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In this paper, we settle a conjecture made by Wu. We show that
a 3-connected binary matroid M is graphic if and only if each
element avoids exactly r(M) − 1 non-separating cocircuits of M .
This result is a natural companion to the following theorem of
Bixby and Cunningham: a 3-connected binary matroid M is graphic
if and only if each element belongs to exactly 2 non-separating
cocircuits of M .
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1. Introduction

In this paper, for matroid notation and terminology, we follow Oxley [9]. A cocircuit C∗ of a
connected matroid M is said to be non-separating provided M\C∗ is connected. Bixby and Cunning-
ham [1] wrote the first paper dealing with non-separating cocircuits in binary matroids. In that article,
Bixby and Cunningham proved three conjectures due to Edmonds, namely:

Theorem 1.1. If M is a 3-connected binary matroid such that |E(M)| � 4, then:

(i) Each element of M belongs to at least two non-separating cocircuits of M.
(ii) The set of non-separating cocircuits of M spans the cocycle space of M.

(iii) M is a graphic matroid if and only if each element is contained in at most two non-separating cocircuits
of M.
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When M is a cographic matroid, each item of the previous result is a theorem due to Tutte [11].
Let M be a 3-connected binary matroid. For A ⊆ E(M), we denote the set of non-separating cocir-

cuits of M avoiding A by R∗
A(M). The dimension of the subspace spanned by R∗

A(M) in the cocycle
space of M is denoted by dimA(M). When |A| = 1, say A = {a}, we use R∗

a(M) and dima(M) instead
of R∗

A(M) and dimA(M) respectively. Lemos [4] proved the next result:

Theorem 1.2. Let M be a 3-connected binary matroid such that r(M) � 1. If a is an element of M, then
dima(M) = r(M) − 1.

Wu [14] made the following conjecture which is closed related to Theorems 1.1 and 1.2 (see [2]):

Conjecture 1.1. Let M be a 3-connected binary matroid such that r(M) � 1. Then, M is graphic if and only if
each element avoids exactly r(M) − 1 non-separating cocircuits of M.

In this note, we prove this conjecture:

Theorem 1.3. If M is a 3-connected binary matroid such that |E(M)| � 4, then:

(i) M is a graphic matroid if and only if each element avoids exactly r(M)−1 non-separating cocircuits of M.
(ii) M is a graphic matroid if and only if R∗

a(M) is linearly independent in the cocycle space of M, for every
element a of M.

In Theorem 1.3(ii), we cannot replace the word “every” by “some” because, for example, R∗
a(S8)

is linearly independent in the cocycle space of S8, where a is the unique element of S8 satisfying
S8\a ∼= F ∗

7 .
Note that the “only if” part of the proof of each item of this theorem is straightforward. We need

to show only the “if” part. Observe that Theorem 1.3(ii) and Theorem 1.2 implies Theorem 1.3(i). Thus
it is enough to prove Theorem 1.3(ii). Note that Theorem 1.3(ii) is a consequence of the next result:

Proposition 1.1. Let M be a 3-connected binary matroid. If M is not graphic, then there is an element f of M
such that R∗

f (M) is linearly dependent in the cocycle space of M.

We prove Proposition 1.1 in the last section of this paper. For other results about non-separating
cocircuits in connected binary matroids see [2,3,5–8].

2. A preliminary lemma

For a 3-connected binary matroid M , we denote the set of non-separating cocircuits of M by
R∗(M).

Lemma 2.1. Suppose that e is an element of a 3-connected binary matroid M such that co(M\e) is
3-connected, say co(M\e) = M\e/{b1, . . . ,bn}, where n is a non-negative integer, and r∗(M) � 4. For
i ∈ {1, . . . ,n}, let T ∗

i be the triad of M that contains {e,bi}, say T ∗
i = {e,ai,bi}. If C∗ ∈ R∗(co(M\e)), then

either:

(i) C∗ is a cocircuit of M and:
(a) C∗ ∈ R∗(M); or
(b) {a1, . . . ,an} ⊆ C∗ and C := {e,b1, . . . ,bn} is a circuit of M; or

(ii) C∗ ∪ e is a cocircuit of M and:
(a) C∗ ∪ e ∈ R∗(M); or
(b) C∗ ∩ {a1, . . . ,an} �= ∅ and, for each i ∈ {1, . . . ,n} such that ai ∈ C∗ , C∗ 
 {ai,bi} ∈ R∗(M); or
(c) {a1, . . . ,an} ⊆ C∗ and, for each i ∈ {1, . . . ,n},



M. Lemos / Advances in Applied Mathematics 42 (2009) 75–81 77
(1) C∗ 
 {ai,bi} ∈ R∗(M); or
(2) Ci := {e,b1, . . . ,bn} 
 {ai,bi} is a circuit of M.

