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Abstract: An action of a Lie algebra g on a manifold M is just a Lie algebra homomorphism 
( : 1~ -* X(M). We define orbits for such an action. In general the space of orbits M/g is not 
a manifold and even has a bad topology. Nevertheless for a g-manifold with equidimensional 
orbits we treat such notions as connection, curvature, covariant differentiation, Bianchi identity, 
parallel transport, basic differential forms, basic cohomology, and characteristic classes, which 
generalize the corresponding notions for principal G-bundles. As one of the applications, we 
derive a sufficient condition for the projection M ---* M/g to be a bundle associated to a principal 
bundle. 
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1. Introduct ion 

Let g be a finite dimensional Lie algebra and let M be a smooth manifold. We say 
that g acts on M or that M is a g-manifold if there is a Lie algebra homomorphism 
( = (M : g ___, X ( M )  from g into the Lie algebra of all vector fields on M.  Many notions 
and results of the theory of G-manifolds and of the theory of principal bundles may 
be extended to the category of g-manifolds. This is the guideline for our approach to 
ffmanifolds.  

Now we describe the structure of the paper and we state some principal results. 
In Section 2 notations are fixed and different properties of an action of a Lie algebra g 

on a manifold M are defined. The pseudogroup F(g) of local transformations generated 
by an action of a Lie algebra g is considered, and its graph is defined. We consider also 
the groupoid P(g)  of germs of elements from F(g) and under some conditions we may 
define the adjoint representation of P into the adjoint group Ad(g) associated with the 
Lie algebra g. Some technical lemmas are proved which will be used in Section 5. 
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In Section 3 the main definition of a principal connection on a g-manifold M is given 
as such a t]-invariant field @ of endomorphisms of TM, whose value in a point x • M 
is a projection (I)~ : TxM ~ tJ(x) of the tangent space onto the 'vertical subspace '  
i~(x) := {~x(x)  : X • g). We say, that a principal connection ~ admits a principal 
connection form if it may be represented as (I) = (~, where w is a g-valued t~-equivariant 
1-form on M such that 

(1) T~M = g(x) @ ker(w~) for each x • M,  
(2) i~ = gx (~ w(T~M), where t~* = {X • 9 : (x(x)  = 0} is the isotropy subalgebra. 

Any such form defines a principal connection ¢ = ~ .  On the other hand, a simple 
example shows that not every principal connection admits a principal connection form. 

Principal connections may exist only if the action of tJ on M has constant rank, see 
Proposit ion 3.2 which also gives some sufficient conditions for the existence of principal 
connections. 

In order to define the curvature of a principal connection (I) we recall in Section 4 the 
definition of the algebraic bracket [~, ¢]^ of i~-valued differential forms on a manifold 
M which turns the space ~ ( M ; g )  of such forms into a graded Lie algebra. We also 
recall the definition of the differential Frhlicher-Nijenhuis bracket which extends the 
Lie bracket of vector fields to a graded bracket on the space ~ ( M ;  TM) of tangent 
bundle valued differential forms on M.  An action of a Lie algebra i~ on M (i.e., a 
homomorphism ~ : i~ ~ :~(M)) induces a linear mapping 

( :  a ( M ;  g) --* f l (M;TM).  

It is not a homomorphism of graded Lie algebras, but becomes an antihomomor- 
phism when it is restricted to the subalgebra ~ o r ( M ;  g)~ of 9-equivariant horizontal 
forms. In general the Frhlicher-Nijenhuis bracket [(~, (¢] of two g-equivariant forms 
F,~b E ~ ( M ; g )  may be expressed in terms of [~,'¢]^ and exterior differentials. See 
Proposition 4.4 for the relevant formulas. 

In Section 6 we give a local description of a principal connection ~ and of its curvature 
on a locally trivial g-manifold with s tandard fiber S. We show that locally a connection 
is described by a 1-form on the base with values in the centralizer Zx(s)(g), which may 
be considered as the Lie algebra of infinitesimal automorphisms of the g-manifold S. 
We prove that it is isomorphic to the normalizer Ng(gx) of the isotropy subalgebra i~x of 
a point x E S. As a corollary we obtain the existence of a unique principal connection, 
which is moreover flat, under the assumption that Ng(g,)  = 0. 

We treat the case of a homogeneous g-manifold M in Section 5. First we con- 
sider a g-manifold with a free transitive action ( of g and we remark that the in- 
verse mapping n = ( -1  is a Maurer-Car tan  form (i.e., a 1-form that satisfies the 
Maure r -Car tan  equation). For a transitive free action of t] on a simply connected 
manifold M,  we define by means of the graph of the pseudogroup a t~-equivariant 
mapping M ---* G, the 'Car tan development'  of M into the simply connected Lie 
group with Lie algebra t~. It is a local diffeomorphism but in general it is nei- 
ther surjective nor injective. As an immediate application, we obtain a well defined 
mapping from any locally flat simply connected G-structure of finite type into the 
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s tandard  maximally homogeneous G-structure. It generalizes the developing of a lo- 
cally flat conformal manifold into the conformal sphere. We prove that on a sim- 
ply connected g-manifold M with free transitive g-action ~" the centralizer of C(g) 
in the Lie algebra X ( M )  of all vector fields on M is isomorphic to g. The corre- 
sponding free transitive action ~ : g ---* X(M) ,  a Lie algebra ant ihomomorphism, 
is called the dual action of g. This is not true in general, if M is not simply con- 
nected. 

Let H \ G  be a homogeneous G-manifold for a Lie group G with isotropy group H c G 
of a point o. Then p : G ~ H \ G  is a principal H-bundle with left principal H-action,  
and G acts from the right by automorphisms of principal bundles. Let n E f~l(G,g)  
be the right invariant Maurer-Car tan  form on G, associated with the left action of G 
on itself. Then any reductive decomposition g = ~ @ m with A d ( H ) m  = m defines a 
C-invariant principal connection w := pr o on for the principal bundle p : G ---* H \ G ,  and 
a G-invariant displacement form 0 := pr m on. Any G-invariant principal connection of 
p : G ~ H \ G  has this form. 

We generalize these classical results in Section 5 to the case of a homogeneous g- 
manifold M.  The role of the principal bundle p : G ~ H \ G  is taken by the manifold 
P of germs of transformations of the pseudogroup F(g), at a fixed point. We prove 
that the principal connection forms on the g-manifold M correspond bijectively to the 
invariant principal connections of the principal bundle P ~ M. 

For a locally trivial g-manifold M with a principal connection ¢b we define the 
horizontal lift of vector fields on the orbit space N and the parallel t ransport  along 
a smooth curve on N. The parallel t ransport  however is only locally defined. If the 
parallel t ransport  is defined on the whole fiber along any smooth curve, then the 
connection is called complete. We show that any principal connection is complete if all 
vector fields in the centralizer Z~:(s)(g ) are complete. 

As final result in this section we prove the following: If a locally trivial g-manifold 
M with s tandard fiber S admits a complete principal connection ~, whose holonomy 
Lie algebra consists of complete vector fields on S, then the bundle M ~ N = M / g  is 
isomorphic to the bundle P[S]  = P ×H S associated to a principal H-bundle  P ~ N ,  

w here H is the holonomy group. Moreover, the connection ¢I, is induced by a principal 
connection on P.  

In the last Section 7 we assume that the g-manifold M admits not only a principal 
connection ~, but also a principal connection form w E ~)1(M; g) with curvature form 
~.  We define the Chern-Weil  homomorphism 7 from the algebra S(g*)a of ad(g)- 
invariant polynomials on g into the algebra ~l°~¢d(M)g of g-invariant closed forms on 
M.  We prove that for any f ¢ S(g*)g the cohomology class [7(f)]  depends only on f 
and the g-action. If the action of g is free the image of 7 consists of horizontal forms. 
The associated cohomology classes are basic and may be considered as characteristic 
classes of the g-manifold, or of the 'bundle below M' ,  even if the action of g is not 
locally trivial. If on the other hand M is a homogeneous g-manifold, our cohomology 
classes are characteristic classes of the 'bundle above M' ,  the principal bundle P --~ M 
consisting of germs of pseudogroup transformations constructed in Theorem 5.8. 
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2. Lie algebra actions alias g-manifolds 

2.1.  A c t i o n s  o f  Lie  a l g e b r a s  on  a m a n i f o l d .  Let g be a finite dimensional Lie 
algebra and let M be a smooth manifold. We say that g acts on M or that M is a 
g-manifold if there is a Lie algebra homomorphism ( : g ~ 3C(M), from g into the Lie 
algebra of all vector fields on M.  

If we have a right action of a Lie group on M,  then the fundamental  vector field 
mapping is an action of the corresponding Lie algebra on M.  

L e m m a .  I f  a Lie algebra g acts on a manifold M,  then it spans an integrable distri- 
bution on M,  which need not be of constant rank. So through each point of  M there 
is a unique maximal leaf of that distribution; we also call it the g-orbit through that 
point. It is an initial submanifold of M in the sense that a mapping from a manifold 
into the orbit is smooth if  and only if  it is smooth into M,  see [9, 2.14ff]. 

