $(n \ge 1)$. An immediate computation shows that $e_n \stackrel{S}{\cdot} e_m = \delta_{n,m} P_{\lambda_n}$ for $n \ge 1$, $m \ge 1$. Hence we have:

$$x \stackrel{T}{\cdot} x = x \stackrel{S}{\cdot} x = \sum_{n=1}^{\infty} |(x, e_n)|^2 P_{\lambda_n}, \qquad x \in \mathcal{M}.$$

Taking $(x, e_n) = c_n^{1/2}$ for $n \ge 1$, we see that $x \stackrel{T}{\cdot} x = f$, and Condition (2) is satisfied.

Now, let $f \in L^1 \setminus \{0\}$ satisfying Condition (2), let $\Lambda = (\lambda_n)_{n \ge 1}$ be a dominating sequence in \mathbb{D} and set $Te_n = \lambda_n e_n$ where $(e_n)_{n \ge 1}$ is an orthonormal basis of the separable Hilbert space \mathscr{H} . Then $T \in C_{00}$ and since $u(T) e_n = u(\lambda_n) e_n$ for $u \in H^\infty$, we see that $T \in \mathbb{A}$. Since f satisfies Condition (2), there exists $x \in \mathscr{H}$ such that $x \stackrel{T}{:} x = f$. The same computation as above shows that $x \stackrel{T}{:} x = \sum_{n=1}^{\infty} c_n P_{\lambda_n}$ where $(c_n)_{n \ge 1} = (|(x, e_n)|^2)_{n \ge 1} \in \ell_{+}^1$ and so f satisfies Condition (3).

Now, if $f = \sum_{n=1}^{\infty} c_n P_{\lambda_n}$ with $(c_n)_{n \ge 1} \in \ell_+^1$, $(\lambda_n)_{n \ge 1} \subset \mathbb{D}$, we can assume that $c_1 > 0$. Set $f_p = \sum_{n=1}^{p} c_n P_{\lambda_n}$. Then $f(\xi) = \lim_{p \to \infty} f_p(\xi)$ for $\xi \in \mathbb{T}$ and f_p is strictly positive and continuous for every $p \ge 1$. Hence f is strictly positive and lower semi-continuous on \mathbb{T} , which concludes the proof of the theorem.

1. As in the introduction, we say that an absolutely con-Remarks. tinuous contraction T has Property (1.1) if for any infinite array $(f_{i,i})_{i,i\geq 1}$ consisting of elements of L^1 , there exist sequences $(x_i)_{i\geq 1}$, $(y_i)_{i\geq 1}$ of \mathscr{H} such that $f_{i,j} = x_i^T y_i$, $i, j \ge 1$. First notice that T has Property (1.1) if and only if there exists a compression of T, say $T_{\mathcal{M}}$, which has Property (1.1). Let $(\mu_n)_{n>1} \subset \mathbb{D}$ be a dominating sequence for \mathbb{T} and let $\Lambda = (\lambda_n)_{n>1} \subset \mathbb{D}$ be a sequence such that the set $\{n \ge 1; \lambda_n = \mu_m\}$ is infinite for $m \ge 1$. Let S be a Λ -diagonal operator. It follows immediately from Lemma 5.1 that every $T \in \mathbb{A}_{\mathbf{x}_0}$ dilates S. Since the essential spectrum of S is dominating for T, we have $S \in (BCP) = \bigcap_{0 \le \theta < 1} (BCP)_{\theta}$ (see the definitions in [7], p. 354). Applying Corollary 6.9 of [7], we obtain that S has Property (1.1). So every $T \in A_{\aleph_0}$ has Property (1.1) whereas the definition of the class A_{\aleph_0} only gives sequences $(u_i)_{i\geq 1}$ and $(v_i)_{i\geq 1}$ of vectors in \mathscr{H} satisfying the much weaker condition $[u_i^T v_i] = [f_{ii}]$ $(i, j \ge 1)$. The present paper gives a new proof of this fact. By means of Theorem 3.2, we deduce from Theorem A, B and C that every $T \in A \cap C_{00}$ has Property (1.1). The fact that Property (1.1) holds for any $T \in \mathbb{A}_{\aleph_0}$ follows then immediately from Lemma 5.1 (consider a sequence $\Lambda = (\lambda_n)_{n \ge 1} \subset \mathbb{D}$ which is dominating for \mathbb{T}). A partial result in this direction was given in [14].

