
Theoretical Computer Science 120 (1993) 261-278

Elsevier

261

An optimal distributed algorithm
for recognizing mesh-connected
networks*

Rajanarayanan Subbiah** and Sitharama S. Iyengar
Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803, USA

Sridhar Radhakrishnan
School of Electrical Engineering and Computer Science, University of Oklahoma, Norman, OK 73019,

USA

R.L. Kashyap
Department of Electrical Engineering, Purdue University, Wes! Lafayette, IN 47907, USA

Communicated by M. Nivat

Received August 1991

Revised April 1992

Abstract

Subbiah, R., S.S. Iyengar, S. Radhakrishnan and R.L. Kashyap, An optimal distributed algorithm

for recognizing mesh-connected networks, Theoretical Computer Science 120 (1993) 261-278.

In this paper, we consider the problem of recognizing whether a given network is a rectangular mesh.

We present an efficient distributed algorithm with an O(N) message and time complexity, where

N is the number of nodes in the network. This is an improvement of a previous algorithm presented

in Mohan (1990) with a message complexity of O(N log N) and time complexity of 0(N1.6). The

proposed algorithm is constructive in nature and also assigns coordinates to the nodes of the

network.

Correspondence fo: S.S. Iyengar, Department of Computer Science, Louisiana State University, Baton

Rouge, LA 70803, USA.
*This research, in part, is partially supported by Board of Regents (LEQSF-RD-A-04, 1990) grant and

by ONR NOOOO14-91-51306.

** Present address: Hewlett-Packard Company, MS 47 UE, 19447 Pruneridge Avenue, Cupertino, CA
95014-9913, USA.

0304-3975/93/$06.00 0 1993-Elsevier Science Publishers B.V. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82090325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

262 R. Subbiah et al.

1. Introduction

The problem of network recognition in an asynchronous network has been ex-
plored extensively in the past. In the literature on distributed algorithms, there are
many efficient algorithms for the recognition of trees, complete graphs, rings, star and
bipartite graphs [15]. The previous result for the recognition of mesh-connected
networks is one using O(NlogN) messages and O(N’.6) time units [12]. The
bottleneck in that algorithm is the use of a breadth-first search tree [3]. The proposed
algorithm does not use a BFS tree in the recognition process. Our algorithm also
assigns labels (coordinates) to the nodes which enables each node to know its exact
position in the grid. Throughout this paper, we shall use the words mesh, rectangular
mesh and grid interchangeably.

Many interesting distributed algorithms have been proposed in the recent past
relating to graph-theoretic problems, such as shortest paths [4, 6, 161, minimum-
weight spanning trees [2,9, 143, biconnected components [S], centers [lo] and knots
[111. Many problems such as message routing, center finding, etc., can be solved very
easily by imposing certain restrictions on the structure of the network. In general,
algorithms for general networks are expensive in terms of both time and message
complexities, whereas algorithms for certain topologies are much faster and easy to
design. It is shown in [7] that problems such as shortest path, routing, etc., become
easy to handle if the network is planar. Message routing becomes easy to handle on
mesh-connected or planar networks. Hence, recognition algorithms can be used as
a preprocessing step in the design of efficient algorithms for problems on networks.
Therefore, an obvious consideration would be that the cost of this preprocessing is
reasonably smaller than the cost of the general algorithm. This is the basic motivation
of the proposed work.

2. The model

An asynchronous network is a point-to-point (or store and forward) communica-
tion network, described by an undirected communication graph G = (V, E), where the
set of nodes V represents processors of the network and the set of edges E represents
the bidirectional noninterfering communication channels operating between neigh-
boring nodes. There is no shared memory between processors in the system. Each
node processes messages received from its neighbors, performs local computation, and
sends messages to its neighbors, all in negligible time. The communication complexity
C is the worst-case total number of elementary messages sent during the execution of
the algorithm. The time complexity T is the maximum possible number of time units
from the start to the completion of the algorithm, assuming that the intermessage
delay and the propagation delay of an edge is at most one time unit. The model
assumed is a common model for communication networks [l, 81. We will also assume
that an arbitrary node in the network initiates the recognition algorithm.

An optimal distributed algorithm 263

3. What is a mesh?

In the rest of the paper, we consider only the case of nontrivial networks, with N, the
number of nodes, being at least 4. The trivial case of a network being a single node or
a path of nodes in not considered as it is not interesting.

