A characterization of graphic matroids using non-separating cocircuits

Manoel Lemos ${ }^{1}$
Departamento de Matemática, Universidade Federal de Pernambuco, Recife, Pernambuco, 50740-540, Brazil

A R T I CLE IN F O

Article history:

Received 31 August 2007
Accepted 5 May 2008
Available online 15 August 2008

MSC:
 05B35

Keywords:
Matroid
Binary matroid
Cocircuits
Non-separating cocircuits

Abstract

In this paper, we settle a conjecture made by Wu . We show that a 3-connected binary matroid M is graphic if and only if each element avoids exactly $r(M)-1$ non-separating cocircuits of M. This result is a natural companion to the following theorem of Bixby and Cunningham: a 3-connected binary matroid M is graphic if and only if each element belongs to exactly 2 non-separating cocircuits of M.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, for matroid notation and terminology, we follow Oxley [9]. A cocircuit C* of a connected matroid M is said to be non-separating provided $M \backslash C^{*}$ is connected. Bixby and Cunningham [1] wrote the first paper dealing with non-separating cocircuits in binary matroids. In that article, Bixby and Cunningham proved three conjectures due to Edmonds, namely:

Theorem 1.1. If M is a 3-connected binary matroid such that $|E(M)| \geqslant 4$, then:
(i) Each element of M belongs to at least two non-separating cocircuits of M.
(ii) The set of non-separating cocircuits of M spans the cocycle space of M.
(iii) M is a graphic matroid if and only if each element is contained in at most two non-separating cocircuits of M.

[^0]0196-8858/\$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.aam.2008.05.001

When M is a cographic matroid, each item of the previous result is a theorem due to Tutte [11].
Let M be a 3-connected binary matroid. For $A \subseteq E(M)$, we denote the set of non-separating cocircuits of M avoiding A by $\mathcal{R}_{A}^{*}(M)$. The dimension of the subspace spanned by $\mathcal{R}_{A}^{*}(M)$ in the cocycle space of M is denoted by $\operatorname{dim}_{A}(M)$. When $|A|=1$, say $A=\{a\}$, we use $\mathcal{R}_{a}^{*}(M)$ and $\operatorname{dim}_{a}(M)$ instead of $\mathcal{R}_{A}^{*}(M)$ and $\operatorname{dim}_{A}(M)$ respectively. Lemos [4] proved the next result:

Theorem 1.2. Let M be a 3 -connected binary matroid such that $r(M) \geqslant 1$. If a is an element of M, then $\operatorname{dim}_{a}(M)=r(M)-1$.

Wu [14] made the following conjecture which is closed related to Theorems 1.1 and 1.2 (see [2]):
Conjecture 1.1. Let M be a 3-connected binary matroid such that $r(M) \geqslant 1$. Then, M is graphic if and only if each element avoids exactly $r(M)-1$ non-separating cocircuits of M.

In this note, we prove this conjecture:
Theorem 1.3. If M is a 3 -connected binary matroid such that $|E(M)| \geqslant 4$, then:
(i) M is a graphic matroid if and only if each element avoids exactly $r(M)-1$ non-separating cocircuits of M.
(ii) M is a graphic matroid if and only if $\mathcal{R}_{a}^{*}(M)$ is linearly independent in the cocycle space of M, for every element a of M.

In Theorem 1.3(ii), we cannot replace the word "every" by "some" because, for example, $\mathcal{R}_{a}^{*}\left(S_{8}\right)$ is linearly independent in the cocycle space of S_{8}, where a is the unique element of S_{8} satisfying $S_{8} \backslash a \cong F_{7}^{*}$.

Note that the "only if" part of the proof of each item of this theorem is straightforward. We need to show only the "if" part. Observe that Theorem 1.3(ii) and Theorem 1.2 implies Theorem 1.3(i). Thus it is enough to prove Theorem 1.3(ii). Note that Theorem 1.3(ii) is a consequence of the next result:

Proposition 1.1. Let M be a 3-connected binary matroid. If M is not graphic, then there is an element f of M such that $\mathcal{R}_{f}^{*}(M)$ is linearly dependent in the cocycle space of M.

We prove Proposition 1.1 in the last section of this paper. For other results about non-separating cocircuits in connected binary matroids see [2,3,5-8].