P r o o f .  See [19] or [20] for integrable distributions of non-constant rank, or [9, 3.25]. 
Let Fl~ denote the flow of a vector field ~. One may check easily that for X,  Y E g we 
have 

 t(FlC ) ¢(e tad (X)Y)  : O, 

FIX  * which implies ( 1 t ) ( r  = ( (e  t ad(X)y). So condition (2) of [9, Theorem 3.25] is satisfied 
and all assertions follow. [] 

An action of a Lie algebra g on a manifold M may have the following properties: 
(1) It is called effective if ~ : g --. :E(M) is injective. So for each X E g there is some 

x E M such that ( x ( x )  ¢= O. 
(2) The action is called free if for each x E M the mapping X ~ ( x ( x )  is injective. 

Then the distribution spanned by ((g)  is of constant rank. 
(3) The action is called transitive if for each x E M the mapping X ~ ~x (x )  is 

surjective onto T , M .  If M is connected then it is the only orbit and we call M a 
homogeneous g-space. 

(4) The action is called complete if each fundamental vector field ( x  is complete, i.e., 
it generates a global flow. In this case the action can be integrated to a right action of 
a connected Lie group G with Lie algebra g, by a result of Palais, [15]. 

(5) The action is said to be of constant rank k if all orbits have the same dimension k. 
(6) We call it an isostabilizer action if all the isotropy algebras g~ := ker((~ : g --. 

T , M )  are conjugate in g under the connected adjoint group. An isostabilizer action is 
of constant  rank. 

(7) The action is called locally trivial if there exists a connected manifold S with a 
transitive action ofg  on S, a submersion p : M ---, N onto a smooth manifold with trivial 
g-action, such that for each point x E N there exists an open neighbourhood U and a 
g-equivariant diffeomorphism ~ : p - l ( U )  --. U x S with p o ~o = p. By 'g-equivariant '  
we mean that for each X E g the fundamental vector fields (Mip-l(V) and 0 × ( x  s are 
~o-related: Tqo o (xM[p_I(U) = (0 × ( S )  o ~o. A pair like (U,~o) is called a bundle chart. 
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Note that N is canonically isomorphic to the space of orbits M / g ,  and that a locally 
trivial action is isostabilizer and of constant rank. 

(8) A free and locally trivial g-action is called a principal action. A complete principal 
g-action can be integrated to an almost free action of a Lie group G (i.e., with discrete 
isotropy groups). If its action is free, it defines a principal bundle p : M ~ M / G ,  and 
the action of g on M is the associated action of the Lie algebra of G. This explains the 

l l a l n e .  

In the general case, we will consider a locally trivial g-manifold M as some general- 
ization of the notion of a principal G-bundle, and we will extend to this case some of 
the main differential geometric constructions of the geometry of principal bundles. 

A smooth mapping f : M ~ N between g-manifolds M and N is called g-equivariant 
if for each X e g the fundamental  vector fields ~x M and ~N are f-related: T f  o ~M = 
Q~. o f .  In view of [9, Section 47] we may also say, that the generalized Lie derivative 
of f is zero: 

£ : x f  = £¢M,<xUI := ~N o f - -  T f o C M = O. 

Note that the integrable distribution of a g-manifold M of constant rank is a special 

case (in a certain sense the simplest case) of a foliation. To make this statement more 
precise we define the degree of cohomogeneity of a foliation (integrable distribution) 
T~ on M as the minimum of the difference between the rank of 7) and the rank of a 
g-manifold structure on M where g runs through all finite dimensional subalgebras of 
constant rank in the Lie algebra X(7)) of global vector fields on M which are tangent 
to D: 

m i n { r a n k ( D ) -  rank(g) :  g C 3~(7)),dim(g) < ~ )  

Then we may say that the foliation associated with a g-manifold of constant rank has 
degree of cohomogeneity 0, or that it is a 'homogeneous foliation'. 

2.2. T h e  p s e u d o g r o u p  o f  a g -man i fo ld .  Let M be a g-manifold which we assume 
to be effective and connected. Local flows of fundamental  vector fields, restricted to 
open subsets, and their compositions, form the pseudogroup F(g) of t~e g-action. 

Let us first recall the following definition: A pseudogroup of diffeomorphisms of the 
manifold M is a set F consisting of diffeomorphisms ~ : U ~ V between connected 
open subsets of M,  subject to the following conditions: 

(1) If ~ : U ~ V is an element of F then also 4 -1 : V - -  U. 
(2) If ~ : U ~ V and 3' : V ~ W are elements of F then also the composition 

~ , o ~ : U ~ W i s i n  F. 
(3) If ~ : U ~ V is an element of F then also its restriction to any connected open 

subset U1 C U is an element of F. 
(4) If ~ : U ~ V is a diffeomorphism between connected open subsets of M which 

coincides on an open neighbourhood of each of its points with an element of F then 
also ~ is in F. Now in more details F(g) consists of diffeomorphisms of the following 
form: 

(5) El o . . .  o rl t o Fl ? 
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where Xi E 9, tl E I~, and U C M are such that FI~I xl is defined on U, FI~ x2 is defined 

on FlUff1 (U), and so on. 

2.3. T h e  g r a p h  o f  t h e  p s e u d o g r o u p  o f  a g -man i fo ld .  Let M be a connected 
g-manifold. Let G be a connected Lie group with Lie algebra g. We consider the 
distribution of rank equal to dim g on G × M which is given by 

{ ( L x ( g ) , ( i ( x ) )  : (g,x) E G × M , X  E 9} C TG × TM,  (1) 

where Lx  is the left invariant vector field on G generated by X E 9- Obviously this 
distribution is integrable and thus we may consider the foliation induced by it, which 
we will call the graph of the pseudogroup F(9 ). Note that the flow of the vector field 
(Lx ,  (M) on G × M is given by 

FllLx'¢M)(x,g) = (g.expa(tX),Fl~X(x)).  

In the sense of [9, Section 9], this foliation is the horizontal foliation for a fiat connection 
of the trivial fiber bundle G × M -~ G. The first projection pr I : G × M -~ G, when 
restricted to a leaf, is locally a diffeomorphism. For x E M we consider the leaf L(x) 
through (e, x) E G × M. Then Wx := pr i (L(x))  is a connected open set in G. 

In particular we may use the theory of parallel transport [9, 9.8]: Let c : (a,b) --. G 
be a piecewise smooth curve with 0 E (a, b) and c(0) = g. Then there is an open subset 
V of {g} × M × {0} in {g} × M × I~ and a smooth mapping Ptc : V -~ G × M such that: 

(1) prl(Pt(c ,(g,x) , t ) )  = c(t) if defined, and Pt(c,(g,x) ,O)= (g,x).  
(2) d/dtPt(c ,  (g ,x ) , t ) i s  tangent to the graph foliation. 
(3) aeparametr iza t ion  invariance: If f :  (a~,b ') -* (a,b)is  piecewise smooth with 

0 E (a ~, U), then Pt(c,  (g, x), f ( t ))  = Pt(c  o f ,  Pt(c, ux, f (0)) ,  t) if defined. 
(4) V is maximal for properties (1) and (2). 
(5) If the curve c depends smoothly on further parameters then Pt(c,  (g, x), t) depends 

also smoothly on those parameters.  Now let c : [0, 1] --, G be piecewise smooth with 
c(0) = e, and let us assume that for some x E i the parallel transport  e t ( c ,  (e, x), t) 
is defined for all t E [0, 1]. Then in particular c([0, 1]) C W~. Since {(e, x)} × [0, 1] c U 
the parallel transport  Pt(c,  1) is defined on an open subset {e} × U of (e, x), and by (3) 
it is a diffeomorphism onto its image {c(1)} × Uq We may choose U maximal with 
respect to this property. Since the connection is fiat the parallel transport  depends on 
the curve c only up to small (liftable) homotopies fixing end points, since Pt(c,  (e,x)) 
is just  the unique lift over the local diffeomorphism pr I : L(x) ---, W~:. We put 

7~(c) := pr2 oPt(c, 1) oins~ : U ~ {e} × U ~ {c(1)} × U' ---, U', 

so 7~(c) is the parallel transport  along c, from the fiber over e to the fiber over c(1), 
viewed as a local diffeomorphism in M. Since c is homotopic within W, to a finite 
sequence of left translates of 1-parameter subgroups, this parallel transport  is a com- 
position of a sequence of flows of fundamental  vector fields, so 7x(c) is an element of 
the pseudogroup F(9 ) on M. So 7x is a mapping from the set of homotopy classes fixing 
end points of curves starting at e in W, into the pseudogroup F(g). 
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Conversely each element of F(g) of the form 2.2(5) apphed to x E U is the paral- 
lel t ransport  of (e ,x)  along the corresponding polygonial arc consisting of left t r a n s  
lates of 1-parameter subgroups: first [0, h] ~ t ~ exp(tX~), then [t~,t2] + t +--. 
exp(t lX1) e x p ( ( t -  t l )X2),  and so on. Thus we have proved: 

L e m m a .  Let M be a connected g-manifold. Then any element ~ : U ~ V of the 
pseudogroup F(g) is of the form ~ = 7=(c) for x e U and a smooth curve c: [0, 1] - -  W=. 