3.1. Necessary conditions

A mesh network (see Fig. 1) must consist of vertices with degrees 2,3 and 4 only, and
with exactly four 2-degree vertices. Let Dz, D3 and D4 denote the number of 2-degree,
3-degree and 4-degree nodes, respectively. Let the dimensions of the mesh be (m, n),
where N (the total number of nodes in the network)=(D2 + D3 + Dq. The
parameters of the mesh, namely, D2, D3, Dq, N, m and n, should satisfy the following
conditions:

total number of nodes N = mn,

D3+D4=N-4,
number of 3-degree nodes, D3 = 2(m + n - 4),

D,=Z(z+m-4).

Solving for m, we get

m2-m :+4 +N=O.
(1

Definition 3.1. A nontrivial network is said to be an (m,n) mesh-looking structure
(Fig. 1) if (*) yields two positive (not necessarily distinct) integer solutions.

Remark 3.2. An (m, n) mesh-looking structure need not be a rectangular mesh.

Peering Ptvcou aftm Stage I of Phase II

WI ~
.==--*-==r.

,
--------_-----

Fig. 1.

264 R. Subbiah et al.

Lemma 3.3. An (m, n) mesh-looking structure with N nodes has O(N) edges.

Notation. For n > 1, let [n] denote the set (0, 1, . . . , n- l}.

3.2. Suficient conditions

Theorem 3.4. An (m, n) mesh-looking structure is a rectangular mesh ifs there exists an
injectiue map F: V-Cm] x [n], such that for any u, UE V with F(u)=(i, j) and
F(v) = (i’, j’), whenever WEE,

(i-i’(+Ij-j’I=l.

It can easily be verified that, except for symmetry, the mapping F is unique. For any
2-degree node u, F(u)E { (0, 0), (m- l,O), (0, n - l), (n- 1, m- l)}. Once this is fixed,
because of adjacency constraints, a 3-degree node can assume labels from the set

{(1,0),(2, O), ..* , (m-2,0), (0, l), (0,2), . . . , (0, n-2),(1, n-1),(2, n-l), . . . ,(m-2, n-l),
(m-l, l), (m-1,2), (m-l, n-2)}.

4. Informal description of the proposed algorithm

The algorithm consists of two phases. In the first phase, the necessary conditions for
a network to be a mesh are checked. If these conditions are met, then the second phase
strips the mesh layer by layer, each time leaving behind a mesh of smaller dimension,
until an intermediate mesh structure of dimension (1, ?), (2, ?), (2, ?), or (?, 2) is
identified, where ? denotes an arbitrary integer. During this phase, nodes in the mesh
network are assigned coordinates. A successful assignment of coordinates to the
nodes, satisfying the adjacency criteria, ensures recognition of a mesh structure. The
algorithm rejects any other structure.

4.1. Phase I

During phase I of the recognition algorithm, the following tasks are performed:
(1) Compute the values of D3, D2, D4,m, n, N.
(2) Check the necessary conditions.
(3) Send information about m and n to all nodes.
(4) Instruct nodes to send id and degree to all their neighbors.
(5) Select any 2-degree node and initiate phase II.
In this phase, the values of the various mesh parameters are determined. In order to

do this, we construct a depth-first search tree (which is also a spanning tree) of the
network using O(N) messages in O(N) time [131. We shall now informally discuss the
working of the algorithm. The root of this spanning tree generates a “Count” message,
which has the following format:

(D,, &, Dq, N, Flag),

An optimal distributed algorithm 265

where the Flag field is boolean (presence or absence of nodes with degree other than
2,3 or 4). This message is trickled down to the leaf nodes, which return the message
after updating the values of the various fields. An internal node receiving a return
message from all its children updates (counts the number of 2-degree, 3-degree and
4-degree nodes in its subtree) the value of the various fields and sends it to its parent,
and this process goes on until the root receives messages from all its children. At this
stage the root node determines the values of the various parameters and checks
whether the necessary conditions have been satisfied.

If any of the necessary conditions are violated then the algorithm is terminated. The
root node sends a message down the tree, containing the expected dimensions of the
mesh (m, n). This message is propagated by the internal nodes of the tree, until a leaf
node is reached. When a node receives this message about the dimensions of the mesh,
it sends information about its id and degree to every one of its neighbors, in the
network, and also propagates the dimensions down to its children. Then, some
2-degree node is identified, and a message is sent to that node to initiate the second
phase of the algorithm. Hence, at the conclusion of phase I, all the necessary
conditions have been satisfied and the structure has been identified as a mesh-looking
structure. Additionally, every node knows the id and degree of all its neighbors and the
dimensions of the mesh (m, n). The newly selected 2-degree node now starts phase II.