2. For $x = (x_n)_{n \ge 1} \in \ell^2$, $y = (y_n)_{n \ge 1} \in \ell^2$, set $x \cdot y = (x_n \cdot y_n)_{n \ge 1}$. An easy computation shows that if a sequence $(x^{(p)})_{p \ge 1}$ of elements of ℓ^2

converges to 0 in the weak* topology, then $\lim_{p\to\infty} ||x^{(p)} \cdot y||_1 = 0$ for every $y \in \ell^2$. Now, let $\Lambda = (\lambda_n)_{n \ge 1} \subset \mathbb{D}$ be dominating for \mathbb{T} . For $g \in L^{\infty}(\mathbb{T})$ denote by P(g) the Poisson integral of g. Then the non-tangential limits of P(g) agree with g almost everywhere on \mathbb{T} , and so for $p \ge 1$:

$$\|g\|_{\infty} = \sup_{n \ge p} |P(g)(\lambda_n)| = \sup_{n \ge p} \left| \int_{\mathbb{T}} P_{\lambda_n} g \, dm \right|.$$

Since $||P_{\lambda}||_1 = 1$ for every $\lambda \in \mathbb{D}$, this implies as well known that the closed absolutely convex hull of the sequence $(P_{\lambda_n})_{n \ge p}$ equals the closed unit ball of L^1 for every $p \ge 1$. Let $f \in L^1$. We deduce from the above observation that for every $\varepsilon > 0$ and every $p \ge 1$, there exists a sequence $(c_n)_{n \ge p} \in \ell_1$ such that:

$$\begin{cases} \sum_{n \ge p} |c_n| < \|f_1\| + \varepsilon \\ f = \sum_{n \ge p} c_n P_{\lambda_n}. \end{cases}$$

In other terms, we can construct a sequence $(c^{(p)})_{p \ge 1}$ (where $c^{(p)} = (c^{(p)}_n)_{n \ge 1}$) of elements of ℓ^1 such that $c^{(p)}_n = 0$ for $n \le p$, $\lim_{p \to \infty} \sum_{n \ge 1} |c^{(p)}_n| = ||f||_1$ and $f = \sum_{n \ge 1} c^{(p)}_n P_{\lambda_n}$ for every $p \ge 1$.

Let *T* be a *A*-diagonal operator and let $(e_n)_{n \ge 1}$ be an orthonormal basis of \mathscr{H} such that $Te_n = \lambda_n e_n$, $n \ge 1$. For $p \ge 1$, $n \ge 1$, let $\alpha_n^{(p)}$ and let $\beta_n^{(p)}$ be complex numbers such that $|\alpha_n^{(p)}| = |\beta_n^{(p)}| = |c_n^{(p)}|^{1/2}$ and such that $\alpha_n^{(p)} \cdot \beta_n^{(p)}$ $= c_n^{(p)}$. Set $\alpha^{(p)} = (\alpha_n^{(p)})_{n \ge 1}$, $\beta^{(p)} = (\beta_n^{(p)})_{n \ge 1}$, $x_p = \sum_{n \ge 1} \alpha_n^{(p)} e_n$ and $y_p = \sum_{n \ge 1} \beta_n^{(p)} e_n$. We easily check that:

$$\begin{cases} x_p \stackrel{T}{:} y_p = \sum_{n \ge 1} c_n^{(p)} P_{\lambda_n} = f \\ \lim_{p \to \infty} \|x_p\| = \lim_{p \to \infty} \|\alpha_n^{(p)}\|_2 = \|f\|_1^{1/2} \\ \lim_{p \to \infty} \|y_p\| = \lim_{p \to \infty} \|\beta_n^{(p)}\|_2 = \|f\|_1^{1/2}. \end{cases}$$

Clearly, the sequence $(\alpha^{(p)})_{p \ge 1}$ converges to 0 for the weak* topology on ℓ^2 , and so $||w|^T x_p||_1 \le \sum_{n \ge 1} |(w, e_n)| |\alpha_n^{(p)}| \to 0 \ (p \to \infty)$ for every $w \in \mathscr{H}$. By analogous computations we show that $\lim_{p \to \infty} ||w|^T y_p||_1 = 0$ for every $w \in \mathscr{H}$. We can now apply directly Proposition 7.2 of [8] to show that *T* has Property (1.1).

