

Available online at www.sciencedirect.com

Procedia Engineering 87 (2014) 795 - 802

Procedia Engineering

www.elsevier.com/locate/procedia

EUROSENSORS 2014, the XXVIII edition of the conference series

Semiconductor Metal Oxides as Hydrogen Gas Sensors

Sukon Phanichphant

Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Hydrogen (H₂) is a clean, portable and potentially inexhaustible energy source with the potential to become a panacea for clean energy generation. However, H₂ has wide explosive concentration range (4-75 vol%), low ignition energy (0.02 mJ) and large flame propagation velocity. Due to its ultra small molecular size, confinement and containment of this gas are difficult. Moreover, H2 cannot be detected by human senses because it is colorless and odorless. Thus, accurate detection and monitoring of hydrogen is an important issue. This presentation is a review of hydrogen gas sensors based on semiconductor metal oxides synthesized by a variety of synthetic techniques, namely RF magnetron sputtering, reactive RF sputtering, electro-spinning, Flame spray pyrolysis, hydrothermal and precipitation. The effect of synthetic methods and metal loading on the metal oxides on the response of hydrogen sensors will be discussed.

© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/). Peer-review under responsibility of the scientific committee of Eurosensors 2014

Keywords: Hydrogen; Semiconductor metal oxides; Gas sensor

1. Introduction

Hydrogen (H_2) is a clean, portable and potentially inexhaustible energy source with the potential to become a panacea for clean energy generation. However, H_2 has a wide explosive concentration range (4–75 vol%), low ignition energy (0.02 mJ) and large flame propagation velocity [1]. Due to its ultra small molecular size, confinement and containment of this gas are difficult. Moreover, human senses cannot detect H₂ because it is colorless and odorless [2]. Thus, the ability to accurately detect and monitor hydrogen is important.

A review by Gu et al. [3] gave a comprehensive review of the hydrogen sensing properties of MOXs nanostructures, including thin films and 1D nanostructures. According to their sensing behaviour, the MOXs sensors can be divided into resistance, Schottky diode, MOSFET, MOS capacitor, optical and acoustic types. Some critical issues such as sensitivity, response time, recovery time, gas selectivity, limit of detection (LOD), temperature/humidity influence and long-term stability were discussed. Nanostructured MOXs thin film hydrogen sensors have the advantages of simple fabrication processes, good compatibility with integrated circuits for building integrated sensors, high sensitivity and short response/recovery times, *etc.* However, most thin film sensors still need to work at elevated temperatures, which results in poor long-term stability and high power consumption. The influences of grain size, porosity, orientation, doping and surface decoration as well as the device architecture on the sensing performance of hydrogen sensors have been widely investigated for improving gas selectivity and hydrogen response at low temperatures. In this review hydrogen gas sensors based on semiconductor metal oxides synthesized by a variety of synthetic techniques, namely RF magnetron sputtering, reactive RF sputtering, electro-spinning, flame spray pyrolysis, hydrothermal and precipitation. The effect of synthetic methods and metal loading on the metal oxides on the response of hydrogen sensors will be discussed.

2. Semiconductor metal oxides (MOXs)

Metal oxides play a very important role in many areas of chemistry, physics and materials science [4]. In technological applications, oxides are used in the fabrication of microelectronic circuits, sensors, piezoelectric devices, fuel cells, coatings for the passivation of surfaces against corrosion, and as catalysts. In the emerging field of nanotechnology, a goal is to make nanostructures or nanoarrays with special properties with respect to those of bulk or single particle species [5]. Oxide nanoparticles can exhibit unique physical and chemical properties due to their limited size and a high density of corner or edge surface sites. Particle size is expected to influence three important groups of basic properties in any material. The first one comprises the structural characteristics, namely the lattice symmetry and cell parameters [6]. The second important effect of size is related to the electronic properties of the oxide. Structural and electronic properties obviously drive the physical and chemical properties of the solid, the third group of properties influenced by size in a simple classification. In their bulk state, many oxides have wide band gaps and a low reactivity [7]. A decrease in the average size of an oxide particle in fact changes the magnitude of the band gap [8], with strong influence in the conductivity and chemical reactivity [9]. Surface properties are a somewhat particular group included in this subject due to their importance in chemistry.