4.2. Phase II

The algorithm described in this section is used only for the recognition of those
mesh structures whose dimensions are (m, n), where m, n > 2. A slight modification of
the algorithm can be used to recognize the special case of (m,2) or (2,n) mesh
structures. The algorithm for the recognition of mesh structures with dimensions
(m, 2) or (2, n) is presented in Section 8.

Each node has three variables, namely, its coordinate (x, y), static degree D, and
dynamic degree Dd. Initially, Dd is equal to D,, the number of neighbors of a node.
Each node also maintains an active neighbor list N, of all its neighbors and their static
degrees. The algorithm in this phase is constructive in nature. This phase is divided
into many stages. At each stage, a layer of the mesh is peeled (much like an onion
peel!). This peeling of a particular layer affects the N, list and dynamic degrees of the
nodes in the next inner layer. Stage I differs from the other stages in that D, = D, for all
the nodes participating in this stage. The peeling of a layer is broken into four different
directions, namely, (+x, + y, -x, - y). These directions aid in the generation of
coordinates for the nodes. The order of the directions is quite important, but it does
not matter as to which direction is chosen first. The need for the direction will be
clarified in subsequent sections.

4.2.1. Stage I ofphase II
At the beginning of phase II, each node sets all the members of its neighborhood list

to be ACTIVE. A node enters the DEAD state when its neighborhood list becomes

266 R. Subbiah et al.

empty. A successful termination of the algorithm results in every node in the network
reaching the DEAD state. A node updates its neighborhood list when a message is
either sent or received by that node. The process of updating is the deletion of that
member from/to whom the message was received/sent. The process of peeling the
outermost layer is initiated by the 2-degree node selected at the end of phase I. This
node sends a massage to one of its 3-degree neighbors. This message has the following
format:

{Message-Type, id, S,,,, Coordinates(xi, yi), Dir),

where S,,, denotes the stage number (= 1 in this case), and Dir can be any one of
{+x, + y, -x, -y,}. The actual message sent in this case would be

{“Propagate”, id, 1, (O,O), + x) .

When a 3-degree node receives this message, it sets its coordinates to (1, 0), based on
the coordinate of the sender (0,O) and the direction (+x). The rest of the description of
stage I will be illustrated with an example as shown in Fig. 2a.

Node b has received the message from node a. Node b has two other neighbors,
namely, c and d, which have a degree of 3 and 4, respectively. Node d does not
participate in the peeling process, but learns its coordinates based on the message it
receives from b. The message sent by node b to node d is

(“Propagate”, b, 1, (LO), + y).

Node d, on receipt of this message, sets its coordinates to (1,l). In this stage all
direction information is taken as is for the computation of the coordinates, whereas in
subsequent stages the 4-degree nodes will have to interpret the directions.

Mesh-Looking Non-Mesh Nefwork

4 -4 0, I 24

Da =P N=SO(5*10)

Fig. 2b.

An optimal distributed algorithm 261

Node b sends the following message to c:

(“Propagate”, b, 1, (LO), + x).

Node c, upon receiving this message, sets its coordinates to (2,O) and propagates this
message to its other 3-degree neighbor, who performs similar actions as b.

This process is continued until node g as shown. Node g does not have a 3-degree
neighbor other than the one from which it received the propagation message. Hence, it
sends the updated propagation message to its 2-degree neighbor. Node g also sends
a message to its 4-degree neighbor i, which sets its coordinates to (m - 2,1). If a node
receiving a message already has its coordinates set, then the information from the
message received is used for confirming its coordinates or for rejection. In case of
a rejection, the node sends a special message to its parent in the spanning tree, to
terminate the recognition process. In subsequent stages, a node simply sends a “Dis-
agree” message to the originator of the message, who must decide whether or not to
terminate the process. It is to be noted that node i receives messages both from nodes
g and j. It is immaterial as to which message is received first.

Node h, upon receiving a propagate message from node g, sets its coordinates, and
verifies the dimension of the mesh based on its coordinates and the stage number.
Node h also changes the direction from “ + x” to “ + y”, and sends the following
message to j:

(“Propagate”, h, 1, (m - LO), + y).

This process continues until node k sends a message to nodes d and a. Node d, upon
receipt of this second message, confirms its coordinates and initiates the second stage
of phase II. At each stage i, the node with coordinates (i - 1, i - 1) and 1 N1 I= 2(Od = 2)
will initiate the peeling process of that stage.