Moreover, at most one of the sets C, C1, . . . , Cn is a circuit of M.

Proof. Assume that C∗ ∩ {a1, . . . ,an} = {a1, . . . ,am}, for a non-negative integer m. By definition,
H ′ = E(M) − [{e,b1, . . . ,bn} ∪ C∗] is a connected hyperplane of co(M\e). Therefore H = H ′ ∪
{b1, . . . ,bn} = E(M) − [e ∪ C∗] is a hyperplane of M\e. As T ∗

i ∩ H = {bi}, for each i ∈ {1, . . . ,m},
it follows that b1, . . . ,bm are coloops of M | H . Note that [M | H]\{b1, . . . ,bm} is connected be-
cause [M | H]\{b1, . . . ,bm} is obtained from co(M\e) | H ′ by adding bi in series with ai , for each
i ∈ {m + 1, . . . ,n}. (Observe that |H ′| � 2 because r∗(co(M\e)) � 3 and so r(co(M\e)) � 3. In particu-
lar, rco(M\e)(H ′) � 2.) We have two cases to deal with.

Suppose that H spans e in M . Hence H ∪ e is a hyperplane of M and so C∗ is a cocircuit of M . If
C∗ ∈ R∗(M), then (i)(a) follows. Assume that C∗ /∈ R∗(M). Therefore m � 1. As T ∗

i ∩ (H ∪ e) = {e,bi},
for each i ∈ {1, . . . ,m}, it follows that C = {e,b1, . . . ,bm} is contained in a series class of M | (H ∪ e)
since e is not a coloop of M | (H ∪ e). But M | (H ∪ e) is not connected and so C is the ground
set of a connected component of M | (H ∪ e) (the other connected component of this matroid is
[M | H]\{b1, . . . ,bm}). In particular, C is a circuit of M . By orthogonality, C ∩ T ∗

i �= {e}, for every
i ∈ {1, . . . ,n}, and so n = m. We have (i)(b).

Suppose that H does not span e in M . In this case, H is a hyperplane of M . Thus C∗ ∪ e is
a cocircuit of M . If H = H ′ ∪ {bm+1, . . . ,bn}, then (ii)(a) occurs. We may assume that m � 1. Therefore
{b1, . . . ,bm} is the set of coloops of M | H . For i ∈ {1, . . . ,m}, Hi = H 
 {ai,bi} is also a hyperplane
of M\e. Note that {b1, . . . ,bm} 
 {ai,bi} is the set of coloops of M | Hi and M | (H ′ ∪ {bm+1, . . . ,bn})
is the other connected component of this matroid. But (C∗ ∪ e) 
 T ∗

i is a cocircuit of M . So Hi ∪ e is
a hyperplane of M . That is, Hi spans e in M . There is a circuit Ci of M such that e ∈ Ci ⊆ Hi ∪ e. By
orthogonality with T ∗

j , for j ∈ {1, . . . ,m}, {b1, . . . ,bm} 
 {ai,bi} ⊆ Ci . We have two subcases.

• If Ci ∩ (H ′ ∪ {bm+1, . . . ,bn}) �= ∅, then M | Hi is connected and C∗ 
 {ai,bi} ∈ R∗(M).
• If Ci ∩ (H ′ ∪ {bm+1, . . . ,bn}) = ∅, then M | Hi has two connected components, namely: M | Ci and

M | (H ′ ∪ {bm+1, . . . ,bn}). By orthogonality, Ci ∩ T ∗
j �= {e}, for j ∈ {m +1, . . . ,n}, and so n = m. That

is, Ci = {e,b1, . . . ,bn} 
 {ai,bi}.

We have (ii)(b) or (ii)(c).
Now, assume that at least two of the sets C, C1, . . . , Cn is a circuit of M . We have two cases to

consider. First, suppose that C and Ci are circuits of M . Hence C 
 Ci = {ai,bi} is a disjoint union of
circuits of M . So M has a circuit having at most 2 elements; a contradiction because M is 3-connected.
Suppose that Ci and C j are circuits of M , for i �= j. As Ci 
 C j = {ai,bi,a j,b j} is a disjoint union of
circuits of M and each circuit of M has at least 3 elements, it follows that {ai,bi,a j,b j} is a circuit
of M . Therefore {ai,a j} is a circuit of co(M\e). Note that co(M\e) ∼= U1,2 or co(M\e) ∼= U1,3 because
co(M\e) is 3-connected; a contradiction since r∗(co(M\e)) � 3. �

Now, we choose the elements of the cosimplification of M\e to narrow the options given by the
previous lemma.