It follows from Lemma 5.1 that every contraction $T \in \mathbb{A}_{\aleph_0}$ has a Λ -diagonal compression and we obtain an other proof of the fact that T has Property (1.1), based on dilation theory, which does no depend on the elaborated construction of [7].

3. Here are other examples of contractions $T \in \mathbb{A} \cap C_{00}$ such that $x^T x$ is l.s.c. and strictly positive for every non-zero $x \in \mathcal{H}$. Let $x = (w(n))_{n \ge 1}$ be a strictly decreasing sequence of positive real numbers such that $\lim_{n \to \infty} w(n) = 0$ and $\lim_{n \to \infty} w(n)^{1/n} = 1$. For $f \in Hol(\mathbb{D})$, denote by $\hat{f}(n)$ the *n*th Taylor coefficient of *f* at the origin. Consider the weighted Hardy space

$$H_{w} = \left\{ f \in Hol(\mathbb{D}); \, \|f\|_{w} := \left(\sum_{n \ge 0} |\hat{f}(n)|^{2} \, w^{2}(n) \right)^{1/2} < \infty \right\}$$

Denote by $\alpha: z \to z$ the identity map on \mathbb{D} and denote by $S: f \to \alpha f$ the usual shift operator on H_w . Clearly, $\sigma(S) = \overline{\mathbb{D}}$ and $S \in \mathbb{A} \cap C_{00}$. An easy computation shows that:

$$\begin{cases} S^{*p} \alpha^n = \frac{w^2(n)}{w^2(n-p)} \alpha^{n-p} & \text{for } n \ge p \\ S^{*p} \alpha^n = 0 & \text{for } n < p. \end{cases}$$

Set $\Delta = (1 - SS^*)^{1/2}$, $D = (1 - S^*S)^{1/2}$. We obtain for any $f \in H_w$:

$$\begin{cases} Df = \sum_{n \ge 0} \left(1 - \frac{w^2(n+1)}{w^2(n)} \right)^{1/2} \hat{f}(n) \, \alpha^n \\ \Delta f = \hat{f}(0) + \sum_{n \ge 1} \left(1 - \frac{w^2(n)}{w^2(n-1)} \right)^{1/2} \hat{f}(n) \, \alpha^n. \end{cases}$$

For |z| < 1, set

$$\tilde{f}(z) = \sum_{n \ge 0} z^n D S^n f = \sum_{n \ge 0} \left(1 - \frac{w^2(n+1)}{w^2(n)} \right)^{1/2} \left(\sum_{p=0}^n \hat{f}(p) \, z^{n-p} \right) \alpha^n$$

and

$$\begin{split} \tilde{f}_*(z) &= \sum_{n \ge 0} z^n \varDelta S^{*n} f \\ &= \sum_{p \ge 0} \hat{f}(p) \, w^2(p) \, z^p \\ &+ \sum_{n \ge 1} \frac{1}{w(n)} \left(\frac{1}{w^2(n)} - \frac{1}{w^2(n-1)} \right)^{1/2} \left(\sum_{p \ge 0} \hat{f}(n+p) \, w^2(n+p) \, z^p \right) \alpha^n. \end{split}$$

Then \tilde{f} and \tilde{f}_* belong to the vector-valued Hardy space $H^2(\mathbb{D}, H_w)$, the maps $f \to \tilde{f}$ and $f \to \tilde{f}_*$ are isometries from H_w onto closed subspaces \mathcal{M} and \mathcal{N} of $H^2(\mathbb{D}, H_w)$ which are invariant for the backward shift T on $H^2(\mathbb{D}, H_w)$. Also S is unitarily equivalent to $T_{|\mathcal{M}|}$ and S^* is unitarily

equivalent to $T_{|\mathcal{N}}$. Let $h \in H^2(\mathbb{D}, H_w)$. It is a standard fact that the non-tangential limit $h(e^{it})$ exists almost everywhere on \mathbb{T} , that $\int_0^{2\pi} \|h(e^{it})\|^2 dt < \infty$, and that we have for $h, l \in H^2(\mathbb{D}, H_w)$:

$$\langle h, l \rangle = \frac{1}{2\pi} \int_0^{2\pi} \langle h(e^{it}), l(e^{it}) \rangle dt.$$