4.2.2. Rest of phase II
The second stage of phase II is initiated by the node which has the coordinates (1,1)

and a dynamic degree of 2. It is important to understand the fact that each node only
knows the static degree of its neighbors. The nodes which already have a coordinate
assigned in the previous stage participate in the peeling process, and the nodes in the
next layer learn and set their coordinates which will be used in the next stage. Hence,
the peeling of one layer is not completely independent from the peeling of the previous
or next layer. This transfer of information to the next layer ensures the proper working
of the algorithm.

When a particular layer of the network is being peeled, the nodes in the next layer
(Cdegree nodes usually) learn their coordinates. They compute their coordinate value
based on the values of the various fields of the received message. Since they are
4-degree nodes, they do not propagate this message. The propagation of the peeling
message is done by the dynamic 3-degree and 2-degree nodes. Since the 4-degree
nodes do not propagate the message, they know that the direction field of the message

268 R. Subbiah et al.

received is wrong, and hence use the succ(Dir) to compute their coordinate values.
These computed values are then confirmed when the next layer is peeled, and when
these nodes become 3-degree nodes they are used to propagate the peeling message.

Every node, upon receiving a message, computes a coordinate value. If its coordi-
nates are not already known, then the newly computed values are its coordinates. If its
coordinates are already set then the newly computed value should equal its coordi-
nates. If the node is a 3-degree node then it confirms its coordinates with the newly
computed values and continues the propagation process. If it finds that the two values
are not the same, then it recomputes the coordinates with succ(Dir) and then checks if
its coordinates are equal to this newly computed value, as in the case of node s in Fig.
2b. If the values are found to be equal, then it sends a “Disagree” message to the
sender, indicating that there is a problem. If the values are found to be different then
this node recognizes that the network is not a rectangular mesh and, hence, sends
a special “Reject” message to its parent in the spanning tree constructed during phase
I. We shall explain the working of the algorithm by identifying three cases, as shown in
Fig. 2b.

(1) Node a has b and c as active members of its N, list. Each of these nodes has
a static degree of 4 and a dynamic degree of 3. Node b has a coordinate of (2,l) and
c has a coordinate of (1,2). To ensure the same direction of peeling in this layer, as in
the previous layer, only b has to propagate the message. a sends the following message
to both b and c:

(“Propagate”, a, 2, (1, l), + x).

Node c will reject the message since the computed coordinate does not match its
coordinate. It then sends the following message to a, informing it about the disagree-
ment in the computed coordinate values:

(“Disagree”, c, 2, (1,2)).

Node a will ignore this message, since it expects to receive a “Disagree” message from
one of its active neighbors. If a node receives “Disagree” messages from all its active
neighbors then it sends a special “REJECT” message to its parent in the spanning tree
used in phase I.

(2) Node b has two active members in its iVi list, namely, d and e, both with a static
degree of 4. Node e has a dynamic degree of 3, whereas d has a dynamic degree of 4.
Node b sends the following message to both d and e:

(“Propagate”, b, 2, (2, l), +x).

The interpretation of this message by d and e is quite different.
“d”: Since d does not have its coordinates set, it learns about the value of its

coordinates from the message it received. This computation is not the same as in
phase I. The message received by d is a “Propagate” message, but its dynamic degree is
not 3. So, it assumes that this message was wrongly sent. To compute its coordinates,
d chooses the direction following that which was received in the message, from the set

An optimal distributed algorithm 269

{+x, + y, -x, -y}. In this case the direction chosen would be + y. Hence, d would
set its coordinates to (2,2), and send a “Disagree” message to b.

“e”: Node e already has its coordinates set, and simply confirms that the computed
value is the same as its coordinates. Then e follows the same procedure as b.

(3) Node s receives two messages, one each from p and r. The message received
from p is (p, 2,(m- 3, l), +x). Since s is a 4-degree node, it computes its coordinate
value with the direction changed to + y, (succ(+ x)). The message received from r is (r,
2, (m- 2, 2), + y). At this point in time, s would have a dynamic degree of 3, since
it has already received the message from p. So, it computes its coordinate value with
the same direction field value as that received. It tries to confirm its value, but
when it finds that the computed value is different from its previously computed
coordinates, it recomputes the new value with succ(Dir). It is immaterial, for the
successful execution of the algorithm, as to which of these two messages reaches s first.
Node s learns its coordinates from the first message and confirms this with the second
message. If the learned value and the computed value are not the same, then a special
“REJECT” message is sent to its parent in the spanning tree. The algorithm is then
terminated.

The exact working of the algorithm at each node, upon receiving a message, is
provided in Section 5.