2 . 4 .  L e m m a .  Let M be a g-manifold. Assume that for a point x c M the Lie algebra 

homomorphism germ~ o~ : g ---, X(M)serm~ ~t ~ is injective. Then for each ~ c F(g) 
which is defined near x there is a unique automorphism Ad(~ -1) : g ~ g satisfying 

q:~*~'x = ~'Ad(~-~)X for all X E g. 

This mapping Ad generalizes the adjoint representation of a Lie group. 

P r o o f i  One may check easily that for X, Y E g we have 

( d  ).  a(x)y) = 0 

for all t for which the flow is defined. This implies 

(FI~X),@ __ ¢(e t ~d(X)y). (1) 

We may apply (1) iteratively to elements of F(g) of the form 2.2(5) and thus we get 

= (2) 

for each smooth curve starting from e in W~ which is liftable to L(x)  in the setting 
of 2.3. By the assumption, equation (2) now implies that Ad(c(1)) depends only on 
7~.(c) e F(g) and we call it Ad(7~(c)- l ) .  We use the inverse so that Ad becomes a 
'homomorphism'  in 2.5 below. [] 

2.5. A d j o i n t  r e p r e s e n t a t i o n .  Let M be a g-manifold with pseudogroup F(g) such 
that for each x E M the homomorphism germ~ 0¢" : g --+ X(M)se~s  ,,t x is injective. We 
denote by Px(g) the set of all germs at x E M of transformations in F(g) which are 
defined at x. Then the set P(g)  := I,.JxeM Px(g) with the obvious partial composition 
is a groupoid. By Lemma 2.4 we have a well defined representation 

Ad : P --+ Ad(g) 

with values in the adjoint group, and we call it the adjoint representation of the 
groupoid P. 

2.7. L e m m a .  Let M be a g-manifold. Let c : [0, 1] ~ M be a smooth curve in M with 
values in one g-orbit. Then there exists a smooth mapping F : [0, 1] × M D U ~ M 
such that ~t e F(g) for each t, [0, 1] × {c(0)} C U, and c(t) = 99(t, c(0)) for all t. 

Since each g-orbit is an initial submanifold we may equivalently assume that c is a 
smooth curve in a g-orbit. 
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P r o o f .  Let us call c(0) = x. Since c'(t) E ~c(t)(g) it is easy to get a smooth curve 
b : [0,1] --~ g such that c~(t) = ~b(t)(c(t)). We may choose for example b(t) = 
(~c(Ol~Jr(i~(t))±)(c~(t)) with respect to any inner product on 9. Let G be a Lie group 
with Lie algebra 9, let g(t) be the integral curve of the time dependent vector field 
(t,g) ~ Lb(o(g ) with g(0) = e. Then (g(t),c(t)) is a smooth curve in G × M which 
is tangent to the graph foliation of the pseudogroup F(g) and thus it lies in the leaf 
through (e,x = c(0)). From 2.3 we see that 7z(gl[0,t]) = ~t E F(g), where ~ is the 
evolution operator of the time dependent vector field ( t ,x)  -~ ((b(t))(x) on M.  [] 

2.6.  I s o t r o p y  g r o u p s .  Let M be a connected g-manifold and let x E M.  Let us 
denote by F(9)x the group of all germs at x of elements of the pseudogroup F(g) fixing 
x. It is called the isotropy group. Its natural representation into the space J~(M,R)o 
of k-jets at x of functions vanishing at x is called the isotropy representation of order 
k. In general the isotropy representation of any order may have a nontrivial kernel. 
The simplest example is provided by the Lie algebra action defined by one vector field 
which is fiat (vanishes together with all derivatives) at x. We remark that this cannot 
happen if F(g) is a 'Lie pseudogroup'  (defined by a system of differential equations); 
in particular if ((t~) is the algebra of infinitesimal automorphisms of some geometrical 
structure.  

Consider the following diagram 

¢ 
9 ' X ( M )  

The kernel of the linear mapping ~ : 1t ~ T~M is denoted by g~ and it is called the 
isotropy algebra at x. The kernel of the Lie algebra homomorphism germx o( : g ---, 
X(M)germs at x0 is denoted by l~g~- -0 ;  it is an ideal of g contained in the isotropy 
algebra gz. 

L e m m a .  In this setting, F(g)~ is a Lie group (not necessarily second countable) whose 
Lie algebra is antiisomorphic to the quotient g::/gge~=o of the isotropy algebra g~:. 

I f  the Lie algebra homomorphism germx o~ : 9 -~ X(M)ge~ms a t  x is injective, then 
there is a canonical representation Ad : F(9)x --, hu t (9  ) which leaves invariant the 
isotropy subalgebra gx and coincides on 9x with the adjoint representation of F(9)x. 

P r o o f .  As in 2.3 we consider again the graph foliation of the g-manifold M on G × M,  
where G is a connected Lie group with Lie algebra g, the leaf L(x) through (e,x) 
of it, and the open set Wx = pr l (L(x))  C G. Let Gx be the connected subgroup of G 
corresponding to the isotropy algebra gx. Then G ,  is contained in W,  since for a smooth 
curve c : [0, 1] ~ Gx the curve (c(t), x) in G × M is tangent to the graph foliation; each 
curve in Gx and even each homotopy in G~ is liffable to L(x). The universal cover of 
G~ may be viewed as the space of homotopy classes with fixed ends, of smooth curves 
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in G~ starting from e. So by assigning the germ at x of 3'~(c) E F(it)~ to the homotopy  
class of a curve c in G~ starting from e, we get a group homomorphism from the 
universal cover of G~ into F(g)x. Its tangent mapping at the identity is - germ x o~]~. 
Let us denote by F(g) ° the image of this group homomorphism. 

Let ~t be a smooth curve in the group of germs F(g)~, with ¢P0 = Id in the sense 
that ( t ,x )  ---+ opt(z) is a smooth germ. Then ( d / d t ~ t )  o ~ t  1 is the germ at x of a 
time dependent vector field with values in the distribution g (M)  spanned by g, which 
vanishes at x. So it has values in the set of germs at x of ~ , ,  and thus ~t is in F(g) °, 
see the proof  of Lemma 2.7. So the normal subgroup of F(fl)~ of those elements which 
may be connected with the identity by a smooth curve in F(g)~, coincides with F(g) °, 
and the latter is a normM subgroup. 

If we declare the Lie group F(9) ° to be open in F(g)~ we get a Lie group structure 
orl F(S)~. 

The statement about  the adjoint representation follows immediately from 
Lemma 2.4. [] 

The antiisomorphism in this lemma comes because F(g)~ acts from the left on M,  so 
the fundamental  vector field mapping of this action should be a Lie algebra antiisomor- 
phism, see [9, 5.12]. Since we started from a Lie algebra homomorphism ~ : g ~ X ( M ) ,  
the pseudogroup should really act from the right; so it should be viewed as an abstract  
pseudogroup and not one of transformations. We decided not to do this, but this will 
cause complicated sign conventions, especially in Theorem 5.8 below. 

3. Principal  connect ions  for Lie algebra actions 

3.1.  Principal  connections.  Let M be a g-manifold. A vector vMued 1-form (I) e. 
~ I ( M ;  T M ) ,  i.e., a vector bundle homomorphism (I) : T M  --, T M ,  is called a connection 
for the 9-action if for each x E M the mapping (I)x : T x M  --+ T~M is a projection onto 
9(x) -- ( (g ) (x)  C T x i .  The connection is called principal if it is g-equivariant, i.e., 
if for each X E 9 the Lie derivative vanishes: C<x~ = [(x,(I)] = 0, where [.,.] is 
the Frhlicher-Nijenhuis bracket,  see 4.4 below. The distribution ker((I)) is called the 
horizontal distribution of the connection (I). 

A Lie algebra valued 1-form w E f~l(M;g)  is called a principal connection form if 
the following conditions are satisfied: 

(1) w is g-equivariant, i.e., for all X E g we have £¢x w = - ad (X)  ow. 
(2) For any x E M we have ~, = ~x ow~ o ~ : tt ~ T x M  ~ g ~ T~M.  Thus for any 

x E M the kernel ker(w~) is a complementary subspace to the vertical space g(x) and 
the mapping w~ : g(x) ~ fl/tl* ~ g is a right inverse to the projection g ~ g/gx. 

Any principal connection form w defines a principal connection (I) := ~ .  The converse 
statement is not true in general as Example 5.7 shows. 

3.2.  P r o p o s i t i o n .  Let M be a g-manifold. 
1. I f  M admits a principal connection then the action of g on M has constant rank. 
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2. Let us assume conversely that the g-action is of constant rank. Then M admits 
a principal connection if any of  the following conditions is satisfied: 

(1) The action is locally trivial. 
(2) There exists a g-invariant Riemannian metric on M.  
(3) The g-action is induced by a proper action of a Lie group G with Lie algebra g. 

3. Let the g-action be locally trivial with standard fiber S, a homogeneous g-space 
which admits a principal connection form. Then M admits even a principal connection 
form w. 

For assertion 3, see Example 5.7 for conditions assuring the existence of principal 
connection forms on the s tandard fiber S: the isotropy subalgebra gx of some point 
x E S admits an ad(g~)-invariant complement m in g which is also invariant under the 
isotropy representation of the pseudogroup r (g)  generated by g. 