2. A preliminary lemma

For a 3-connected binary matroid M, we denote the set of non-separating cocircuits of M by $\mathcal{R}^{*}(M)$.

Lemma 2.1. Suppose that e is an element of a 3-connected binary matroid M such that $\operatorname{co}(M \backslash e)$ is 3 -connected, say $\operatorname{co}(M \backslash e)=M \backslash e /\left\{b_{1}, \ldots, b_{n}\right\}$, where n is a non-negative integer, and $r^{*}(M) \geqslant 4$. For $i \in\{1, \ldots, n\}$, let T_{i}^{*} be the triad of M that contains $\left\{e, b_{i}\right\}$, say $T_{i}^{*}=\left\{e, a_{i}, b_{i}\right\}$. If $C^{*} \in \mathcal{R}^{*}(\operatorname{co}(M \backslash e))$, then either:
(i) C^{*} is a cocircuit of M and:
(a) $C^{*} \in \mathcal{R}^{*}(M)$; or
(b) $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq C^{*}$ and $C:=\left\{e, b_{1}, \ldots, b_{n}\right\}$ is a circuit of M; or
(ii) $C^{*} \cup e$ is a cocircuit of M and:
(a) $C^{*} \cup e \in \mathcal{R}^{*}(M)$; or
(b) $C^{*} \cap\left\{a_{1}, \ldots, a_{n}\right\} \neq \emptyset$ and, for each $i \in\{1, \ldots, n\}$ such that $a_{i} \in C^{*}, C^{*} \Delta\left\{a_{i}, b_{i}\right\} \in \mathcal{R}^{*}(M)$; or
(c) $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq C^{*}$ and, for each $i \in\{1, \ldots, n\}$,
(1) $C^{*} \triangle\left\{a_{i}, b_{i}\right\} \in \mathcal{R}^{*}(M)$; or
(2) $C_{i}:=\left\{e, b_{1}, \ldots, b_{n}\right\} \triangle\left\{a_{i}, b_{i}\right\}$ is a circuit of M.

Moreover, at most one of the sets C, C_{1}, \ldots, C_{n} is a circuit of M.

Proof. Assume that $C^{*} \cap\left\{a_{1}, \ldots, a_{n}\right\}=\left\{a_{1}, \ldots, a_{m}\right\}$, for a non-negative integer m. By definition, $H^{\prime}=E(M)-\left[\left\{e, b_{1}, \ldots, b_{n}\right\} \cup C^{*}\right]$ is a connected hyperplane of $\operatorname{co}(M \backslash e)$. Therefore $H=H^{\prime} \cup$ $\left\{b_{1}, \ldots, b_{n}\right\}=E(M)-\left[e \cup C^{*}\right]$ is a hyperplane of $M \backslash e$. As $T_{i}^{*} \cap H=\left\{b_{i}\right\}$, for each $i \in\{1, \ldots, m\}$, it follows that b_{1}, \ldots, b_{m} are coloops of $M \mid H$. Note that $[M \mid H] \backslash\left\{b_{1}, \ldots, b_{m}\right\}$ is connected because $[M \mid H] \backslash\left\{b_{1}, \ldots, b_{m}\right\}$ is obtained from $\operatorname{co}(M \backslash e) \mid H^{\prime}$ by adding b_{i} in series with a_{i}, for each $i \in\{m+1, \ldots, n\}$. (Observe that $\left|H^{\prime}\right| \geqslant 2$ because $r^{*}(\operatorname{co}(M \backslash e)) \geqslant 3$ and so $r(\operatorname{co}(M \backslash e)) \geqslant 3$. In particular, $r_{\mathrm{co}(M \backslash e)}\left(H^{\prime}\right) \geqslant 2$.) We have two cases to deal with.

Suppose that H spans e in M. Hence $H \cup e$ is a hyperplane of M and so C^{*} is a cocircuit of M. If $C^{*} \in \mathcal{R}^{*}(M)$, then (i)(a) follows. Assume that $C^{*} \notin \mathcal{R}^{*}(M)$. Therefore $m \geqslant 1$. As $T_{i}^{*} \cap(H \cup e)=\left\{e, b_{i}\right\}$, for each $i \in\{1, \ldots, m\}$, it follows that $C=\left\{e, b_{1}, \ldots, b_{m}\right\}$ is contained in a series class of $M \mid(H \cup e)$ since e is not a coloop of $M \mid(H \cup e)$. But $M \mid(H \cup e)$ is not connected and so C is the ground set of a connected component of $M \mid(H \cup e)$ (the other connected component of this matroid is $\left.[M \mid H] \backslash\left\{b_{1}, \ldots, b_{m}\right\}\right)$. In particular, C is a circuit of M. By orthogonality, $C \cap T_{i}^{*} \neq\{e\}$, for every $i \in\{1, \ldots, n\}$, and so $n=m$. We have (i)(b).