During any stage of the peeling process, there exist 4 nodes, whose dynamic degree
is 2. One of these initiates the algorithm for that stage/layer. The other 3 perform the
following functions:
l The direction field of the next “Propagate” message is changed to that which

appears next (successor) in the list (-t-x, + y, -x, - y>.
l The current dimensions of the mesh are confirmed based on its coordinate value

and the stage number.
This process of peeling is stopped when a degenerate intermediate mesh structure

of dimension (l,?), (?, l), (2,?) or (?, 2) (where ? is an arbitrary integer) is identified.
This decision is made by the 2-degree node which initiates the peeling process at
that stage, since it has knowledge of the current dimensions of the mesh. These
special trivial structures will be recognized using a slightly different algorithm. In
the following section a pseudo code version of the algorithm is presented. The
algorithm is initiated at a particular 2-degree node. Other nodes in the system are
initially INACTIVE. When a node receives a message, it executes the following
algorithm. In general, messages have the following format:

(Mesg-Type, id, Stage-num, Coordinates (x, y), Direction).

Messages are treated as record structures for the purpose of the description of the
algorithm. The field Mesg_Type can take the following values.

“Propagate”
The peeling process in any stage is propagated from one node to another using the
“Propagate” message.

270 R. Subbiah et al.

“Disagree”
When a node receives a “Propagate” message and finds that the computed value of
its coordinates does not agree with its learned value, then it sends a “Disagree”
message to the node from which the original message was received.

“REJECT”
When a node is able to determine that the structure is not a rectangular mesh, then
it sends a special “REJECT” message to its parent in the spanning tree. This
message indicates that the algorithm is to be terminated and, hence, this message is
propagated by its parent up to the root.

5. The recognition procedure

The following code is executed by a node i receiving a message msg from its
neighbor. Each node has the following local variables:

(Xi3 Yi) coordinates of the node,
set = true if coordinates have been set, else false,

Ndis number of “Disagree” messages received,

N1 a list of neighbors, initially all ACTIVE,
(M, N) dimensions of the mesh.

Procedure Recognize-Mesh (i, msg);
i: id;
msg: message;

/* The following code is executed by a node i receiving a message msg from its
neighbor. Also let P(i) be the parent of node i in the spanning tree constructed in
phase I */
hegin

Case msg. type of

“Propagate”:
If stage 1 then

begin

If coordinates set then

If old value # new computed value then

send (“REJECT”, P(i));
else

remove sender from active neighbors list
If (1 N, I= 2) and (Xi, yi) = (msg. stage, msg .stage) and NOT degenerate then

/* checking for an intermediate case of (2, *) or (1, *) */
for every neighbor j do

Send (“Propagate”, i, msg. stage + 1, + x);
remove recipient from active neighbors list
(Start Next Stage}

An optimal distributed algorithm 271

else /* coordinates not set */Begin
Compute new coordinates (same direction)
Case dynamic degree Of
3: remove sender from active neighbors list
for every neighbor j do

Case static degree of neighbor j Of
2,3: send (“Propagate”, i, 1, (xi, yi), msg.Dir);

remove recipient from active neighbors list
4: send (“Propagate”, i, 1, (Xi, yi), succ(msg.Dir));

remove recipient from active neighbors list
end; {Case Statement - N,(i)(j).degree}

4: remove sender from active neighbors list
2: remove sender from active neighbors list

To your neighbor do

Send (“Propagate”, i, (xi, yi), succ(msg.Dir));
If Not Dimension_Confirm then

send (“REJECT”, P(i));
end; {Case Statement - 1 IV, I}

end;

end

else {Stage No: 22)
If coordinates not set then

If IN,/=4 then

(xi, yi)=Compute (msg.(x, y), succ(msg.Dir));
Send (“Disagree”, msg. id);
remove sender from active neighbors list

else
Send (“REJECT”, P(i));

else{Coordinate Set During Previous Stage}
begin

If (xi, yi) = Compute (msg .(x, y), msg. Dir) then

remove sender from active neighbors list
for every active neighbor j do

Send (“Propagate, i, msg. stage, (Xi, yi), msg. Dir);
remove recipient from active neighbors list

e,se (Continue Same Stage)