Hence $(h^{\underline{r}} l)(e^{it}) = \langle h(e^{-it}), l(e^{-it}) \rangle$ almost everywhere on \mathbb{T} . Since $f^{\underline{s}} g = \tilde{f}^{\underline{r}} \tilde{g}$ and since $f^{\underline{s}*} g = \tilde{f}_*^{\underline{r}} \tilde{g}_*$ for $f, g \in H_w$, we obtain, almost everywhere on \mathbb{T} , for any $f \in H_w$:

$$\begin{split} (f^{\tilde{S}}f)(e^{it}) &= \sum_{n \ge 0} \left(w^2(n) - w^2(n+1) \right) \left| \sum_{p=0}^n \hat{f}(p) \, e^{ipt} \right|^2 \\ &= \left| \sum_{p \ge 0} \hat{f}(p) \, w^2(p) \, e^{ipt} \right|^2 \\ &+ \sum_{n \ge 1} \left(\frac{1}{w^2(n)} - \frac{1}{w^2(n-1)} \right) \left| \sum_{p \ge 0} \hat{f}(n+p) \, w^2(n+p) \, e^{ipt} \right|^2. \end{split}$$

It follows then immediately from the first equality that if f is a non-zero function of H_w , then $f \stackrel{S}{\cdot} f$ is l.s.c. and strictly positive on \mathbb{T} .

ACKNOWLEDGMENTS

The authors wish to thank B. Chevreau and G. Exner for pointing out a gap in their original statement of Theorem 4.3. They also thank the referee for valuable comments and for his help concerning relevant references.

REFERENCES

- 1. C. Apostol, H. Bercovici, C. Foias, and C. Pearcy, Invariant subspaces, dilation theory and the structure of the predual of a dual algebra, I, J. Funct. Anal. 63 (1985), 369-404.
- H. Bercovici, A contribution to the theory of operators in the class A, J. Funct. Anal. 78 (1988), 197–207.
- H. Bercovici, Factorization theorems and the structure of operators on Hilbert space, Ann. Math. 128 (1988), 399–413.
- H. Bercovici, Factorization theorems for integrable functions, in "Analysis at Urbana, II" (E. R. Berkson et al., Eds.), Cambridge Univ. Press, Cambridge, UK, 1988.
- 5. H. Bercovici, Notes on invariant subspaces, Bull. Amer. Math. Soc. 23(1) (1990), 1-36.
- H. Bercovici, C. Foias, and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra, I, *Michigan Math. J.* 30 (1983), 335–354.
- 7. H. Bercovici, C. Foias, and C. Pearcy, Factoring trace-class operator-valued functions with applications to the class \mathbb{A}_{\aleph_0} , *J. Operator Theory* **14** (1985), 351–389.
- H. Bercovici, C. Foias, and C. Pearcy, Two Banach space methods and dual operator algebras, J. Funct. Anal. 78 (1988), 306–345.

- 9. J. Bourgain, A problem of Douglas and Rudin of factorization, *Pac. J. Math.* **121**(1) (1986), 47–50.
- B. Chevreau, Sur les contractions à calcul fonctionnel isométrique, II, J. Operator Theory 20 (1988), 269–293.
- B. Chevreau, G. Exner, and C. Pearcy, Boundary sets for a contraction, J. Operator Theory 34 (1995), 347–380.
- B. Chevreau and C. Pearcy, On the structure of contraction operators with applications to invariant subspaces, J. Funct. Anal. 67 (1986), 360–378.
- 13. P. Duren, "Theory of H^p Spaces," Academic Press, San Diego, 1970.
- 14. G. Exner, Some new elements in the class \mathbb{A}_{\aleph_0} , J. Operator Theory 16 (1986), 203–212.
- 15. J. B. Garnett, "Bounded Analytic Functions," Academic Press, San Diego, 1981.
- F. John and L. Nirenberg, On functions of bounded mean oscillation, *Comm. Pure Appl. Math.* 14 (1961), 415–426.
- S. V. Kisliakov, Quantitative aspects of correction theorems, Zapiski Naučn. Sem. LOMI. 92 (1979), 182–191.
- 18. S. V. Kisliakov, A sharp correction theorem, Studia Math. 113(2) (1995), 177–196.
- M. Rosenblum and J. Rovnyak, "Topics in Hardy Classes and Univalent Functions," Birkhäuser, Basel, 1993.
- B. Sz.-Nagy and C. Foias, "Harmonic Analysis of Operators on Hilbert Space," North-Holland, Amsterdam, 1970.