Suppose that H does not span e in M. In this case, H is a hyperplane of M. Thus $C^{*} \cup e$ is a cocircuit of M. If $H=H^{\prime} \cup\left\{b_{m+1}, \ldots, b_{n}\right\}$, then (ii)(a) occurs. We may assume that $m \geqslant 1$. Therefore $\left\{b_{1}, \ldots, b_{m}\right\}$ is the set of coloops of $M \mid H$. For $i \in\{1, \ldots, m\}, H_{i}=H \triangle\left\{a_{i}, b_{i}\right\}$ is also a hyperplane of $M \backslash e$. Note that $\left\{b_{1}, \ldots, b_{m}\right\} \triangle\left\{a_{i}, b_{i}\right\}$ is the set of coloops of $M \mid H_{i}$ and $M \mid\left(H^{\prime} \cup\left\{b_{m+1}, \ldots, b_{n}\right\}\right)$ is the other connected component of this matroid. But $\left(C^{*} \cup e\right) \Delta T_{i}^{*}$ is a cocircuit of M. So $H_{i} \cup e$ is a hyperplane of M. That is, H_{i} spans e in M. There is a circuit C_{i} of M such that $e \in C_{i} \subseteq H_{i} \cup e$. By orthogonality with T_{j}^{*}, for $j \in\{1, \ldots, m\},\left\{b_{1}, \ldots, b_{m}\right\} \triangle\left\{a_{i}, b_{i}\right\} \subseteq C_{i}$. We have two subcases.

- If $C_{i} \cap\left(H^{\prime} \cup\left\{b_{m+1}, \ldots, b_{n}\right\}\right) \neq \emptyset$, then $M \mid H_{i}$ is connected and $C^{*} \triangle\left\{a_{i}, b_{i}\right\} \in \mathcal{R}^{*}(M)$.
- If $C_{i} \cap\left(H^{\prime} \cup\left\{b_{m+1}, \ldots, b_{n}\right\}\right)=\emptyset$, then $M \mid H_{i}$ has two connected components, namely: $M \mid C_{i}$ and $M \mid\left(H^{\prime} \cup\left\{b_{m+1}, \ldots, b_{n}\right\}\right)$. By orthogonality, $C_{i} \cap T_{j}^{*} \neq\{e\}$, for $j \in\{m+1, \ldots, n\}$, and so $n=m$. That is, $C_{i}=\left\{e, b_{1}, \ldots, b_{n}\right\} \triangle\left\{a_{i}, b_{i}\right\}$.

We have (ii)(b) or (ii)(c).
Now, assume that at least two of the sets C, C_{1}, \ldots, C_{n} is a circuit of M. We have two cases to consider. First, suppose that C and C_{i} are circuits of M. Hence $C \triangle C_{i}=\left\{a_{i}, b_{i}\right\}$ is a disjoint union of circuits of M. So M has a circuit having at most 2 elements; a contradiction because M is 3-connected. Suppose that C_{i} and C_{j} are circuits of M, for $i \neq j$. As $C_{i} \triangle C_{j}=\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$ is a disjoint union of circuits of M and each circuit of M has at least 3 elements, it follows that $\left\{a_{i}, b_{i}, a_{j}, b_{j}\right\}$ is a circuit of M. Therefore $\left\{a_{i}, a_{j}\right\}$ is a circuit of $\operatorname{co}(M \backslash e)$. Note that $\operatorname{co}(M \backslash e) \cong U_{1,2}$ or $\operatorname{co}(M \backslash e) \cong U_{1,3}$ because $\operatorname{co}(M \backslash e)$ is 3-connected; a contradiction since $r^{*}(\operatorname{co}(M \backslash e)) \geqslant 3$.

Now, we choose the elements of the cosimplification of $M \backslash e$ to narrow the options given by the previous lemma.