If (xi, yi)=Compute (msg.(x, y), succ(msg.Dir)) then

begin

Send (“Disagree”, msg. id);
(When current dimension becomes (2, *)}
If (Nll#(2 or 3) then

remove sender from active neighbors list

212 R. Subbiah et al.

If IN,\=2 then
If (Xi, yi) = (msg. stage, msg. stage) and NOT degenerate then

for every neighbor j do
Send (“Propagate, i, msg.stage + 1, (Xi, yi), +x);
remove recipient from active neighbors list
{Start Next Stage}

else If (degenerate) then
/* An intermediate mesh of dimension

(1, *), (*, l), (2, *) or (*, 2) is identified.*/
Recog-degenerate; /* in the next section */

end
else

send (“REJECT”, P(i));
end; {End PROPAGATE}

“Disagree”:

Ndis = Ndis + 1;
If Ndis = 2 then

Send (“REJECT”, P(i));

“REJECT”:
If not root (Spanning Tree) then

Send (“REJECT”, P(i))
else

Start (Terminate (REJECT));
end; (End of Case Statement}
end; {End of procedure Recognize-Mesh}

The following procedure is followed when a degenerate case is identified during the
recognition procedure. Note that these procedures are used only when an intermedi-
ate mesh of dimension (1, *), (*, l), (2, *) or (*, 2) is identified.

The computation of the coordinate value is performed locally by each node, upon
receipt of a message, by using the procedure “Compute”.

Procedure Compute ((x, y), Dir);
input: Sender’s coordinate value and direction
output: New coordinate values
begin

Case Dir of
“+x”: return ((x + 1, y));
“ + y”: return ((x, y + 1));
“ - x”: return ((x - 1, y));
“ - y": return ((x, y - 1));
end;

end;

An optimal distributed algorithm 273

One of the following procedures are executed when the procedure Recog-degener-
ate is called from the procedure Recognize-Mesh.

Procedure Recognize-Intermediate-(1, ?)_ Mesh (i, msg)
i: id,

msg: message;
begin

If coordinates are not set then

send (“REJECT”, P(i));
else
If message type = “X dimension = 1” then

remove sender from active neighbor list;
If active neighbor list not empty then

send to unique active neighbor
(“X dimension = l”, i, msg. stage, (xi, yi), msg. Dir);

else
Send (“FINISH”, P(i));

end;

/* A similar procedure is followed if the “Y dimension is 1” */

Procedure Recognize-Intermediate-(?, 2)_Mesh (i, msg);
begin

If coordinates not set then

Send (“REJECT”, P(i));
else

If message type=“X dimension=2” then

If msg.&, y)~{ } then

To both active neighbors do

send (“X dimension = 2”, i, msg.stage, (Xi, yi), NO Direction)
remove sender from active neighbor list;
If (active neighbor list is empty) and (Xi, yi)=(M-m.stuge, m.stage- 1) then

send (“FINISH”, P(i));
end;

/* A similar procedure is followed if the “X dimension is 2” */
/* The reporting node has a coordinate of (M- 1 -m.stage, IV- 1 -m.stage) */

6. Termination of recognition

The algorithm is terminated when a message of type “FINISH” is received by the
root of the spanning tree. If the root node is in the “DEAD’ state then it sends
a “Check” message to all its children. Any node receiving the “Check” message will
either propagate it down to its children, if its state is “DEAD”, i.e. its coordinates are

274 R. Subbiah et al.

set, or send a “No” message to its parent. When the leaf nodes receive this “Check”
message, they send a “Yes” if the state of the node is “DEAD’ and a “No” otherwise.

If a node receives a “No” message then it propagates this message to its parent. If all
children send a “Yes”, then it propagates a “Yes” to its parent. If the root node receives
a “Yes” from all its children, then the network is a rectangular mesh.

7. Proof of correctness

In order to show the correctness of the algorithm, we have to show that the
necessary and sufficient conditions for a rectangular mesh (specified in Section 3) are
checked by the algorithm. Clearly, in phase I all the necessary conditions are checked
by the algorithm. In order to show that the algorithm correctly checks the sufficient
conditions, we have to show that

(i) the algorithm correctly issues “Reject” messages if the network is not a rectan-
gular mesh, and

(ii) the algorithm correctly labels the nodes of the network as required by
Theorem 3.4.
For the case of(i), our algorithm issues a “Reject” message if during its execution we
have the following cases:

(1) In stage 1, if the old coordinate value (label) is not equal to the newly computed
value.

(2) Based on the stage number, the computed dimension by a node (with dynamic
degree two) does not agree with the dimensions of the network calculated in phase I.

(3) In stages greater than one, if nodes with dynamic degrees equal to two or three
do not have their coordinates set.

(4) In stages greater than one, if the old coordinate value is not equal to the newly
computed value with msg.Dir, or if the old coordinate value is not equal to the newly
computed value with succ(msg . Dir).