Semiconductor metal oxides (MOXs) [10, 11] gained considerable attentions due to their low cost, high and fast response with relatively simplicity of use; and ability to detect a large number of gases. There are two types of MOXs namely n-type MOXs (zinc oxide, tin dioxide, titanium dioxide or iron (III) oxide responding to reducing gases (H₂, CH₄, CO, C₂H₂, and H₂S); p-type MOXs (nickel oxide, cobalt oxide responding to oxidizing gases (O₂, NO₂, and Cl₂).

2.1 Type of MOXs hydrogen sensors [3]

The MOXs hydrogen sensors can be divided into four types: resistance based, work function based sensors (Schottky diode type; MOS capacitor type; MOSFET), optical and acoustic sensors.

2.2 Gas sensing properties [12]

The gas sensing properties of unloaded and loaded-MOX nanoparticles sensing films are characterized in terms of response, response time and recovery time as a function of operating temperature, gas concentration and metal loading. Since the concentration of electrons on the surface of metal oxide increases and the resistance of n-type metal oxide layer decreases upon reaction with reducing gas. Thus, the gas-sensing response for n-type semiconducting oxide to reducing gas (S^n) is defined as:

$$S^n = \frac{R_a}{R_g} \tag{1}$$

On the contrary, the resistance of p-type metal oxide surface increases because generated electrons recombine with holes, decreasing in the hole concentration. The response for p-type semiconducting oxide to reducing gas (S^{p}) becomes:

$$S^{p} = \frac{R_{g}}{R_{a}}$$
(2)

where R_g and R_a are the electrical resistances of the sensors measured in the presence of reducing gas and pure dry air, respectively. The response time, T_{res} is defined as the time required to reach 90% of the steady response signal. The recovery times, T_{rec} denotes the time needed to recover 90% of the original baseline resistance [13]. Moreover, the selectivity defined as the response ratio of target gas to that of another gas is used to assess the relative performance of MOXs sensors towards different gases.

The majority of metal oxide–based gas sensors, suffer from low sensitivity and lack of selectivity. To solve these problems, a number of different strategies have been applied, such as the sensor's dynamic response analysis and mixed oxides sensors for gas detection [1]. The addition of a noble metal, such as gold (Au), platinum (Pt) or palladium (Pd), to a semiconducting oxide is an effective mean to enhance detection of specific gases because these metal catalysts increase the rate of interaction differently for distinct gases [13–21]. Platinum (Pt) is one of the most effective catalysts for sensing reducing gases, including hydrogen, carbon monoxide and hydrocarbon, by chemical sensitization via the 'spillover' effect [19, 20]. It effectively increases response and selectivity towards these reducing gases as well as reduces response and recovery times for various metal oxide materials such as WO_3 [1] ZnO [13], TiO₂ [21], MoO₃ [22] and Nb₂O₅ [23].

3. Factors affecting performance of hydrogen sensors

The characteristics of gas sensors strongly depend on base materials and preparation conditions [24]. Synthetic methods and metal loading will be discussed in more detail.

3.1 Synthetic methods

A variety of synthetic techniques, namely RF magnetron sputtering, reactive RF sputtering, electro-spinning, flame spray pyrolysis, hydrothermal and precipitation has been investigated as hydrogen sensors. WO₃ nanomaterials have proven to be the good candidate for MOXs hydrogen sensors. For WO₃ gas sensors, Pt-loaded WO₃ materials prepared by several synthetic methods have been widely studied and reported. A summary of H₂ gas sensing of differently prepared unloaded WO₃ and Pt-loaded WO₃ are listed in Table 1. A summary of H₂ gas sensing of differently prepared unloaded WO₃ and Pd-loaded WO₃ are listed in Table 2. Suitable Pt and Pd loading considerably improve the sensing characteristics of the WO₃ sensor. The gas-sensing properties of oxide semiconductors strongly depend on the surface of these materials. Hence, some research has concentrated on improving the specific surface area by introducing dopant/loading or decreasing particle sizes to nanoscale. It can be clearly seen from Table 1 that 1.0 wt% Pt-loaded WO₃ shows the highest response of 1.34 x 10⁵ towards 1.0 vol% H₂ gas at 150°C [1]. It is worth to mention that Pd/ SnO₂ nanowires synthesized from Pd nanoparticles deposited tin dioxide nanowires gave a very high response of 1.2 x 10⁵ to 1.0 vol% of H₂ at room temperature [38].