Lemma 2.2. Suppose that e is an element of a 3-connected binary matroid M such that the cosimplification of $M \backslash e$ is 3-connected. If $r^{*}(M) \geqslant 4$, then it is possible to choose the ground set of $\operatorname{co}(M \backslash e)$ so that, for each $C^{*} \in \mathcal{R}^{*}(\operatorname{co}(M \backslash e)), C^{*} \Delta X \in \mathcal{R}^{*}(M)$, where $X=\emptyset$ or $X=\{e\}$ or $X=T^{*}-e$, for some triad T^{*} of M meeting both $\{e\}$ and C^{*}.

Proof. Let $T_{1}^{*}, \ldots, T_{n}^{*}$ be the triads of M that contains e, for a non-negative integer n. For $i \in$ $\{1, \ldots, n\}$, we set $T_{i}^{*}=\left\{e, a_{i}, b_{i}\right\}$. Define $C=\left\{e, b_{1}, \ldots, b_{n}\right\}$ and, for $i \in\{1, \ldots, n\}, C_{i}=C \triangle\left\{a_{i}, b_{i}\right\}$. By the second part of Lemma 2.1, at most one of the sets C, C_{1}, \ldots, C_{n} is a circuit of M. If one of
these sets is a circuit of M, then $n \geqslant 2$ because M is 3-connected. When this happens, we may relabel the elements in the triads and the triads in such a way that C_{n} is a circuit of M. In particular Lemma 2.1(i)(b) does not occur. If (i)(a) or (ii)(a) or (ii)(b) of Lemma 2.1 happens, then the result follows. We may assume that Lemma 2.1(ii)(c) holds. By our choice of labels, (ii)(c)(1) occurs for $i=1$ and the result also follows in this case.

3. An auxiliary function

Let M be a 3-connected binary matroid M. For $A \subseteq E(M)$, we define

$$
\operatorname{dep}_{A}(M)=\left|\mathcal{R}_{A}^{*}(M)\right|-\operatorname{dim}_{A}(M)
$$

(When $|A|=1$, say $A=\{a\}$, we use $\operatorname{dep}_{a}(M)$ instead of $\operatorname{dep}_{A}(M)$.) A subset Υ of $\mathcal{R}_{A}^{*}(M)$ is said to be inessential provided both $\mathcal{R}_{A}^{*}(M)-\Upsilon$ and $\mathcal{R}_{A}^{*}(M)$ span the same linear subspace of the cocycle space of M. Observe that $\operatorname{dep}_{A}(M)$ is the cardinality of any maximal inessential subset Υ of $\mathcal{R}_{A}^{*}(M)$. To prove Proposition 1.1, we need to show only that $\operatorname{dep}_{f}(M)>0$, for some element f of M, when M is not graphic.

Lemma 3.1. Suppose that e is an element of a 3-connected binary matroid M such that the cosimplification of $M \backslash e$ is 3-connected. If $r^{*}(M) \geqslant 4$, then it is possible to choose the ground set of $\operatorname{co}(M \backslash e)$ so that, for each $A \subseteq E(\operatorname{co}(M \backslash e))$,

$$
\operatorname{dep}_{A}(M) \geqslant \operatorname{dep}_{A^{\prime}}(M) \geqslant \operatorname{dep}_{A}(\operatorname{co}(M \backslash e))
$$

where A^{\prime} is the minimal subset of $E(M)$ satisfying $A \subseteq A^{\prime}$ and, for each triad T^{*} of M that meets both e and A, $T^{*}-e \subseteq A^{\prime}$.

Proof. By Lemma 2.2, it is possible to choose the ground set of $N:=\operatorname{co}(M \backslash e)$ so that, for each $C^{*} \in \mathcal{R}^{*}(N), C^{*} \Delta X \in \mathcal{R}^{*}(M)$, where $X=\emptyset$ or $X=\{e\}$ or $X=T^{*}-e$, for some triad T^{*} of M meeting both $\{e\}$ and C^{*}.