P r o o f .  1. If a principal connection ¢ exists, it is a projection onto the distribution 
spanned by g (which we will call the vertical distribution sometimes), and its rank 
cannot fall locally. But the rank of the complementary projection X := IdTM--O onto 
the kernel of ~ also cannot fall locally, so the vertical distribution g (M)  is locally of 
constant rank. 

2. First of all, we have the implications (3) ~ (2) ~ (1). The first implication is a 
theorem of Palais [16]. The implication (2) ~ (1) may be proved as for an action of 
a Lie group that preserves a Riemannian metric, using a slice. Hence, we may assume 
that M is a connected locally trivial g-manifold. 

Let (Us, gas: p-1 (Us) ---* Us x S) be a family of principal charts such that (Us ) i s  an 
open cover of M. Put  Os(Tc~l ( (~ , r / s ) )  = Tc2~l(0~,r/s) for (~ E T,:Us and r/, E T,S .  
Obviously that Os is a principal connection on p- l (Us ) .  Now let f~ be a smooth 
parti t ion of unity on N which is subordinated to the open cover (Us). Then ¢b := 
}--~s(fs o P)Os is a principal connection on M. 

3. This is proved similarly as 2, starting from a principal connection form on the 
s tandard  fiber S. [] 

3.3. Let M be a g-manifold. If a principal connection ¢ exists then the distribution 
g (M)  spanned b y g  is of constant rank and thus a vector bundle over M,  and • factors 
to a g-equivariant right inverse of the vector bundle epimorphims T M  ---. T M / g ( M ) .  
Let us consider the following sequence of families of vector bundles over M,  where 
iso(M) : =  UxEM{X} × gx : ker(¢ M) is the isotropy algebra bundle over M: 

i M 
i so(M) ~ M x g , T M  ---, T M / g ( M ) .  

Then a principal connection form w induces a g-equivariant right inverse on its image 
of the vector bundle homomorphism ~ M  : M x g --. T M ,  so it satisfies ~Moa;o~M = (M.  

4. F r h l i c h e r - N i j e n h u i s  b r a c k e t  a n d  c u r v a t u r e  

4 . 1 .  P r o d u c t s  o f  d i f f erent ia l  forms .  Let p : g --+ g l (V)  be a representation of a Lie 
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algebra 9 in a finite dimensional vector space V and let M be a smooth  manifold.  
For ~ e liP(M; 9) and k~ • ~q(M; V) we define the form p^(~)q~ • f~P+q(M; V) by 

1 
= ~ E sign(a)P(cg(X°l'" "" 'X"P))fft(X~'(P+I) '" "" ,Xo(p+q)). 

o" 

Then p^(~)  : f~*(M; V) -~ f~*+P(M; V) is a graded f l (M)-module  homomorph ism of 
degree p. 

Recall also that  f~(M; 9) is a graded Lie algebra with the bracket [., .]^ = [., .]~' given 
by 

¢]^(Xl,. . . ,  

: ~ 1  E s i g  n cr [c2(X~, , . . . ,  X~p),¢(X~(p+,),. . . ,  X~(p+q))lg, 
o" 

where [., .]~ is the bracket in 9- One may easily check that for the graded commuta tor  
in End(f~(M; V)) we have 

p^([cp, ~]^) = [p^(cp),p^(~)] = p^(cp) o p^(~)  - ( -1)Pqp^(~)  o p^(~)  

so that  p^ : ~ * (M;  g) ~ End*(~ (M;  V)) is a homomorphism of graded Lie algebras. 
For any vector space V let @ V be the tensor algebra generated by V. For ~,  qJ G 

f~(M; @ V) we will use the associative bigraded product  

(+ ®  ̂ , x p + q )  

= . . . . .  

o" 

4.2.  B a s i c  d i f f e r en t i a l  f o r m s .  Let M be a 9-manifold. A differential form ~ E 
f~v(M; V) with values in a vector space V (or even in a vector bundle over M)  is 
called horizontal if it kills all fundamental  vector fields ( x ,  i.e., if i(x ~ = 0 for each 
X E g .  

If moreover p : 9 ~ 9I(V) is a representation of the Lie algebra 9 in V, then dif- 
ferential form ~2 E f~P(M; V) is called 9-equivariant if for the Lie derivative along 
f imdamenta l  vector fields we have: £(x~  = - p ( X )  o q~ for all X E 9- 

Let us denote by f~o~(M; V)g the space of all V-valued differential forms on M which 
are horizontal and 9-equivariant. It is called the space of basic V-valued differential 
forms on the 9-manifold M.  If the 9-manifold M has constant rank and the action of 
9 defines a foliation, scalar valued basic forms are the usual basic differential forms of 
the foliation, see e.g. [13]. 

Note that  the graded Lie module  structure p^ from 4.1 restricts to a graded Lie 
module  s t ructure  p^ : f~(M; 9) ~ × 9t(M; V)g ~ f / (M;  V)~. It is also compatible with 
the requirement  of horizontality. 

The  exterior differential d acts on (f~(M; 9), [', "]^) as a graded derivation of degree 1. 
It preserves the subalgebra ~ ( M ;  g)g of g-invariant forms, but it does not preserve the 
subalgebra ~aor(M; 9) ~ of 9-valued ~asic forms. 
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For ~ ~ flP(M;i~) we consider the tangent bundle valued differential form ~ 
ftp(M; T M )  which is given for ~i ~ TxM by 

(~'~)x(~¢1'''''%¢p) :---- ~'~x(~ ..... ~p)(X). 

4 .3 .  FrS l i che r -N i j enhu i s  bracket .  Let M be a smooth manifold. We shah use now 
the FrSlicher-Nijenhuis bracket 

[., .]: ~P(M; T M )  x flq(M; T M )  ~ ftP+q(M; T M )  

as guiding line for the further developments, since it is a natural and convenient way 
towards connections, curvature, and Bianchi identity, in many settings. See [9, Sec- 
tions 8-11], as a convenient reference for this. We repeat here the global formula for the 
Fr51icher-Nijenhuis bracket from [9, 8.9]: For K E ~ k ( M ; T M )  and L ~ f l e (M;TM) 
we have for the Fr51icher-Nijenhuis bracket [K, L] the following formula, where the ~i 
are vector fields on M. 

[K, L](~,,..., ~k+~) 
1 

= ~ E sign a [K(~a l , . . . ,  ~ak), L(~(k+U, . . - ,  ~(k+0)] 
a 

+ k!(~ -1 1)! E signa L([K(~ai" ' "  ,~k),~a(k+l)],~(k+2)," • -) 
o" 

( -1)  ae 
+ (/~_--1-Te! E sign (r K ( [ L ( ~ I , . . .  , ~ t ) ,~ ( t+ , ) ] ,~ ( t+2) , . . .  ) 

O" 

+ (__])k-1 E sign 
(k-  1).-~(e- 1)! 2! 

tT 

(1) 

or L(K([~al, ~2], ~ 3 , . . .  ), ~a(k+2),... ) 

+ (k --(--1)(k-1)/i~('-~----]-)! 2! E s i g  nor /((/([~al,~a2],~a3, . . . . . .  ),~a(t+2), )" 
a 

For decomposable tangent bundle valued forms we have the following formula for the 
FrSlicher-Nijenhuis bracket in terms of the usual operations with vector fields and 
differential forms, see [5], or [9, 8.7]. Let ~ E ~k(M), !k E ~ t (M) ,  and X, Y E X(M). 
Then 

[ ~ ® x , ¢ ®  Y] = ~ ^  ~® [x ,Y]  + ~ ^ C x ¢ ®  Y - c r y ^  ¢ ®  x (2) 
+ (-1)  k (d~A i x~ . ,®Y + iy~2A d e ® X ) .  

4.4. Propos i t ion .  Let M be a g-manifold. Let ~ E ~ o r ( M ; 9 )  ~ and let ~ E 
~ o r ( M ;  9) g. Then we have: 

(1) ~¢ is horizontal and g-equivariant in the sense that the Lie derivative along any 
fundamental vector field ~x for X E g vanishes: £~x(C¢) = [~x, ~¢] = O. 

(2) [~ ,  ~¢] = -~[v,¢]^, so ( : ~2hor(/; g)~ --* ~ ( / ;  T M )  is an antihomomorphism 
of graded Lie algebras. I f  oJ E i l l ( i ;  $)g is a principal connection form with principal 
connection ~ = ~o~ and horizontal projection X := IdTu  --(~ then we have furthermore: 

(a) [o,Cd =-~d¢+I~,~l^. 
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(4) 7[ , ¢] = -¢d~+}t~,~l^" 

Compare this results with [9, 11.5], which, however, contains a sign mistake in (10). 
We give here a shorter proof of a stronger statement.  