Table 1 A summary of H₂ gas sensing of differently prepared unloaded WO₃ and Pt-loaded WO₃.

Method	Gas Concentration	Doping level	Response	Authors[ref.]
R.F. magnetron sputtering	H ₂ ; 0.125–1.0 vol%	Unloaded WO ₃	9 to 1 vol% at 150°C	Ippolito et al.[25]
(sensors)		Dt last d WO	1(00 to 1 10/ -+ 70%)	
		Pt-loaded wO ₃	$1600 \text{ to } 1 \text{ Vol}\% \text{ at } 70^{\circ}\text{C},$ 200 at 150°C and no	
			response at 200°C, 250°C	
			and 300°C	
Reactive rf sputtering	H ₂ ; 500 ppm	Unloaded WO ₃	0.01 at 250°C	Penza et al.[26]
(sensors)		D. L. L. LWO	0.00 15000	
		Pt-loaded WO ₃	0.02 at 150°C	
Reactive magnetron	H ₂ ; 1000 ppm	Unloaded WO ₃	13.6 to 1000 ppm at	Shen et al.[27]
sputtering			300°C	
Radio frequency (r.f.)	H ₂ : 30–200 ppm	0.5 at%Pt/WO3	26 to 200 ppm at 95°C	Zhang <i>et al.</i> [28]
sputtering with subsequent			F	0[_0]
two-step heat treatments				
Electrochemical	H ₂ ; 1000 ppm	WO ₃ nanodots	79 at 200°C	Calavia et al. [29]
anodizing	20 ppm		3.1 at 200°C	
Anodization at elevated	H ₂ ; 6000 ppm	Unloaded WO ₃	2.56 at 500°C	Ou et al. [30]
temperature	10000 ppm		14.9	
Hydrothermal/impregnation	$H_2(0.01-1 \text{ vol}\%)$	Unloaded WO ₃	~ 102.4	Samerjai et al.[14]
(nanoparticles)	II (0.01 1 10/)	1.0	10 1 V01.76 at 250 C	
Spin-coating	$H_2(0.01-1 \text{ V01\%})$ Temp = 250°C	1.0 wt% Pt-loaded	28 to 0.01 Vol% 1 22 x 10 ⁴ to 0.5 vol%	
(sensors)	10mp250 C	W 03	2.16×10^4 to $1.0 \text{ vol}\%$	
Flame Spray Pyrolysis	$H_2: 0.01 - 1.0 \text{ vol}\%$	1.0 wt% Pt-loaded WO ₂	1.34×10^5 to 1.0 vol% at	Sameriai <i>et al</i>
(nanoparticles)	,		150°C	[1]
			~2.58 x 10 ³ to 0.1 vol%	
Spin-coating			at 150°C	
(sensors)				

Table 2 A summary of H_2 gas sensing of differently prepared unloaded WO_3 and Pd-loaded WO_3.

Method	Gas Concentration	Doping level	Response	Authors[ref.]
Hydrothermal (nanowires),	H ₂ ; 50–200 ppm	0.75–3 at%	69 to 200 ppm at 180°C;	Boudiba et al. [15]
Precipitation (WO3 nanospheres),		Pd/WO ₃ (nanowires)	43 to 200 ppm at 200°C	
Flow through protonated ion				
exchange in acidic solution (WO3		1.0 at%Pd/WO ₃	41 to 200 ppm at 180°C;	
nanolamelle)		(nanospheres)	27 to 200 ppm at 200°C	
Screen printing (sensors)				
		1.0 at%Pd/WO ₃	24.5 to 200 ppm at	
		(nanospheres)	180°C; 9 to 200 ppm at	
			200°C	
Precipitation (WO ₃ nanoparticles),	H ₂ ; 50–200 ppm	H ₂ ; 25–200 ppm	16.2 to 150 ppm at 200°C	Boudiba et al. [31]
annealed with 1 at% Pd at 400°C			19.8 to 200 ppm at 200°C	
Screen printing (sensors)				