Let $T_{1}^{*}, \ldots, T_{r}^{*}$ be the triads of M containing e. Note that $T_{1}^{*}-e, \ldots, T_{r}^{*}-e$ are pairwise disjoint sets. For $i \in\{1, \ldots, r\}$, we set $T_{i}^{*}=\left\{e, a_{i}, b_{i}\right\}$, where $a_{i} \in E(N)$. In particular, $N=M \backslash e /\left\{b_{1}, \ldots, b_{r}\right\}$. We may assume that $A \cap\left\{a_{1}, \ldots, a_{r}\right\}=\left\{a_{l+1}, \ldots, a_{r}\right\}$, for a non-negative integer l. (That is, T_{i}^{*} avoids A if and only if $i \leqslant l$.) Therefore

$$
\begin{equation*}
A^{\prime}=A \cup\left\{b_{l+1}, \ldots, b_{r}\right\} \quad \text { and } \quad A^{\prime} \cap\left(T_{1}^{*} \cup \cdots \cup T_{l}^{*}\right)=\emptyset . \tag{3.1}
\end{equation*}
$$

Suppose that $\mathcal{R}_{A}^{*}(N)=\left\{C_{1}^{*}, C_{2}^{*}, \ldots, C_{n}^{*}\right\}$, where $n=\left|\mathcal{R}_{A}^{*}(N)\right|$. By the first paragraph, for each $i \in$ $\{1,2, \ldots, n\}$, we can define $D_{i}^{*}:=C_{i}^{*} \triangle X_{i}$ in such a way that $D_{i}^{*} \in \mathcal{R}^{*}(M)$, where $X_{i}=\emptyset$ or $X_{i}=\{e\}$ or $X_{i}=T^{*}-e$, for some $T^{*} \in\left\{T_{1}^{*}, \ldots, T_{r}^{*}\right\}$ satisfying $T^{*} \cap C^{*} \neq \emptyset$.

Now, we establish that

$$
\begin{equation*}
\left\{D_{1}^{*}, D_{2}^{*}, \ldots, D_{n}^{*}\right\} \subseteq \mathcal{R}_{A^{\prime}}^{*}(M) \tag{3.2}
\end{equation*}
$$

If $f \in D_{i}^{*} \cap A^{\prime}$, then, by (3.1), $f \in X_{i}$ and $X_{i}=T^{*}-e$, for some triad T^{*} meeting both C_{i}^{*} and e, say $T^{*}=\{e, f, g\}$. Therefore $g \in C_{i}^{*}$. By definition of $A^{\prime},\{f, g\} \subseteq A^{\prime}$ and so $g \in A$; a contradiction because $g \in C_{i}^{*}$. Thus (3.2) follows.

Observe that $D_{1}^{*}, D_{2}^{*}, \ldots, D_{n}^{*}$ are pairwise different because $\{e\}, T_{1}^{*}-e, \ldots, T_{r}^{*}-e$ are pairwise disjoint sets and none of them is contained in $E(N)$. (If $D_{i}^{*}=D_{j}^{*}$, for $i \neq j$, then $C_{i}^{*} \triangle X_{i}=C_{j}^{*} \triangle X_{j}$ and so

$$
\left.\emptyset \neq C_{i}^{*} \Delta C_{j}^{*}=X_{i} \Delta X_{j}=X_{i} \cup X_{j} \nsubseteq E(N) .\right)
$$

We may relabel the cocircuits of $\mathcal{R}_{A}^{*}(N)$ such that $\Upsilon=\left\{C_{i}^{*}: m+1 \leqslant i \leqslant n\right\}$ is a maximal inessential subset of $\mathcal{R}_{A}^{*}(N)$, for some positive integer m. The result follows provided we can prove that $\Upsilon^{\prime}=$ $\left\{D_{i}^{*}: m+1 \leqslant i \leqslant n\right\}$ is an inessential subset of $\mathcal{R}_{A^{\prime}}^{*}(M)$.

For each integer i such that $m+1 \leqslant i \leqslant n$, we need to prove only that D_{i}^{*} is spanned in the cocycle space of M by $\mathcal{R}_{A^{\prime}}^{*}(M)-\Upsilon^{\prime}$. We achieve this goal by establishing that

$$
\begin{equation*}
D_{i}^{*} \text { is spanned in the cocycle space of } M \text { by } D_{1}^{*}, D_{2}^{*}, \ldots, D_{m}^{*}, T_{1}^{*}, \ldots, T_{1}^{*} \text {. } \tag{3.3}
\end{equation*}
$$