P r o o f .  Let X 1 , . . . , X k  be a linear basis of the Lie algebra g. Then any form 90 E 
~P(M; g) can be uniquely written in the form ~ = Y]~=I ~2 i ® Xi for q® i E f~P(M). Then 

Note that ~ is horizontal if and only if all ~i are horizontal. Also ~ is g-equivariant, 
E ~P(M; g)g, i.e., £¢x90 = - ad (X)  o ~ for all X E g, if and only if for all X E g we 

have: 
k k 

Z c~x~ ~® x~ : - Z ~® Ix, x,]. (5t 
i=1 i=1 

Assertion (1) now follows from (5) and 

k k 

i=1 i=1 

Using 4.3(2) we have for general ~, ¢, ~ O(M; g) 

[C~, (¢] = ~ [ ~  ® Cx,, CJ ® (x,] = ~ ~ A CJ ® [(x,, ¢x~] 
i,j i,j 

+ ~ ~ ACCx,¢ j ®¢x, - ~ c % ~  ~ A e j ®¢x, (6', 
i,j i,j 

-F ( - 1 )  p E ( d~ai Ai¢x,!bJ ®CXj + i<xj~ ~ Ad@ 5 ®CXi). 
i,j 

If g, is g-equivariant then from (5) we have 

~ A c(x, ~J ® (x, = - ~ ~ A CJ ® ([x,,xjl = -([~,¢1 ̂ . 
i,j i,j 

So for 9 and ~b both horizontal and g-equivariant (6) reduces to assertion (2). 
If ~ = ,~, the connection form, then we have (--1) p ~-~i,j i~x 9°iAd~bJ®~x, = ~ j  d~bJ® 

{x~ = -~'d~, so that (6) reduces to assertion (3). Similarly, ~or ~ = @ = ~ formula (6) 
reduces to [(I), ¢] = -¢[~,~]^+:d~, so also (4) holds. [] 

4.5.  C o v a r i a n t  e x t e r i o r  de r iva t ive .  Let M be a g-manifold of constant rank, let 
(I) ~ g/~(M; TM)~ be a principal connection with associated horizontal projection X := 
IdTM --~. Let V be any vector space of finite dimension. Then we define the covariant 
exterior derivative 

d~ := X* o d : f~P(M; V) ~ f~p+a- hor (M; V). 

We also consider the following mapping as a form of the covariant exterior derivative: 

ad(qb) := [(I),.] : f~P(M;TM)---, ~P+I(M;TM). 
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If a principal connection form ,~ : T M  ~ 0 exists and p : g ~ g[(V) is a representation 
of 0 we also consider the following covariant exterior derivative: 

d~, : •P(M; V)  ~ nP+l(M; V), 

d~,q/:= dq  + p^(w)q.  

L e m m a .  In this situation we have: 

(1) ad(~)  restricts to a mapping [~,.] : fl~or(M;g(M))~ o p+lr" "~hor t M;II(M))~,  where 
g(M) C T M  is the vertical bundle. 

(2) Let p : g ~ G L ( V )  be a representation. Then de restricts to a mapping de : 
~ o  (M; V)g O P + I (  " r --~ ~'hor ~M; V)  9. 

(3) For ¢ E ~ o r ( M ;  g)g the two covariant derivatives correspond to each other up 
to a sign: ~'d.¢ = --[0, ~'¢]. 

(4) Let p : g ~ g[(V) be a representation. Then d~, restricts to a mapping d,, : 

f lP(M;Y)g ---* ~P+I (M;V)* .  For q~ e fl~or(M;Y)g and X • g we have i(~x)dofl2 = 
p (w(~x)  - X)q~. I f  M is a free g-manifold, then d~, also respects horizontality and we 
have do = d~, : fl~or(M; V)g op+l~" -'+ "'hor t,M; V)  9, where  ~ = ~ .  

Proo f .  (1) Let ql • f l~or(M;g(M))~ and X • 9. Then formulas [9, 8.11(2)] give us 
here 

iCx[,~ ' t~] = [i¢x¢ ' ~] + [,~,iCxq~ ] _ (i([¢, Cx]) ~ _ (_l )Pi( [~ ,~ 'x])~)  = 0, 

so that [¢ ,~ ]  is again horizontal. It is also g-equivariant since [ (x , [~ ,~ ] ]  = 
[ [ (x ,~ ] ,~ ]  + [~ , [ (x ,  ~]] = 0 for all X • g by the graded Jacobi identity. That it 
has vertical values can be seen by contemplating one of the formulas in 4.3. 

(2) Let • • ~ o r ( M ;  Y)g. For X • i~ we have £¢x ~ = - p ( X ) o  ~,  then d ~  is again 
g-equivariant, since we have 

£.¢xX*dqt = f.¢x(dqt o A p + I x )  = £.(x(d@) o Ap+Ix  + d~l o £¢x(Ap+Ix)  

= (d f . i xq t )o  Ap+Ix + 0 = x * d ( - p ( X )  o ~ )  = - p ( X ) o ( x ' d g 2 ) ,  

and clearly horizontal. 
y~3)  Let again X 1 , . . . , X k  be a linear basis of the Lie algebra t~ and consider ~b = 

i=1 ¢i  ® X i  • Q~or(M;g) ° for ¢i  • ~ o r ( M ) .  Then we use [9, 8.7(5)] to get 

( -1)P+ ' [~ ,¢¢]  = [¢¢,~1 = E [ ¢ i ®  (x , ,~ ]  
i 

= E (¢i  A [(X" ~ ] -  ( -1 )P£¢¢ i  ®¢X, + ( - l ) P d ¢  i A i(/x,)~I') . 
i 

Since • is g-equivariant we have [¢'xi, ~] = 0. Moreover we have f .~¢i  = i o d ¢ i _ d i ~ ¢ i  = 
i~d¢  i - 0 and i (~x , )~  = ~X~. Thus we get 

( -1)P+ ' [¢ ,~¢]  = (-1)P E ( d ¢ i - i c d ¢ i ) ® ( x ,  
i 

= ( -1 )  p E x * d ~  bi ®¢x,  = (-1)P~d.¢. 
i 
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(4) Let q/ E tiP(M; V)~. For X E g we have £¢xqt = - p ( X )  o ql, then d~o~ is again 
g-equivariant, since we have 

£¢x(d~  + p^(w)~)  = d£(xgl + pA(£¢XW)~ -[- f lA(w) /Z¢ : (  kl/ 

= - d p ( X ) ~  - p^([X,w]^)~  - p^(w)p(X)Ol 

= -p (X) (dg l  + pA(w)g2). 

For • E ti~o~(M; V)~ and X E g we use i¢xgl = 0 and £¢x ~ = - a d ( X ) g /  to get 

icx( d~ + p^(w)~  ) = i¢xd~ + dicx q~ + P( iCxW)gJ - p^(w)iCxgl 

= + = - 

Let now M be a free g-manifold then w ( ( x )  - X = 0 and d ~  is again horizontal. We 
use the principal connection ~I, to split each vector field into the sum of a horizontal 
one and a vertical one. If we insert one vertical vector field, say ( x  for X E g, into 
d , ~  - d~g/, we get O. Let now all vector fields ~ be horizontal, then we get 

( d ~ ) ( ~ 0 , . . .  ,~k) = (x*dql)(~o, . . . ,~k)  = d ~ ( ~ 0 , . . . , ~ ) ,  

+ = [ ]  

4.6.  C u r v a t u r e .  Let M be a g-manifold. If there exists a principal connection 
then this is a projection onto the integrable vertical distribution induced by g, and the 
formula 4 .3(1) for  the Frhlicher-Nijenhuis bracket reduces to 

R(~, 'D = ½[~, ¢](~, 7) = ¢[~ - ¢~, ~ - ~ ] .  

R E ti~or(M; T M ) ~  is called the curvature of the connection ~. From the graded Jacobi 
identity of the Frhlicher-Nijenhuis bracket we get immediately the Bianchi identity 

[+,R]  = {[+ , [+ ,+] ]  = O. 

Note that the kernel of ad(R)  is invariant under ad(¢) ,  and ad(~)  2 = 0 on it. It gives 
rise to a cohomology, depending on ~. 

If w ~_ f~l(M, g)g is a principal connection form, then formula (4) in Proposition 4.4 
suggests to define 

1 [w wl ̂  t i : = d w + ] t  , j 

as the curvature form of 0.,; so we have R = - ~ .  Then 4.4(3) suggests that the Bianchi 
identity should have the form d~oti = dfl + [w, fl]^ = 0. Indeed this is true and it follows 
directly from the graded Jacobi identity in (~ (M,  g), [-, .]n). 

4.7.  P r o p o s i t i o n .  Let M be a g-manifold with principal connection ¢b and horizontal 
projection X := IdTM--~ .  Then we have: 

(1) d ~ o ~ *  - d ~  = x*[d,x* ] = x* oiR : f lP (M;V)  ~ P + I ( M ; V ) ,  where R is the --* hor  
cltrvature and V is any vector space and iR is the insertion operator. 

(2) d~ o d~ = X* o i (R) o d : tiP(M; V) ~ ~v+2r'ho~ ~M; V). 
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(3) / f w  E Ql(M;g)g is a principal connection form then the curvature form fl = 
dw+ ~ rw, w] satisfies i((x)~2 = [w(~x) - X ,w]  ^ - d(w(~x)).  I f  M is a free g-manifold 
then f~ is horizontal and f~ = dew = d~,w E f~or(M; g)~. 

Note that by (2) the kernel of X*O i (R)o  d is invariant under de, which gives rise to 
a cohomology associated to it. 