Lemma 2.2. Suppose that e is an element of a 3-connected binary matroid M such that the cosimplification
of M\e is 3-connected. If r∗(M) � 4, then it is possible to choose the ground set of co(M\e) so that, for each
C∗ ∈ R∗(co(M\e)), C∗ 
 X ∈ R∗(M), where X = ∅ or X = {e} or X = T ∗ −e, for some triad T ∗ of M meeting
both {e} and C∗ .

Proof. Let T ∗
1 , . . . , T ∗

n be the triads of M that contains e, for a non-negative integer n. For i ∈
{1, . . . ,n}, we set T ∗

i = {e,ai,bi}. Define C = {e,b1, . . . ,bn} and, for i ∈ {1, . . . ,n}, Ci = C 
 {ai,bi}.
By the second part of Lemma 2.1, at most one of the sets C, C1, . . . , Cn is a circuit of M . If one of
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these sets is a circuit of M , then n � 2 because M is 3-connected. When this happens, we may re-
label the elements in the triads and the triads in such a way that Cn is a circuit of M . In particular
Lemma 2.1(i)(b) does not occur. If (i)(a) or (ii)(a) or (ii)(b) of Lemma 2.1 happens, then the result
follows. We may assume that Lemma 2.1(ii)(c) holds. By our choice of labels, (ii)(c)(1) occurs for i = 1
and the result also follows in this case. �
3. An auxiliary function

Let M be a 3-connected binary matroid M . For A ⊆ E(M), we define

depA(M) = ∣∣R∗
A(M)

∣∣ − dimA(M).

(When |A| = 1, say A = {a}, we use depa(M) instead of depA(M).) A subset Υ of R∗
A(M) is said to

be inessential provided both R∗
A(M) − Υ and R∗

A(M) span the same linear subspace of the cocycle
space of M . Observe that depA(M) is the cardinality of any maximal inessential subset Υ of R∗

A(M).
To prove Proposition 1.1, we need to show only that dep f (M) > 0, for some element f of M , when
M is not graphic.

Lemma 3.1. Suppose that e is an element of a 3-connected binary matroid M such that the cosimplification
of M\e is 3-connected. If r∗(M) � 4, then it is possible to choose the ground set of co(M\e) so that, for each
A ⊆ E(co(M\e)),

depA(M) � depA′ (M) � depA

(
co(M\e)

)
,

where A′ is the minimal subset of E(M) satisfying A ⊆ A′ and, for each triad T ∗ of M that meets both e and A,
T ∗ − e ⊆ A′ .

Proof. By Lemma 2.2, it is possible to choose the ground set of N := co(M\e) so that, for each
C∗ ∈ R∗(N), C∗ 
 X ∈ R∗(M), where X = ∅ or X = {e} or X = T ∗ − e, for some triad T ∗ of M meeting
both {e} and C∗ .

Let T ∗
1 , . . . , T ∗

r be the triads of M containing e. Note that T ∗
1 − e, . . . , T ∗

r − e are pairwise disjoint
sets. For i ∈ {1, . . . , r}, we set T ∗

i = {e,ai,bi}, where ai ∈ E(N). In particular, N = M\e/{b1, . . . ,br}. We
may assume that A ∩ {a1, . . . ,ar} = {al+1, . . . ,ar}, for a non-negative integer l. (That is, T ∗

i avoids A if
and only if i � l.) Therefore

A′ = A ∪ {bl+1, . . . ,br} and A′ ∩ (
T ∗

1 ∪ · · · ∪ T ∗
l

) = ∅. (3.1)

Suppose that R∗
A(N) = {C∗

1, C∗
2, . . . , C∗

n }, where n = |R∗
A(N)|. By the first paragraph, for each i ∈

{1,2, . . . ,n}, we can define D∗
i := C∗

i 
 Xi in such a way that D∗
i ∈ R∗(M), where Xi = ∅ or Xi = {e}

or Xi = T ∗ − e, for some T ∗ ∈ {T ∗
1 , . . . , T ∗

r } satisfying T ∗ ∩ C∗ �= ∅.
Now, we establish that

{
D∗

1, D∗
2, . . . , D∗

n

} ⊆ R∗
A′ (M). (3.2)