Hydrothermal (WO ₃ nnoparticles) and Decomposition of Pd and Pt (Pd/WO ₃ , Pt/WO ₃)	H ₂ ; 10–1000 ppm	Pd/WO ₃ nanowires Pt/WO ₃ nanowires	Conductance increased with up to five order of magnitude to 1000 ppm of H_2 in air and even at RT	Kukkola <i>et al.</i> [16]
Electro-spinning	H ₂ ; 500 ppm	10% mol Pd/WO ₃	30 at 300°C	Nikfarjam et al.[32]
Sol-gel process	H ₂ ; 1300 ppm–0.1%	Pd/WO ₃ films	100 to 1300 ppm at 200°C 2.5 x 10 ⁴ to 0.1% at RT	Fardindoost <i>et al.</i> [33]
Magnetron co-sputtering process	H ₂ /N ₂ ; 0.5–4%	Pd/WO 3 thin films	Pd/WO ₃ thin films demonstrated better mechanical reliability than pure Pd layer	Yang et al. [34]
Focused ion beam-chemical vapour deposition (WO ₃ nanowires) functionalized by Pd- Pt sputtering process	H ₂ : 1%	Pd-Pt/WO3 nanowires	0.12 to 1% at RT	Choi and Kim [35]
Drop-casting of Pd-functionalized WO ₃ nanowires	H ₂ : 0.1%	Pd/ WO ₃ nanowires	3.1 to 0.1% at 300°C	Chávez et al.[36]
Solvothermal method	H ₂ ; 0.1–1.0%	Pd/WO ₃ nanocomposite	34 to 0.1% at RT 173 to 1.0% at RT	Liu et al. [37]
Pd reduction on SnO ₂ nanowires in Pd ion solution	H ₂ : 1.0 vol%	Pd/ SnO ₂ nanowires	$1.2 \text{ x} \overline{10^5}$ to 1.0 vol% at RT	Lee <i>et al.</i> [38]

3.2 Metal loading

Since Pt and Pd loading to WO₃ have proven to give high response towards H₂, Tables 1 and 2 show a variety of synthetic methods with different amount of loading. Pd-loading gave a highest response as compared to Pt and Ruloading as reported by Chaikarn Liewhiran *et al.* [40] that sensors fabricated from FSP M-loading SnO₂ nanoparticles showing response in the order of 0.2 wt% Pd/SnO₂ > 0.2 wt% Pt/SnO₂ > 0.2 wt% Ru/SnO₂. 0.2 wt% Pd-loaded SnO₂ had response of ~ 10⁴ to 1.0 vol% of H₂ at 200°C.

3.2.1 Flame spray pyrolysis technique

Flame spray pyrolysis (FSP) is a versatile technique that can produce high purity nano-sized materials with wellcontrolled size and crystallinity. Therefore, FSP should be a very promising technique for sensor material fabrication since it enables excellent control of specific surface area. In FSP method, specific surface area can be increased by increasing an oxidant flow rate and reducing spray flame length, which lead to shorter residence times for particle growth [1, 39]. FSP has another key advantage of allowing one to completely manufacture the nanopowders in a single high-temperature step without affecting the microstructure and particle size in a subsequent annealing process.

Table 3 shows a summary of H₂ gas sensing of unloaded MOX and metal-loaded MOX synthesized by Flame Spray Pyrolysis technique. Among ZnO, SnO₂ and WO₃, 1.0 wt% Pt-loaded WO₃ showed the highest response towards H₂ with short response time and high selectivity towards CO, C_2H_2 and C_2H_5OH . The response (within seconds) and recovery (within minutes) times were very fast. It was found that 1.0 wt% Pt-loaded WO3 sensing films showed extremely excellent H₂ sensing performances at 150°C with the highest sensor response ($S \sim 1.34 \times 10^5$) to 1.0 vol% hydrogen.

Gas Concentration	Loading level	Response	Authors[ref.]
H ₂ ; 0.01–1.0 vol%	1.0 wt% Pt-loaded WO ₃	1.34 x 10 ⁵ to 1.0 vol% at 150°C ~2.58 x 10 ³ to 0.1 vol% at 150°C	Samerjai <i>et al.</i> [1]
H ₂ ; 0.02–1.0 vol%	0.2 wt% Pd-loaded SnO ₂	$\sim 10^4$ to 1.0 vol% of H ₂ at 200°C	Liewhiran et al. [40]
H ₂ ; 0.02–1.0 vol%	Unloaded SnO ₂	16 to 1.0 vol% of H ₂ at 350°C	Liewhiran et al. [41]
	0.2–2.0wt% Ru-loaded SnO ₂	27 to 1.0 vol% of H_2 at 350°C for 0.2wt% Ru-loaded SnO_2	
H ₂ ; 0.02–1.0 vol%	0.2–2.0 at.% Pt-loaded ZnO	164 to 1.0 vol% of H ₂ at 300°C for 0.2 at% Pt-loaded ZnO	Tamaekong et al. [42]

Table 3 A summary of H₂ gas sensing of unloaded MOX and metal-loaded MOX synthesized by Flame Spray Pyrolysis technique.