Proof. (1) For • E f t ( P ; V ) w e  have 

( d ¢ x * ~ ) ( ¢ 0 , . . . ,  ~k) = (dx*~) (X(~o) , . . . ,  X(~k)) 

: ~ (--1)iX(~i)((X*~)(X(~o),' ' ' ,X(~i--'~,"',X(~k))) 
O<~i<.k 

A 

+ Z( -1 ) i+J (X*~) ( [X(¢ i ) ,  X(¢j)], X(¢0),. .- ,  X(¢i) , . . . ,  X(¢ j ) , . . .  ) 
i<j 

= ~ (-1) iX(~i)(~(X(¢o) , '" ,X(¢i-~, '" ,X(¢I~)))  
o<5<.k 

+ Z ( - 1 ) i + J * ( [ X ( ~ i ) , X ( ( 5 ) ] -  ~[X(~O,X(~j)],X(~o),. . .  
i<j 

A 

• . . ,  ) 

= (d~)(X(~0) , . . . ,  X(~k)) + ( iR~)(X(¢o) , . . . ,  X(~%)) 

= (de + X*in)(~)(~0, . . .  ,~k). 

(2) d t d ¢  = x*dx*d = (x*iR + x*d)d = x*ind  holds by (1). 
(3) For X E g we have 

1 [~O ~ 1^] i i x (dw  + ~t , J , = i i xdw  + ½[iixW,W] ̂  - ½[w,i¢xW] ̂  

= l:(xW - d (w( (x ) )  + [w((x),w] = [w((x) - X,w] - dw((x) .  

If M is a free g-manifold then this is zero, and on horizontal vectors dew and d~,w 
coincide. [] 

5. Homogeneous g-manifolds 

5.1. Homogeneous  free g-manifolds and Maurer-Cartan forms. Recall that a 
g-valued 1-form a on a manifold M is called Maurer--Cartan form if ~ : T~M ---, g 
is a linear isomorphism for each x E M and if ~ satisfies the Maurer'-Cartan equation 
dg + ½[~, a] = 0. This concept is also sometimes called a f lat Cartan connection, and 
a manifold with a fiat Cartan connection is sometimes called a principal homogeneous 
space. See [7] for Maurer -Car tan  forms. 

Lemma. To each free transitive g-action ( : g --. 3C(M) there corresponds a unique 
Maurer-Cartan  form ~ : T M  ~ g, given by az = ( ;1 ,  and conversely. Then ~ is 
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g-equivariant with respect to the g-action ( : g ---+ X ( M ) ,  and ~ is the unique principal 

connection form on the g-manifold M.  

Note also that an action of a Lie algebra 9 is free if and only if the associated 
pseudogroup has discrete isotropy groups. 

P r o o f .  If ~ E ~ ( M ;  9) and ( : g ~ X(M)  are inverse to each other then for X,  Y E 1~ 
we have  

+ 

= - C Y ] )  + 

= --/'¢([(:X, ~'Y]) + [X,Y] 

= - (Ix,v]), 
so that ( is a Lie algebra homomorphism if and only if ~ fulfills the Maurer Cartar~ 
equation. For fixed ~t-action ( the form ~ is g-equivariant, since we have £¢x~ = 

icxd~ +dicxtC = -iCx (½[~, ~ ] ^ ) + d X  = -[i¢xtC, t;]+0 = - ad(X)~.  Thus ~ is a principal 
connection form for this g-action, and it is the unique one by Proposition 5.7 below, vI 

5.2.  C a r t a n ' s  d e v e l o p i n g .  It is well known that a free homogeneous G-manifold 
may be identified with the Lie group G by fixing a point. For g-manifolds the situation 
is more complicate. The following result may also be found in [7]. 

P r o p o s i t i o n .  Let M be a free transitive g-manifold which is simply connected. Let G 
be a Lie group with Lie algebra g. Then there exist tpequivariant local dif feomorphisms 
M ---+ G. Namely for each x E M there is a unique g-equivariant smooth mapping 

('.~ : M ~ Wx with Cx(x)  = e which is locally a diffeomorphism, where Wx C G is 

defined in 2.3. 
I f  the t}-action on M integrates to a G-action on M,  then this mapping is automat- 

ically a global diffeomorphism. 

The embedding M ~ G is called Cartaffs developing. Its origins lie in Car tan 's  
developing of a locally Euclidean space into the standard Euclidean space. If Cartan 's  
developing is injective then the g-manifold M admits an extension to a g-manifold 
which is isomorphic to the Lie group G with the left action of 9- 

P r o o f .  We consider again G × M with the graph foliation as in 2.3. Then pr 2 : G × M -~ 
M is a principal G-bundle with left multiplication as principal action, and since M is 
a free ffmanifold the graph foliation is transversal to the fibers of pr 2 and is the 
horizontal foliation of a principal connection on the G-bundle. For x E M the restriction 
of pr 2 to the leaf L(x )  through (e ,x)  is a g-equivariant covering mapping which is a 
diffeomorphism since M is simply connected. Then 

-1  

: M P"2 ) L (x )  prl> W x C G 
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is the looked for g-equivariant mapping which locally is a diffeomorphism since pr 1 
also is one. 

It remains to show that ~ is a diffeomorphism if the g-action is complete. We consider 
the g-action on G × M on the factor M ~lone in this case. Then the graph foliation 
gives us a flat principal connection for this action, see Section 3, and by Proposition 6.6 
below this connection is complete. Thus pr I : L(x)  ~ G is also a covering map, and 
since G is simply connected it is a diffeomorphism also and we are done. (3 

5.3.  E x a m p l e .  The result of Proposition 5.2 is the best possible in general, as the 
following example shows. Let G be a simply connected Lie group, let W be a not simply 
connected open subset of G, and let M be a simply connected subset of the universal 
cover of W such that the projection ~2 : M ~ W is still surjective. We have an action 
of the Lie algebra g of G on M by pulling back all left invariant vector fields on G to 
M via ~2. Then qo is as constructed in 5.2, but it is only locally a diffeomorphism. 

For example, let W be an annulus in ~2, and let M be a piece of finite length of the 
spiral covering the annulus. Other examples can be found in [10, 11]. 

5.4.  As an immediate  application of the Cartan developing, we have the following 
proposition: 

Proposition. Let H be a connected linear Lie group of finite type, let G be the simply 
connected full prolongation of H such that G / H  is the standard maximally homoge- 
neous H-structure (see [1]). 

Then for any simply connected manifold N with a locally flat H-structure p : M ~ N 
there exists a map ~ : N --~ G / H ,  which is a local isomorphism of H-structures. 

In the case of a fiat conformM structure we obtain the well known developing of a 
locally flat conformM manifold into the conformM sphere. 

P r o o f .  The mapping ~ is the unique one making the following diagram commutative: 

M °°  ) G 

¢ 
N , a / H .  

Here M ~ is the full prolongation of the H-structure  p with the natural free transitive 
action of the Lie algebra g of G, see [1], and cp is the Cartan developing of the g-manifold 
M ~ into G. [] 

5.5. The dual g-action for simply connected homogeneous free g-manifolds. 
As motivation we recall that on a Lie group G (viewed as a homogeneous free 

right G-manifold) the fundamental  vector fields correspond to the left invariant ones; 
they generate right translations, and correspond to the left Maurer -Car tan  form ~ on 
G. The diffeomorphisms which commute with all right translations are exactly the 
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left translations; the vector fields commuting with all left invariant ones are exactly 
the right inv~riant ones; they generate left translations, and correspond to the right 
Maurer -Car tan  form k = Ad.  ~. 

Now let M be a free homogeneous g-manifold with action ( : g --~ :~(M) and the: 
corresponding principal connection form ~ = i -1, see 5.1. Let G be a Lie group with 
Lie algebra 9. Choose a point x0 E M. Assume that M is simply connected and 
consider the Caf tan  developing Cx 0 : M ---* G. Then for X E 9 the fundamental  vector 
field ~x E X ( M )  is C~0-related to the left invariant vector field Lx on G. Let now 
("x E X ( M )  denote the unique vector field on M which is C~0-related to the right 
il|variant vector field R x  E :~(G). Since [Lx, Ry] = 0 we get [Ix,~Y] = 0, and eve1/ 
each local vector field ~ E X(U) for connected open U C M with [~,~y] = 0 for al:l 
)" E g extends to one of the form ~x- So we get a Lie algebra antihomomorphism 

: g X ( M )  

whose image is the centralizer algebra 

Z~(M)(g) := {~ E X ( M ) :  [Y,~x] = 0 for all X E g}. 

This ( ' r ight ')  action ~ of g on M which commutes with the original action i is called 
the dual action. We have also the dual principal connection form k, inverse to ~, see 5.1. 

Note that for a free homogeneous g-manifold M which is not simply connected, 
the dual action of g does not exist in general and the centralizer algebra Z~(M)(g ) i:~ 
smaller than g: As an example we consider a Lie group G with the right action on 
H\G for a discrete subgroup H which is not centrM. Then the associated action of 
~he Lie algebra g is free, but its centralizer Z~(H\C)(g ) is isomorphic to the subalgebra 

gx! := {X E 9 : Ad(h )X = X for all h E H}. 