If f ∈ D∗
i ∩ A′ , then, by (3.1), f ∈ Xi and Xi = T ∗ − e, for some triad T ∗ meeting both C∗

i and e, say
T ∗ = {e, f , g}. Therefore g ∈ C∗

i . By definition of A′ , { f , g} ⊆ A′ and so g ∈ A; a contradiction because
g ∈ C∗

i . Thus (3.2) follows.
Observe that D∗

1, D∗
2, . . . , D∗

n are pairwise different because {e}, T ∗
1 − e, . . . , T ∗

r − e are pairwise
disjoint sets and none of them is contained in E(N). (If D∗

i = D∗
j , for i �= j, then C∗

i 
 Xi = C∗
j 
 X j

and so

∅ �= C∗
i 
 C∗

j = Xi 
 X j = Xi ∪ X j �⊆ E(N).)
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We may relabel the cocircuits of R∗
A(N) such that Υ = {C∗

i : m+1 � i � n} is a maximal inessential
subset of R∗

A(N), for some positive integer m. The result follows provided we can prove that Υ ′ =
{D∗

i : m + 1 � i � n} is an inessential subset of R∗
A′ (M).

For each integer i such that m +1 � i � n, we need to prove only that D∗
i is spanned in the cocycle

space of M by R∗
A′ (M) − Υ ′ . We achieve this goal by establishing that

D∗
i is spanned in the cocycle space of M by D∗

1, D∗
2, . . . , D∗

m, T ∗
1 , . . . , T ∗

l . (3.3)

(Remember that T ∗
1 , . . . , T ∗

l are the triads of M containing e and avoiding A and so A′ , by (3.1). Note
that each triad of M containing e is non-separating because co(M\e) is a 3-connected binary matroid.)
By hypothesis, when m + 1 � i � n, there are integers i1, i2, . . . , ik satisfying 1 � i1 < i2 < · · · < ik � m
such that

C∗
i = C∗

i1

 C∗

i2

 · · · 
 C∗

ik
,

say (i1, i2, . . . , ik) = (1,2, . . . ,k). That is,

[
C∗

1 
 C∗
2 
 · · · 
 C∗

k

] 
 C∗
i = ∅. (3.4)

We set

X = [
D∗

1 
 D∗
2 
 · · · 
 D∗

k

] 
 D∗
i . (3.5)

In particular, X belongs to the cocycle space of M . By (3.4),

X = [X1 
 X2 
 · · · 
 Xk] 
 Xi .

For each j ∈ {1, . . . , l}, we have that X ∩ (T ∗
j − e) = ∅ or T ∗

j − e ⊆ X because

{X1, X2, . . . , Xn} ⊆ {∅, {e}, T ∗
1 − e, . . . , T ∗

l − e
}
.

(The sets ∅, {e}, T ∗
1 − e, . . . , T ∗

l − e are pairwise disjoint.) Suppose that X contains T ∗
1 − e, . . . , T ∗

s − e,
for a non-negative integer s, and so X is disjoint from T ∗

s+1 − e, . . . , T ∗
l − e. Therefore

X 
 [
T ∗

1 
 · · · 
 T ∗
s

]

is a cocycle of M contained in {e}. Thus

X = T ∗
1 
 · · · 
 T ∗

s . (3.6)

Replacing (3.6) into (3.5), we obtain:

T ∗
1 
 · · · 
 T ∗

s = [
D∗

1 
 D∗
2 
 · · · 
 D∗

k

] 
 D∗
i .

This identity can be rewritten as

D∗
i = T ∗

1 
 · · · 
 T ∗
s 
 D∗

1 
 D∗
2 
 · · · 
 D∗

k .

Therefore (3.3) holds and the result follows. �



80 M. Lemos / Advances in Applied Mathematics 42 (2009) 75–81
4. Proof of Proposition 1.1

We argue by contradiction. Choose a counter-example such that |E(M)| is minimum. In particular,
depe(M) = 0, for every element e of M . We divide the proof into some lemmas.

Lemma 4.1. r∗(N) = r∗(M), for every non-graphic 3-connected minor N of M.

Proof. Suppose that N is a non-graphic 3-connected minor of M such that r∗(N) < r∗(M). As
r∗(N) � 3, it follows that r∗(M) � 4. By the dual of Lemma 3.4 of [13], there is an element e of M
such that co(M\e) is a 3-connected matroid having an N-minor. By Lemma 3.1, we can choose the
elements of co(M\e) so that

dep f (M) � dep f

(
co(M\e)

)
, (4.1)

for each f ∈ E(co(M\e)). By the choice of M , there is an element f of co(M\e) such that
dep f (co(M\e)) > 0; a contradiction to (4.1). Therefore r∗(N) = r∗(M), for every non-graphic 3-
connected minor of M . �
Lemma 4.2. M is regular.