3. Gas-sensing mechanisms of metal oxide sensors towards H₂ gas

Firstly, oxygen is absorbed on the MOX surface when it is heated in air. The adsorption of oxygen forms ionic species such as O_2^- , O^- and O^{2-} , which acquire electrons from the conduction band. The reaction kinetics may be explained by the following reactions [43, 44]:

O_2 (gas)	$\iff O_2$ (absorbed)	(3)
O_2 (absorbed	$1)+e^{-} \iff O_2^{-}$	(4)
$O_2^- + e^-$	$\Leftrightarrow 2O^-$	(5)
$O^{-} + e^{-}$	$\iff O^{2-}$	(6)

The electrons transfer from the conduction band to the chemisorbed oxygen results in the decrease in the electron concentration and an increase in the resistance of MOX film. The sensing of the MOX sensor to hydrogen gas normally arises from desorbing O^2 and O^2 -ions at the working temperature range of 250–350°C and >300°C, respectively. H₂[2] sensing mechanisms of the MOX can be explained from following reaction paths:

$$H_2 + O^{\circ}(ads) \rightarrow H_2O + e^{\circ}$$

$$H_2 + O^{2^{\circ}}(ads) \rightarrow H_2O + 2e^{\circ}$$
(8)

When the MOX film is exposed to hydrogen gas, hydrogen gas reacts with the chemisorbed oxygen species, thereby releasing electrons back to the conduction band. The reaction between hydrogen gas and the chemisorbed oxygen species may take place according to equations (7, 8). H₂ with small molecular diameter can easily penetrate through the surface dense layer. Oxygen with the larger molecular diameter is diffusion-controlled by the surface dense layer and hence both the oxygen gas concentration in the pores and the surface density of the adsorbed oxygen species are apt to decrease significantly while the reaction of oxygen with hydrogen is fast. The water produced via the oxidation of H₂ in the inner layer is supposed to pass through the dense layer and release easily out of the inner layer, because the water molecule has a somewhat small molecular size and is under vigorous thermal movement.

5. Conclusion

In this review, hydrogen gas sensors based on semiconductor metal oxides synthesized by a variety of synthetic techniques, namely RF magnetron sputtering, reactive RF sputtering, electro-spinning, focused ion beam-chemical vapour deposition, flame spray pyrolysis (FSP), hydrothermal, sol-gel and precipitation was presented. Sensor fabricated with Pt-loaded WO₃ nanoparticles synthesized by FSP has proven to give the highest response compared to the other materials and synthetic methods. An experiment to synthesize Pd-loaded WO₃ nanoparticles by FSP is in progress.

Acknowledgements

The authors gratefully acknowledge The National Research University Project under Thailand's Office of the Higher Education Commission, the Graduate School and Department of Chemistry, Faculty of Science, Chiang Mai University, Thailand and National Electronics and Computer Technology Center, Pathumthani, Thailand are gratefully acknowledged.

References

[1] T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Selectivity towards H₂ gas by flame-made Ptloaded WO₃ sensing films. Sens Actuators B 2011; 157: 290–7.

[2] C. Wongchoosuk, A. Wisitsoraat, D. Phokharatkul, A. Tuantranount, T. Kerdcharoen, Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing. Sensors 2010; 10: 7705–15.

[3] H. Gu, Z. Wang, Y. Hu, Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors 2012; 12: 5517-50.

[4] C. Noguera, Physics and Chemistry at Oxide Surfaces; Cambridge University Press Cambridge, UK, 1996.

[5] H. Gleiter, Nanostructured materials: Basic concepts, microstructure and properties. Nanostruct Mater 1995; 6: 3-7.

[6] P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani, Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B 1995; 51: 6135–38.