5.6. Homogeneous G - m a n i f o l d s .  As a motivation for what follows we consider 
here homogeneous G-manifolds. So let G be a connected Lie group with Lie algebra g, 
multiplication p : G × G ---* G, and for g E G let #g,pg : G ~ G denote the left and 
right translation, p(g,h) = g .  h = #g(h) = ph(g). Let H C G be a closed subgroup 
with Lie algebra i). 

We consider the right coset space M = H \ G ,  the canonical projection p : G ---. H \ G  !, 
1:he initial point o = p(e) E H \ G  and the canonical right action of G on the right coset 
space H\G,  denoted by fig : H \ G  ---, H\G.  Then for X E g the left invariant vector 
field Lx E •(G) is p-related to the fundamental vector field i x  E X ( H \ G )  of pg. 

Suppose now that we are given a principal connection form w EFt I (H\G; g)~. Then 
t:¢xW = - ad (X)w implies in turn 

(i-icxp(tx))*w = (FlfX)*w = e-~(t(~x)w = A d ( e x p ( - t X ) ) w ,  (1) 

(]ig)*w = A d ( g - ' ) w  for all g E G, 

wo.g = Ad(g -1) o Wo o To(ft g-~ ) (2) 

We also get a reductive decomposition of the Lie algebra 9 as 

9 = Ij ® wo(To(H\G)) =: b ® too, (3) 
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where mo is a linear complement to 0 which is invariant under Ad(H) .  
Conversely any Ad(H)-invariant  linear complement mo of Ij in g defines a principal 

connection form on the g-manifold H \ G  as follows: we consider the H-equivariant 
linear mapping 

¢o 
To(H\G) g/O " "  COo : + - -  = 111o C g 

and extend it to a principal connection form w by (2). 
There is a bijective correspondence between principal connection forms w E 

f ~ l ( H \ G , g ) o  and principal connections & E ~I(G;I})H on the principal fiber bundle 
p : G ~ H \ G  with left principal action of H,  which is given by 

&g := Tg(# g-1 ) - Ad(g) o w~(g) o Tgp: TgG ~ I}, (4) 

& := ~ - A d . p * ~ ,  (5) 

where g denotes the right Maurer -Car tan  form. It is easily checked that E, is a principal 
connection for p : G -~ H \ G :  since the principal H-action is the left action on G we have 
(#h).& = Ad(h)w,  and w reproduces the generators in h of right invariant vector fields 
on G. The principal curvature of E, is given by d/.5 - -  ~1 [w,- w]- ̂'0. see [9, Proof  of 11.2(3)]; 
compare with [8, I, Chap. X]. The curvature form of E, is related to the curvature form 

t rw wl^ of w by £ = d ~ + 2 L  , Jg 

dE, 1 - ~ A  1 g - ~[w,w]0 = d n -  ~[ , ~ ] ~ -  d A d A p * w - A d . p * d w  

+ [n, Ad- p*w]~ - ½lAd. p 'w, Ad. p*w]~ 

1 [W W 1h~ = - A d - p * ( d w + ~ L  , j ~ j = - A d . p * ~ ,  

since for the right Maurer -Car tan  form s: the Maurer-Car tan  equation is given by 
d n -  1 ^ 7[a, n]~ = O, and since for X E g we have: 

0 0 Ad(exp( tX)  • g) = ad(X)  Ad(g) d A d( T(#g  ) X  ) = -~ 

= a d ( n ( T ( # g ) X ) )  Ad(g), 

d A d  = ( a d o n ) A d .  

5.7. P r o p o s i t i o n .  Let M be a homogeneous tpspace. Then there exists a unique prin- 
cipal connection • = Id on M .  

On the other hand let M be an effective homogeneous g-space. Then principal con- 
nection forms  w correspond to reductive decompositions g = g,  + m, ,  where gx is the 
isotropy subalgebra of a point x E M,  and where mz is an F(ij)x-invariant complemen- 
tary subspace. 

P r o o f .  The first statement is obvious. 
We first check that for an effective homogeneous g-manifold M the homomorphism 

germ x o~ u : g ~ 3~(M)germ~ at x is injective for each x E M. Let ~ denote its kernel. 
Since g is finite dimensional, we have ~y = ~x for y near x, and since M is connected, 
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this holds even for all y E M. So t~ is in the kernel of ffM : g ___, X(M) which is zero 
since the g-action on M is supposed to be effective. 

As in 2.3 we consider the graph foliation of the g-manifold M on G × M,  where G 
is a connected Lie group with Lie algebra g, the leaf L(x) through (e, x) of it, and the 
open set W~ = pr l (L(x) )  C G. 

Consider a principal connection form w e f ~ ( M ;  g)~. Then £(xW = - ad(X)w implies 
(Fl~X)*~ = e -  ~d(tx)~ = A d ( e x p ( - t X ) ) ~ ,  this holds then for all elements of the pseu- 
dogroup l~(g) of the form 2.2(5) and finally we get for each smooth curve c : [0, 1] ---, W~ 
with c ( 0 ) =  e which is liftable to L(x): 

('),x(c))*w = Ad(c(1)- l )w.  (1) 

Thus we get a reductive decomposition of the Lie algebra it as 

g = g~ Gw~:(T~M) =: g~ ® m~, (2) 

where rn~ is a linear complement to itz which is invariant under Ad(F(g)~),  see also 2.6. 
If conversely we are given a reductive decomposition as in (2) which is invariant 

under Ad(F(I~)~), then we consider the F(~l)~-equivariant linear mapping 

and we use (1) to define w E f t l ( M ; g )  g by 

W,x(¢)(;) = Ad(c(1) -1) ow o T,(',/x(c)-l), (3) 

for each smooth curve c : [0, 1] ~ Wz with c(0) = e which is liftable to L(x). Since any 
element of the pseudogroup l?(g) is of this form (see 2.3) we get a well defined principal 
connection form on M. [] 

5.8. T h e o r e m .  Let M be a homogeneous effective g-space. Let Xo E M and let Pxo(9) 
be the set of all germs at xo of transformations in l?(g ). 

Then eVxo : Pxo (g) ~ M is the projection of a smooth principal fiber bundle with 
structure group the isotropy group F(g)x0 (see 2.6) and with princwal right action just 
composition from the right, and its smooth structure is the unique one for which the 
smooth curves [0,1] ~ Pxo(g) correspond exactly to the germs along [0,1] x {xo} o] 
smooth mappings ~ : [0, 1] × U ---* M with ~t E F(g) for all t. The total space Pxo(9) is 
connected. 

We have a canonical free transitive g-action ~'P : g ~ X(Pxo(g)) which is given by 

P( M i x  ~P):= ~x M o ~  = TTO(Ad(~_,)X, 

and whose corresponding pseudogroup is generated by the local flows ~ .--, FI~ ~ op. 
Each vector field (~ is invariant under the pullback by the principal right action of 
F(g)~ o. The projection ev~ o : P~o(g) ~ M is g-equivariant, so the vector fields (P and 
~M are eVxo-related. Its associated Maurer-Cartan form is called ~. 
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There exists also the dual free g-action (a Lie algebra antihomomorphism) ~P : g ---, 
X(P~o(g)),  given by 

Its associated Maurer-Cartan form is called k, and its corresponding pseudogroup is 
generated by 

~p ~ ~ o Fl~ M . 

The pullback of ~P by the principal right action of ¢ • F(g)~ 0 is given by 

--~ ~ A d ( ¢ - I ) X  • 

The principal connections forms w • f / l ( M ;  g)~ correspond bijectively to principal 
connections forms O5 • ~l(Pxo(g),g~o)r(~)~o on the principal r(g)~o-bundle P~o(g) 
M via 

O5~ = - ~  - Ad(9~- ' )o  c%(~o ) o Tv(ev~ o) :  Tv(P~o(g)) --, g~o. 

The principal curvature forms are then related by 

• 1 rw wl^~ f / : =  doS+ lro3 O51  ̂ = - ( A d o i n v ) . e V ~ o ( d w +  ~t , Jg, 2 L ~ J~lx 0 

= - ( A d o  inv) .  eV,o fL 

The  manifold  P~o(M) is not  simply connected in general (e.g., a Lie group);  never- 
theless the dual  action is defined. 

P r o o f .  RecM1 first f rom the P roo f  of 5.7 that  for an effective homogeneous  g-manifold 
M the h o m o m o r p h i s m  germ x o~ u : g ~ X(M)germs at x is injective for each x E M .  

As in 2.3 we consider the graph foliation of the g-manifold M on G x M ,  where G 
is a connected  Lie group with Lie a lgebla  g, the leaf L(xo) th rough (e, xo) of it, and  
the open set Wx0 = p r i (L(x0) )  C G. 

Now we choose a spli t t ing g = gx0 @ m, where m is a linear complement  to  the 
isotropy algebra g~0. Let us now consider a small open ball B with center 0 in 9, its 
diffeomorphic image exp(B)  =:  W C Wx0 C G, and W C L(xo), an open ne ighbourhood  
of  (e, x0) in L(xo) such tha t  pr 1 IW : IzV -~ W is a diffeomorphism. Let B m :=  B O m, 
W m := exp(Bm),  and Wm := (pri i # ) - l ( W m ) ,  and choose now B so small  tha t  pr2 : 
17V m -~ M is a diffeomorphism onto an open neighbourhood U of x0. We consider the 
composed dif feomorphism 

Pr21 Wi/~m prl W m e x p - i  
A : U  , , , B  r". 