Proof. Suppose that M is non-regular. By Tutte’s characterization of regular matroids, M has F7 or F ∗
7

as a minor (see [12]). By the choice of M , M cannot be isomorphic to:

(i) F7 because each 4-element cocircuit of F7 is non-separating and, for each element f of F7, the
sum in the cocycle space of F7 of the 3 4-element cocircuits avoiding f is zero; or

(ii) F ∗
7 because each 3-element cocircuit of F ∗

7 is non-separating and, for each element f of F ∗
7 , the

sum in the cocycle space of F ∗
7 of the 4 3-element cocircuits avoiding f is zero.

But Seymour proved that F7 is a splitter for the class of binary matroids without minor isomorphic
to F ∗

7 ((7.6) of [10]). Hence M has a minor isomorphic to F ∗
7 . By Lemma 4.1, r∗(M) = r∗(F ∗

7 ) = 3. Thus
M is isomorphic to F ∗

7 ; a contradiction. Therefore M is regular. �
Lemma 4.3. M is isomorphic to M∗(G), where G is a graph such that |V (G)| = 6 and G\X is isomorphic
to K3,3 , for some non-empty subset X of E(G).

Proof. By Tutte’s characterization of graphic matroids, M has M∗(K3,3) or M∗(K5) as a minor
(see [12]). By the choice of M , M cannot be isomorphic to

(i) M∗(K3,3) because the edge-set of each 4-edge circuit of K3,3 is a non-separating cocircuit of
M∗(K3,3) and, for each vertex v of K3,3, the sum in the cocycle space of M∗(K3,3) of the edge-
set of the 3 4-edge circuits of K3,3 avoiding v is zero; or

(ii) M∗(K5) because the edge-set of each triangle of K5 is a non-separating cocircuit of M∗(K5) and,
for each vertex v of K5, the sum in the cocycle space of M∗(K5) of the edge-set of the 4 triangles
of K5 avoiding v is zero.

But Seymour proved that M∗(K5) is a splitter for the class of regular matroids without minor iso-
morphic to M∗(K3,3) ((7.5) of [10]). Hence M has a minor isomorphic to M∗(K3,3). By Lemma 4.1,
r∗(M) = r∗(M∗(K3,3)) = 5. In particular M does not have R12 as a minor. By Theorem 14.2 of Sey-
mour [10], M is cographic or M is isomorphic to R10.

By the choice of M , M is not isomorphic to R10 because each 4-element cocircuit of R10 is non-
separating and R10/ f is isomorphic to M∗(K3,3), for every element f , and so the non-separating
cocircuits of R10 avoiding f are linearly dependent in the cocycle space of R10. Hence M is cographic.
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There is a simple graph G having 6 vertices such that M = M∗(G) (remember that r∗(M) = 5) and
G\X = K3,3, for some set of edges X . �

Let {V 1, V 2} be a partition of V (G) such that V 1 and V 2 are independent sets of vertices of G\X .
If T is a triangle of G such that V (T ) meets both V 1 and V 2, then G/E(T ) is a block. That is E(T ) is
a non-separating cocircuit of M .

Now, we prove that V 1 or V 2 is an independent set of vertices of G . If V 1 and V 2 are not inde-
pendent, then, for i ∈ {1,2}, there is an edge ei joining two vertices belonging to V i , say ui and vi .
Observe that G ′ = G[{u1, u2, v1, v2}] is isomorphic to K4. If T1, T2, T3, T4 are the triangles of G ′ , then
E(T1), E(T2), E(T3), E(T4) are non-separating cocircuits of M because V (Ti) meets both V 1 and V 2,
for every i ∈ {1,2,3,4}. But

E(T1) 
 E(T2) 
 E(T3) 
 E(T4) = ∅;

a contradiction because E(G) − E(G ′) �= ∅. Hence V 1 or V 2 is an independent set of G , say V 2.
Let v be a fixed vertex of G belonging to V 2. If G[V 1] is isomorphic to K3, then 
T E(T ) = ∅,

where T runs over the 6 triangles of G − v such that V (T ) meets both V 1 and V 2; a contradiction.
Thus |X | ∈ {1,2}. If |X | = 2 and T1, T2, T3, T4 are the triangles of G − v , then

E(T1) 
 E(T2) 
 E(T3) 
 E(T4)

is a 4-element non-separating cocircuit of M; a contradiction and so |X | = 1. If u is adjacent to the
edge belonging to X , then E(C1), E(C2), E(C3) are linearly dependent cocircuits of M , where C1, C2,
C2 are the 4-element circuits of G − u; a contradiction. Therefore Proposition 1.1 follows.
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