[7] A. Rodriguez, P. Mokoema, F.J. Corcho, K. Bisetty, J.J. Perez, Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent. J Phys Chem B 2011;115: 1440–9.

[8] J.A. Rodriguez, S. Chaturvedi, M. Kuhn, J. Hrbek, The Interaction of H_2S and S2 with metal/oxide surfaces: correlation between band-Gap gize and reactivity. J Phys Chem B 1998;102: 5511–9.

[9] R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures; VCH: New York, 1988.

[10] S. Choopun, N. Hongsith, P. Mangkorntong, N. Mangkorntong, Zinc oxide nanobelts by RF sputtering for ethanol sensor. Physica E 2007; 39: 53–6.

[11] Y. Wang, G. Ouyang, L.L. Wang, L.M. Tang, D.S. Tang, Q.S. Chang, Size- and composition induced band-gap change of nanostructured compound of II–VI semiconductors. Chem Phys Lett 2008; 463: 383–6.

[12] T. Samerjai, N. Tamaekong, K. Wetchakun, V. Kruefu, C. Liewhiran, et al. Flame-spray-made metal-loaded semiconducting metal oxides thick films for flammable gas sensing. Sens Actuators B 2011; 159: 290–7.

[13] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Acetylene sensor based on Pt/ZnO thick films as prepared by flame spray pyrolysis. Sens Actuators B 2011; 152: 155–61.

[14] T. Samerjai, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, C. Khanta, S. Phanichphant, Highly selective hydrogen sensing of Pt-loaded WO₃ synthesized by hydrothermal/impregnation methods. Int J Hydrogen Energ 2014; 39: 6120–8.

[15] A. Boudiba, C. Zhang, P. Umek, C. Bittencourt, R. Snyders, M.G. Oliver, Sensitive and rapid hydrogensensors based on Pd-WO₃, thick films with different morphologies. Int J Hydrogen Energy 2013; 38: 2565–77.

[16] J. Kukkola, M. Mohl, A.R. Leino, J. Maklin J, N. Halonen, et al., Room temperature hydrogen sensors based on metal decorated WO₃ nanowires. Sens Actuators B 2013; 186:90–5.

[17] J. Zhang, X. Liu, M. Xu, X. Guo, S. Wu, et al, Pt clusters supported on WO₃ for ethanol detection. Sens Actuators B 2010; 147: 185–190.

[18] V. Srivastava, K. Jain, Highly sensitive NH₃ sensor using Pt catalyzed silica coating over WO₃ thick films. Sens Actuators B2008; 133: 46–52.

[19] I. Kocemba, T. Paryjczak, Metal films on a SnO₂ surface as selective gas sensors. Thin Solid Films 1996; 272: 15-7.

[20] R. Hucka, U. Böttgera, D. Kohla, G. Heilanda, Spillover effects in the detection of H_2 and CH_4 by sputtered SnO_2 films with Pd and PdO deposits. Sens Actuators B 1989; 17: 355–9.

[21] J. Tan, W. Wlodarski, K. Kalantar-Zadeh, Nitrogen dioxide gas sensors based on titanium dioxide thin films deposited on langasite. Thin Solid Films 2007; 515: 8738–43.

[22] M.M.Y.A. Alsaif, S. Balendhran, M.R. Field, K. Latham, W. Wlodarski, et al., Two dimensional, MoO₃ nanoflakes obtained using solventassisted grinding and sonication method: Application for H₂ gas sensing. Sens Actuators B 2014; 192: 196–204.

[23] R.A. Rani, A. S. Zoolfakar, J.Z. Ou, M.R. Field, M. Austin, K. Kalantar-zadeh, Nanoporous Nb₂O₅ hydrogen gas sensor. Sens Actuators B 2013; 176: 149–156.

[24] M. Sriyudthsak, S. Supothina , Humidity-insensitive and low oxygen dependence tungsten oxide gas sensors. Sens Actuators B 2006; 113: 265-71.

[25] S.J. Ippolito, S. Kandasamy, K.K. Kalantar-zadeh, W. Wlodarski, Hydrogen sensing characteristics of WO₃ thin film conductometric sensors activated by Pt and Au catalysts. Sens Actuators B 2005; 108: 154–8.