(Remember that $T_{1}^{*}, \ldots, T_{l}^{*}$ are the triads of M containing e and avoiding A and so A^{\prime}, by (3.1). Note that each triad of M containing e is non-separating because $\operatorname{co}(M \backslash e)$ is a 3-connected binary matroid.) By hypothesis, when $m+1 \leqslant i \leqslant n$, there are integers $i_{1}, i_{2}, \ldots, i_{k}$ satisfying $1 \leqslant i_{1}<i_{2}<\cdots<i_{k} \leqslant m$ such that

$$
C_{i}^{*}=C_{i_{1}}^{*} \Delta C_{i_{2}}^{*} \Delta \cdots \Delta C_{i_{k}}^{*},
$$

say $\left(i_{1}, i_{2}, \ldots, i_{k}\right)=(1,2, \ldots, k)$. That is,

$$
\begin{equation*}
\left[C_{1}^{*} \Delta C_{2}^{*} \Delta \cdots \Delta C_{k}^{*}\right] \Delta C_{i}^{*}=\emptyset \tag{3.4}
\end{equation*}
$$

We set

$$
\begin{equation*}
X=\left[D_{1}^{*} \Delta D_{2}^{*} \Delta \cdots \Delta D_{k}^{*}\right] \Delta D_{i}^{*} . \tag{3.5}
\end{equation*}
$$

In particular, X belongs to the cocycle space of M. By (3.4),

$$
X=\left[X_{1} \Delta X_{2} \Delta \cdots \Delta X_{k}\right] \Delta X_{i} .
$$

For each $j \in\{1, \ldots, l\}$, we have that $X \cap\left(T_{j}^{*}-e\right)=\emptyset$ or $T_{j}^{*}-e \subseteq X$ because

$$
\left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \subseteq\left\{\emptyset,\{e\}, T_{1}^{*}-e, \ldots, T_{l}^{*}-e\right\} .
$$

(The sets $\emptyset,\{e\}, T_{1}^{*}-e, \ldots, T_{l}^{*}-e$ are pairwise disjoint.) Suppose that X contains $T_{1}^{*}-e, \ldots, T_{s}^{*}-e$, for a non-negative integer s, and so X is disjoint from $T_{s+1}^{*}-e, \ldots, T_{l}^{*}-e$. Therefore

$$
X \Delta\left[T_{1}^{*} \Delta \cdots \Delta T_{s}^{*}\right]
$$

is a cocycle of M contained in $\{e\}$. Thus

$$
\begin{equation*}
X=T_{1}^{*} \Delta \cdots \Delta T_{s}^{*} . \tag{3.6}
\end{equation*}
$$

Replacing (3.6) into (3.5), we obtain:

$$
T_{1}^{*} \Delta \cdots \Delta T_{s}^{*}=\left[D_{1}^{*} \Delta D_{2}^{*} \Delta \cdots \Delta D_{k}^{*}\right] \Delta D_{i}^{*} .
$$

This identity can be rewritten as

$$
D_{i}^{*}=T_{1}^{*} \Delta \cdots \Delta T_{s}^{*} \Delta D_{1}^{*} \Delta D_{2}^{*} \Delta \cdots \Delta D_{k}^{*}
$$

Therefore (3.3) holds and the result follows.

4. Proof of Proposition 1.1

We argue by contradiction. Choose a counter-example such that $|E(M)|$ is minimum. In particular, $\operatorname{dep}_{e}(M)=0$, for every element e of M. We divide the proof into some lemmas.

Lemma 4.1. $r^{*}(N)=r^{*}(M)$, for every non-graphic 3-connected minor N of M.
Proof. Suppose that N is a non-graphic 3 -connected minor of M such that $r^{*}(N)<r^{*}(M)$. As $r^{*}(N) \geqslant 3$, it follows that $r^{*}(M) \geqslant 4$. By the dual of Lemma 3.4 of [13], there is an element e of M such that $\operatorname{co}(M \backslash e)$ is a 3 -connected matroid having an N-minor. By Lemma 3.1, we can choose the elements of $\operatorname{co}(M \backslash e)$ so that

$$
\begin{equation*}
\operatorname{dep}_{f}(M) \geqslant \operatorname{dep}_{f}(\operatorname{co}(M \backslash e)), \tag{4.1}
\end{equation*}
$$

for each $f \in E(\operatorname{co}(M \backslash e))$. By the choice of M, there is an element f of $\operatorname{co}(M \backslash e)$ such that $\operatorname{dep}_{f}(\operatorname{co}(M \backslash e))>0$; a contradiction to (4.1). Therefore $r^{*}(N)=r^{*}(M)$, for every non-graphic 3connected minor of M.