(5) When a node receives more than one “Disagree” message from its neighbors.
It is easy to verify that in all the above cases the network is not a rectangular mesh.
Now, what remains to be shown is that if none of the nodes in the network, during the
execution of the algorithm, satisfies the above conditions, then the network is indeed
a rectangular mesh. In order to prove this, we have to show that our algorithm

(a) assigns distinct labels (coordinate values) to all the nodes in the network, and
(b) assigns, for any two nodes u and u in the network, coordinate values (i, j) and

(i’, j’), respectively, such that, whenever there is a link between nodes u and u in the
network, we have Ii-i’I+Ij-j’l=l.
Now from Theorem 3.4 we can show that our algorithm correctly recognizes a rectan-
gular mesh. In order to show (a), we have the following. Let us consider the case of
a node with coordinates (p, 4). No neighbor of this node is assigned the same
coordinate value. Without loss of generality, let us assume that the direction of
propagation is + x. Any node receiving its coordinates in the same direction has the

An optimal distributed algorirhm 27s

first coordinate element greater than p. For this coordinate to decrease, two changes
in direction should take place. But the first change in direction would change the
second coordinate element. With this simple argument, we can establish that no two
nodes can have the exact same coordinate values. The condition (b) is trivially
enforced, since our algorithm sets the coordinate values sequentially and the values
once set are never changed.

8. Informal discussion of (2, ?) mesh recognition

It can be seen that the algorithm described in the previous sections does not
recognize the specific case of a (2, ?) or (?, 2) mesh. Here we shall describe a different
algorithm by illustrating it with an example as shown in Fig. 3.

The algorithm will recognize a mesh structure, by assigning coordinates to the
nodes, just as we did in the previous algorithm. If, during the process of assigning
coordinates, a nonmesh structure is recognized, then the algorithm is terminated. The
algo~thm works by assigning coordinates to two nodes at a time. We shall give an
informal description of the working of the algorithm.

It is assumed that all nodes know the id and the degree of their neighbors. During
phase I, all nodes also know the expected dimensions of the mesh. The only possibility
of the existence of a nonmesh structure is shown in Fig. 3, The algo~thm basically
checks to see that there are no “cross-connections”.

To start with, a 2-degree node is identified, which starts the recognition process, by
setting its coordinates to (0, 0), and sending a message to its unique 2-degree neighbor.
We shall describe the rest of the algorithm by the example shown in Fig. 3.

[Z *I best-Structure (2,7 Nonmeslr Structure
@*1)

f

3p

n-New, pPropogate, r-re@ct

Fig. 3.

216 R. Subbiah et al.

Node f, upon receiving a message from node a, sets its coordinates to (0, l), and
sends an “Accept” message back to node a. The next step is to assign coordinates to
nodes b and g, and then to nodes c and h, and so on...

Node a sends the message (“New”, 1, (0, 0), a) to node b. When node b receives this
message, it sends a “Propagate” message (“Propagate”, 2, (O,O), b) to nodes g and c.
Node c, upon receiving this message, propagates it to its active neighbors d and h, by
sending the message (“Propagate”, 3, (0, 0), c) to them. A node receiving a message with
a distance field of 3 does the following:

(1) If its dynamic degree is 2 and it has its coordinates set, then it sends an “Accept”
message to the sender.

(2) Otherwise, it sends a “Reject” message to the sender.
In this case, node c receives two “Reject” messages, upon which it propagates this

“Reject” back to node b. Node g receives a “Reject” from h and an “Accept” from node
f. Since node g expects to receive only one “Accept” message, it sends an “Accept” to
node b, after removing f from its active neighborhood list, and setting its coordinates
to (0+ 1, 0+ 1). Node b, upon receiving an “Accept” from g, sets its coordinates to
(0 + 1, 0), and sends the message (“New”, 1, (LO), b) to node c and the process goes on,
until node x receives a message of type “New”, where it sets its own coordinates and
sends a special message to its unique 2-degree neighbor which sends a “Finish”
message to its parent in the spanning tree used in phase I.

In the case of nonmesh structures, both nodes c and g would have received 2
“Reject” messages each and would in turn propagate “Reject” messages to node b.
Node b, after receiving two “Reject” messages, would in turn send a “Reject” message
to node a, which would terminate the recognition process.

The rest of the algorithm proceeds along the same lines as described above and,
hence, needs no more explanation.