[26] M. Penza, C. Martucci, G. Cassano, NO_x gas sensing characteristics of WO₃ thin films activated by noble metals (Pd, Pt, Au) layers. Sens Actuators B 1998; 50: 5259.

[27] Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, Influence of effective surface area on gas sensing properties of WO₃ sputtered thin films. Thin Solid Films 2009; 517: 2069–72.

[28] C. Zhang, A. Boudiba, C. Navio, C. Bittencourt, M.G. Olivier, et al., Highly sensitive hydrogen sensors based on co-sputtered platinumactivated tungsten oxide films. Int J Hydrogen Energy 2011; 36:1107–14.

[29] R. Calavia, A. Mozalev, R. Vazquez, I. Gracia, C. Cane', R. Ionescu, et al. Fabrication of WO₃nanodot-based microsensors highly sensitive to hydrogen. Sens Actuators B 2010; 149:352–61.

[30] J.Z. Ou, M.Z. Ahmad, K. Latham, K. Kalantar-zadeh, G. Sberveglieri, W. Wlodarski, Synthesis of the nanostructured WO₃ via anodization at elevated temperature for H₂ sensing applications. Procedia Eng 2011; 25: 247–51.

[31] A. Boudiba, P. Roussel, C. Zhang, M.G. Oliver, Sensing mechanism of hydrogen sensors based on palladium-loaded tungsten oxide (Pd-WO₃). Sens Actuators B 2013; 187:84–93.

[32] A. Nikfarjam, S. Fardindoost, A. Irajizad, Fabrication of Pd doped WO₃ nanofiber as hydrogen sensor. Polymers 2013; 5: 45–55.

[33] S. Fardindoost, A. Iraji zad, F. Rahimi, R. Ghasempour, Pd doped WO3 films by sol gel process for hydrogen sensing. Int J Hydrogen Energy 2010; 35: 854-60.

[34] M. Yang, Y. Sun, D. Zhang, D. Jiang, Using Pd/WO3 composite thin films as sensing materials for optical fiber hydrogen sensors, Sens Actuators B 2005; 108: 750-3.

[35] J. Choi, J. Kim, Highly selective hydrogen sensor based on suspended, functionalized single tungsten nanowire bridge. Sens Actuators B 2009; 136: 92-8.

[36] F. Chávez, G.F. Pérez-Sánchez, O. Goiz, P. Zaca-Morán, R. Peña-Sierra, et al., Sensing performance of palladium-functionalized WO3 nanowires by a drop-casting method. Appl Surf Sci 2013; 275: 28–35.

[37] B. Liu, D. Cai, Y. Liu, D. Wang, L. Wang, Y. Wang, Improved room-temperature hydrogen sensing performance of directly formed Pd/WO₃ nanocomposite. Sens Actuators B 2014; 193: 28–34.

[38] J.M. Lee, J. Park, S. Kim, S. Kim, E. Lee, et al, Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxide nanostructures Room temperature operating sensors. Int J Hydrogen Energy 2010; 35: 12568–73.

[39] L. Mäedler, H.K. Kammler, R. Mueller, S.E. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis. J Aerosol Sci 2002; 33: 369–89.

 $[40] C. Liewhiran, N. Tamaekong N, A. Wisitsoraat, A. Tuantranont, S. Phanichphant S, Ultra-sensitive H_2 sensors based on flame-spray-made Pd-loaded SnO_2 sensing films. Sens Actuators B 2013; 176: 893–905. \\$

[41] C. Liewhiran, N. Tamaekong N, A. Wisitsoraat, S. Phanichphant S, H₂ sensing response of flame-spray-made Ru/SnO₂ thick films fabricated from spin-coated nanoparticles. Sensors 2009; 9: 8996–9010.

[42] N. Tamaekong, C. Liewhiran, A. Wisitsoraat, S. Phanichphant, Sensing characteristics of flame-spray-made Pt/ZnO thick films as H₂ gas sensor. Sensors 2009; 9: 6652–69.

[43] S. Phanichphant, C. Liewhiran, K. Wetchakun, A. Wisitsoraat, A. Tuantranont, Flame-made Nb-doped TiO₂ ethanol and acetone sensors. Sensors 2011; 11: 472–84.

[44] L.F. Dong, Z.L. Cui, Z.K. Zhang, Gas sensing properties of nano-ZnO prepared by arc plasma method. Nanostruct Matter 1997; 8: 815-823.