Lemma 4.2. M is regular.
Proof. Suppose that M is non-regular. By Tutte's characterization of regular matroids, M has F_{7} or F_{7}^{*} as a minor (see [12]). By the choice of M, M cannot be isomorphic to:
(i) F_{7} because each 4-element cocircuit of F_{7} is non-separating and, for each element f of F_{7}, the sum in the cocycle space of F_{7} of the 34 -element cocircuits avoiding f is zero; or
(ii) F_{7}^{*} because each 3-element cocircuit of F_{7}^{*} is non-separating and, for each element f of F_{7}^{*}, the sum in the cocycle space of F_{7}^{*} of the 4 3-element cocircuits avoiding f is zero.

But Seymour proved that F_{7} is a splitter for the class of binary matroids without minor isomorphic to $F_{7}^{*}((7.6)$ of $[10])$. Hence M has a minor isomorphic to F_{7}^{*}. By Lemma 4.1, $r^{*}(M)=r^{*}\left(F_{7}^{*}\right)=3$. Thus M is isomorphic to F_{7}^{*}; a contradiction. Therefore M is regular.

Lemma 4.3. M is isomorphic to $M^{*}(G)$, where G is a graph such that $|V(G)|=6$ and $G \backslash X$ is isomorphic to $K_{3,3}$, for some non-empty subset X of $E(G)$.

Proof. By Tutte's characterization of graphic matroids, M has $M^{*}\left(K_{3,3}\right)$ or $M^{*}\left(K_{5}\right)$ as a minor (see [12]). By the choice of M, M cannot be isomorphic to
(i) $M^{*}\left(K_{3,3}\right)$ because the edge-set of each 4-edge circuit of $K_{3,3}$ is a non-separating cocircuit of $M^{*}\left(K_{3,3}\right)$ and, for each vertex v of $K_{3,3}$, the sum in the cocycle space of $M^{*}\left(K_{3,3}\right)$ of the edgeset of the 34 -edge circuits of $K_{3,3}$ avoiding v is zero; or
(ii) $M^{*}\left(K_{5}\right)$ because the edge-set of each triangle of K_{5} is a non-separating cocircuit of $M^{*}\left(K_{5}\right)$ and, for each vertex v of K_{5}, the sum in the cocycle space of $M^{*}\left(K_{5}\right)$ of the edge-set of the 4 triangles of K_{5} avoiding v is zero.

But Seymour proved that $M^{*}\left(K_{5}\right)$ is a splitter for the class of regular matroids without minor isomorphic to $M^{*}\left(K_{3,3}\right)$ ((7.5) of [10]). Hence M has a minor isomorphic to $M^{*}\left(K_{3,3}\right)$. By Lemma 4.1, $r^{*}(M)=r^{*}\left(M^{*}\left(K_{3,3}\right)\right)=5$. In particular M does not have R_{12} as a minor. By Theorem 14.2 of Seymour [10], M is cographic or M is isomorphic to R_{10}.

By the choice of M, M is not isomorphic to R_{10} because each 4-element cocircuit of R_{10} is nonseparating and R_{10} / f is isomorphic to $M^{*}\left(K_{3,3}\right)$, for every element f, and so the non-separating cocircuits of R_{10} avoiding f are linearly dependent in the cocycle space of R_{10}. Hence M is cographic.

There is a simple graph G having 6 vertices such that $M=M^{*}(G)$ (remember that $\left.r^{*}(M)=5\right)$ and $G \backslash X=K_{3,3}$, for some set of edges X.

Let $\left\{V_{1}, V_{2}\right\}$ be a partition of $V(G)$ such that V_{1} and V_{2} are independent sets of vertices of $G \backslash X$. If T is a triangle of G such that $V(T)$ meets both V_{1} and V_{2}, then $G / E(T)$ is a block. That is $E(T)$ is a non-separating cocircuit of M.