9. Complexity analysis

First, we shall establish a lower bound on the number of messages needed to
recognize the structure of a network. Any algorithm that recognizes the structure of
a network requires at least 0(N) messages, where N is the number of nodes in the
network. This is true because each node has only local knowledge of its neighbors, and
hence at least one message needs to be sent by every node, even to count the number of
nodes in the network.

The algorithm presented in this paper to recognize rectangular-mesh-connected
networks uses O(N) messages, and has a time complexity of O(N). The algorithm
works in two phases. In the first phase, it uses O(N) messages to construct an
underlying spanning tree (the depth-first search tree) and then uses at most 2N
messages to compute the values of DZ,D3 and D4 and the dimensions of the mesh.
During the construction of the depth-first search tree, the recognition algorithm could
send a “Reject” message as soon as a node with degree greater than four is determined.

An optimal distributed algorithm 277

Table 1

Previous algorithm Our algorithm

Time complexity 0(N’.6) O(N)
Message complexity O(NlogN) O(N)

Using Lemma 3.3, we can see that phase I requires only O(N) messages and can be
completed in O(N) time. In the second phase of the algorithm, each node sends at
most 3 messages, where the size of the message is fixed and is not dependent on the size
of the network. The final phase of terminating the algorithm uses at most 2N
messages. Therefore, the total message complexity of the algorithm is O(N).

Assuming that every message consumes at most one time unit to reach its destina-
tion, it can easily be shown that the algorithm has a time complexity of O(N) (cf.
Table 1).

10. Conclusions

We have presented message optimal O(N) distributed algorithms to recognize
rectangular-mesh-structured networks. This algorithm is an improvement over a pre-
vious one presented in [12], as shown in Table 1. The algorithm not only recognizes
mesh-connected networks but also assigns coordinate labels to each node, which can
be used for efficient routing. The algorithm described here can be added to the unified
optimal distributed algorithms presented in [15] to recognize if a network is a tree,
ring, star, complete graph or a bipartite graph. There are other classes of graphs,
namely, planar graphs, outer-planar graphs, for which distributed recognition algo-
rithms can be constructed under the same framework.

References

Cl] B. Awerbuch, An efficient network sychronization protocol, J. ACM 32 (1985) 804-823.
[Z] B. Awerbuch, Optimal distributed algorithms for minimum weight spanning trees, counting, leader

election and related problems, in: Proc. Symp. on Theory of Computation (1987) 230-240.
[3] B. Awerbuch and R.G. Gallager, Distributed BFS algorithm, IEEE Found. Comput. Theory (1985)

250-256.
[4] K.M. Chandy and J. Misra, Distributed computation on graphs: shortest path algorithms, CACM 25

(1982) 833-837.
[S] E.J.H. Chang, Echo algorithms: depth parallel operations on general graphs, IEEE Trans. Software

Engrg. SE9 (1982) 391-401.
[6] C.C. Chen, A distributed algorithm for shortest paths, IEEE Trans. Comput. C31 (1982) 898-899.
[7] G. Frederickson, A single source shortest path algorithm for a planar distributed network, in: Proc.

Sympos. Theoret. Aspects Comput. Sci. (1985).
[S] R.G. Gallager, Distributed minimum hop algorithms, Tech. Report, LIDS-P-1175, MIT, 1982.

278 R. Subbiah et al.

[9] R. Gallager, P. Humblet and P. Spira, A distributed algorithm for minimum-weight spanning trees,
ACM TOPLAS 5 (1983) 66-77.

[lo] E. Korach, D. Rotem and N. Santoro, Distributed algorithms for finding centers and medians in
networks, ACM TOPLAS 6 (1984) 380-401.

[l I] J. Misra and K.M. Chandy, A distributed graph algorithm: knot detection, ACM TOPLAS 4 (1982)
678-686.

[12] S. Mohan, Efficient distributed algorithms for network facility problems, Ph.D. Dissertation,
Louisiana State University, Baton Rouge, LA, 1990.

[13] S.B. Mohan, S.S. Iyengar and M.K. Narasimha, An efficient distributed depth-first-search algorithm,
Inform. Process. Lett. 32 (1989) 183-186.

[14] D.S. Parker and B. Samadi, Adaptive distributed minimal spanning tree algorithms, in: Proc. 1st
Symp. Reliability Distrib. Software Databases (1981).

[15] K.V.S. Ramarao, Distributed algorithms for network recognition problems, IEEE Trans. Comput. 38
(1989).

[161 K.V.S. Ramarao and S. Venkatesan, On finding and updating shortest paths distributively, in: Proc.
24th Allerton 1986 ConJ; J. Algorithms, to appear.