Now, we prove that V_{1} or V_{2} is an independent set of vertices of G. If V_{1} and V_{2} are not independent, then, for $i \in\{1,2\}$, there is an edge e_{i} joining two vertices belonging to V_{i}, say u_{i} and v_{i}. Observe that $G^{\prime}=G\left[\left\{u_{1}, u_{2}, v_{1}, v_{2}\right\}\right]$ is isomorphic to K_{4}. If $T_{1}, T_{2}, T_{3}, T_{4}$ are the triangles of G^{\prime}, then $E\left(T_{1}\right), E\left(T_{2}\right), E\left(T_{3}\right), E\left(T_{4}\right)$ are non-separating cocircuits of M because $V\left(T_{i}\right)$ meets both V_{1} and V_{2}, for every $i \in\{1,2,3,4\}$. But

$$
E\left(T_{1}\right) \Delta E\left(T_{2}\right) \Delta E\left(T_{3}\right) \Delta E\left(T_{4}\right)=\emptyset ;
$$

a contradiction because $E(G)-E\left(G^{\prime}\right) \neq \emptyset$. Hence V_{1} or V_{2} is an independent set of G, say V_{2}.
Let v be a fixed vertex of G belonging to V_{2}. If $G\left[V_{1}\right]$ is isomorphic to K_{3}, then $\triangle_{T} E(T)=\emptyset$, where T runs over the 6 triangles of $G-v$ such that $V(T)$ meets both V_{1} and V_{2}; a contradiction. Thus $|X| \in\{1,2\}$. If $|X|=2$ and $T_{1}, T_{2}, T_{3}, T_{4}$ are the triangles of $G-v$, then

$$
E\left(T_{1}\right) \Delta E\left(T_{2}\right) \Delta E\left(T_{3}\right) \Delta E\left(T_{4}\right)
$$

is a 4-element non-separating cocircuit of M; a contradiction and so $|X|=1$. If u is adjacent to the edge belonging to X, then $E\left(C_{1}\right), E\left(C_{2}\right), E\left(C_{3}\right)$ are linearly dependent cocircuits of M, where C_{1}, C_{2}, C_{2} are the 4 -element circuits of $G-u$; a contradiction. Therefore Proposition 1.1 follows.

Acknowledgment

The author thanks Haidong Wu for introducing to him this conjecture and for much valuable discussions about it.

References

[1] R.E. Bixby, W.H. Cunningham, Matroids, graphs, and 3-connectivity, in: J.A. Bondy, U.S.R. Murty (Eds.), Graph Theory and Related Topics, Academic Press, New York, 1979, pp. 91-103.
[2] B.M. Junior, M. Lemos, T.R.B. Melo, Non-separating circuits and cocircuits in matroids, in: G. Grimmett, C. McDiarmid (Eds.), Combinatorics, Complexity, and Chance: A Tribute to Dominic Welsh, Oxford University Press, Oxford, 2007, pp. 162-171.
[3] A.K. Kelmans, The concepts of a vertex in a matroid, the non-separating circuits and a new criterion for graph planarity, in: L. Lovász, V.T. Sós (Eds.), Algebraic Methods in Graph Theory, vol. 1, in: Colloq. Math. Soc. János Bolyai (Szeged, Hungary, 1978), vol. 25, North-Holland, Amsterdam, 1981, pp. 345-388.
[4] M. Lemos, Non-separating cocircuits in binary matroids, Linear Algebra Appl. 382 (2004) 171-178.
[5] M. Lemos, T.R.B. Melo, Non-separating cocircuits in matroids, Discrete Appl. Math. 156 (2008) 1019-1024.
[6] M. Lemos, T.R.B. Melo, Connected hyperplanes in binary matroids, preprint.
[7] J. McNulty, H. Wu, Connected hyperplanes in binary matroids, J. Combin. Theory Ser. B 79 (2000) 87-97.
[8] J.G. Oxley, Cocircuit coverings and packings for binary matroids, Math. Proc. Cambridge Philos. Soc. 83 (1978) 347-351.
[9] J.G. Oxley, Matroid Theory, Oxford Univ. Press, New York, 1992.
[10] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980) 305-359.
[11] W.T. Tutte, How to draw a graph, Proc. London Math. Soc. 13 (1963) 734-768.
[12] W.T. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standards Sect. B 69B (1965) 1-47.
[13] G. Whittle, Stabilizers of classes of representable matroids, J. Combin. Theory Ser. B 77 (1999) 39-72.
[14] H. Wu, private communication, 2004.

[^0]: E-mail address: manoel@dmat.ufpe.br.
 1 Lemos is partially supported by CNPq (Grants No. 301178/05-4 and 476224/04-7) and FAPESP/CNPq (Grant No. 2003/09925-5).