NOw for f • P~o (g) with eVxo ( f )  = f (xo)  • U we define 

~ ( f )  -- 7xo(Cf(xo)) -1 o f • F(g)xo, 

where ef(~o ) : [0, 1] ~ W m is the curve cf(~o)(t ) = exp(tA(f(xo))). 
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Next we choose an open cover (U~) of M with t ransformat ions  f~ : V~ ~ U~ in the 
pseudogroup F(g) ,  where V~ is a connected  open ne ighbourhood of xo in U, and we 
define 

~ :  eV;o~(U~) -- P~0(g)lv~ ~ Uo × F(g, xo), 

w a ( f )  := ( f ( x o ) , ~ ( f :  1 o f ) )  = ( f (xo) ,Txo(Clgl l (xo))-I  o f : '  o f ) .  

These  give a smooth  principal fiber bundle atlas for Pxo(g) since for (x, h) E (U~N Ufl) × 
F(g)~ o we have 

~2~W~' (x, h ) =  (X,Txo(Clz,(~))- '  o f : '  o f;3 ° 7~0(c2;,(~)) ° h) .  

The  smooth  s t ruc tu re  on P*0(g) induced by this atlas is the unique one where the  
smooth  curves are exact ly as described in the theorem,  since this is visibly the  case in 
each chart .  Thus  by the L e m m a  in 2.3 the total  space P~o(g) is connected.  

For X E f; and ~ E P~0(g) we have 

cq Fl~ M °9~ = . M o  FI~M °9~, 
Ot 

so a smooth  vector  field on Px0 (g) is defined by 

o M ¢xP(~) := ¢M o ~ = T~2 o Tg~ -1 o Cx M o 9~ = Tg~ o (~.~-M) = T ~  CAd(v-1)X, 

where  we used 2.4, and  its local flow is given by FltX(9~ ) = o9~. Clearly : 
t~ ~ X(Pz0(iJ)) is a 9-action, which is free, since for each x E M the homomorph i sm  
germ~ o~ "M : 9 ---* X(M)germs ~t ~ is injective. Consider now ~b E F(g)z0 and its principal 
right action ~b* oil Pz0(g); it acts trivially by pullback on each vector  field ~x P since we 
h ave: 

(0P*)*¢)~)(~) = ( T ( ¢ * ) - '  o¢ "P o ¢*) (¢p)=  (~b-a)*(c'P(~ o ~p)) 

= ( ¢ - ' ) * ( c  M ° 9 ° ¢ ) =  ¢M = 

The  bundle  projection ev~ 0 : P*0(g) ~ M is visibly g-equivariant .  Now we de- 
scribe the  associated unique principal connection form ( M a u r e r - C a r t a n  form) n E 
~1 (P~0(g); t~) r(~)*° : Consider  a smooth  curve ft  in P~0 (g). Then  O/Otlo f t  is a t angen t  
vector  with foot  point fo and we have 

g( ,~ oft) = (germxo o<M)-l ( ( ~--~ oft) o fol ) E_ g. 

The  dual  action ~r ' :  9 --* X(Px0(g)) is given by 

~,X ---- 
M P 

---- ~Ad(~a)X o ~ ---- ¢ A d ( ~ a ) X ( ~ ) '  

by 2.4 again,  and  its local flow is given by FltX(9~) = germ~0(~ 2 o Fl~xM), where  @ is a 
representa t ive  of the germ 9~. Then  ~P : 9 --* 3¢(Px0(g)). It is a Lie algebra an t ihomo-  
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morphism,  since we have (using [9, 3.16]) 

1 0 2 ^ ~ ~P 
2ot  o Fl( Fl   - F l t X ( ~ )  

1 O 2 0 F l~M°  F I ~ M ° F I ~ ° F I ~  
- 2 Ot 2 ~ o 

" = T ~ o  [¢M, eM] = _ T v  o ¢[xy  ] 

Consider now ¢ • F(g)x0 and its principal right action ¢* on P~0 (9); it acts by pullback 
on each vector field (P  as follows: 

( (¢*)* (P) (~)  = (T(¢*)  -1 o ~P o ¢*)(~)  = (¢-~)*(~P(~  o ¢))  

= (¢-1)*(T~ 2 o T ¢  o (M) = T ~  o T ¢  o ( x  M o ¢-1  

T ~ o ( ( ¢ - I ) * ( M )  T ~ o  M 
---- = ~ A d ( ¢ ) X  

= 

Note that  the vector fields ~-Px • 3C(Pzo(g)) for X • gx0 are the fundamenta l  vector 
fields of the principal right action, and recall from 2.6 that  the Lie algebra of the 
s t ructure  group F(g)x0 is anti isomorphic to the isotropy Lie algebra 9~0. The  associated 
unique principal connection form (dual Maurer -Car tan  form) k • ~l(P~o(g);  g) is  given 
by 

/~  = (~P) - i  : Tv(pxo(O))~ g, 
^ O ~ [ T f o l  0 ~(-~ oft) = (germx0 o~M)- i  O-~ oft ) •g 

for each smooth  curve ft in P~0(g). Since (P  :g  -+ X(Px0(g)) is a Lie algebra antiho- 
l k  momorph i sm,  k satisfies the Maurer -Car tan  equation in the form d k -  ~[ , ;~]^ = 0 and 

is F(g),0-equivariant  in the form (¢*)*k = A d ( ¢ - l ) k .  
Finally let w • i l l ( M ;  g)B be a principal connection form on the g-manifold M.  Then 

from 5.7(1) and from 2.4 for any ~ • F(g) we have 

~*w = Ad(~2-1)w. 

We consider the 1-form 

&~ := - k ~  - Ad(qD -1) o W~(x0 } o T~o(evx0): T~(Px0(g)) ---* gz0, 

& = - ~  - (Ado inv) .  ev~0 w. 

Then ~ is gxo-valued by property 5.7(1), and it is a principal connection form & E 
fll(Px0(g);gx0)r(g)xo on the principal F(g)~=0-bundle evx 0 : P~:0(g) ~ M ,  with right 
principal action now, ¢*(~)  = ~2 o ¢ for ¢ E F(g)~0 and T E P*0 (g), because we have in 
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turn for X E gxo: 

~ ( ¢ ~ x ( ~ ) )  = - ' ~ ( ¢ ~ x ( ~ ) )  - 0 = X • gxo, 

(~*~)~ = ~ o ,  o T ( ~ * )  

= - (O*k)~  - Ad(O -1 o ~ - ' )  o ";~(x0) o T(ev~o) o T(~b*) 

= A d ( ~ b - 1 ) ( - ~  - Ad(~ -1) o ~ (xo  ) o T(ev~o)) 

= Ad(O -1) o f  Je. 

On the other hand, for any principal connection form & E f~l(Px0(g); gxo) c(~)xo on the 
principal F(g)xo-bundle evx0 : Pxo(g) ~ M the g-valued 1-form ~ := Ad(gv) ( -k~-&~)  
is horizontal and F(il)xo-invariant, thus it is the pullback of a unique form ~ E f~l(M; g) 
which is easily seen to be a principal connection form on M. For the curvature we may 
compute as follows (compare 5.6) 

fi := d~ + ½[~,~]^ = d ( - k - ( A d o i n v ) ,  ev~0 w) t~x0 

+ ½[-k - (Ad oinv)- eV~o ~ , - k  - (Ad oinv),  ev% ~]g~o 

= -d;~ + ½[k, k]~ - d(Ad oinv) A ev;0 ,; - ( A d o i n v ) . e v ; 0  d~ 

- [k, (Ad o inv). ev;0 w]~ - ½[(Ad oinv),  ev* 0 w, (Ad oinv),  eV;o ~]~ 

= - ( A d  oinv).ev*0(da; + 1 ^ • ~[aJ,a;]g ) = - ( A d o  inv) • eV~o fl, 

where we used the Maurer -Car tan  equation for t~ and 

O (M O oAd(Fl~_t d(Ad o inv)(~x(9~)) = o(Ad oinv)(¢2 o Flt x ) = o9~-') 

= - ad(X)  o Ad(~  -1) = - a d ( , ~ ( ~ ( ~ ) ) ) o  A d ( ~ - l ) ,  

d ( A d  o i n v ) = -  a d ( ~ ) ( A d  o inv) .  [] 

5.9. T h e  Lie a l g e b r a  Z3c(M)(~j ) of  i n f in i t e s ima l  a u t o m o r p h i s m s  o f  a h o m o g e -  
neous  9 - m a n i f o l d .  Let M be an effective homogeneous g-manifold. We will describe 
now the centralizer 

Z~C(M)(9) := {~l e X ( M ) :  [r/,(x] = 0 for all X e ~t} 

of ff(~) in the Lie algebra X(M)  of all vector fields on M. 
Let xo ff M be a fixed point with isotropy subalgebra 9z0 = ker(G0 : 9 --* Tzo M) and 

isotropy group F(iJ)zo. We consider the normalizer N0(I'(lj)~o) of the isotropy group 
I'(~J)z0 in ~, and the 'Weyl algebra' g = 9(Xo), which are given by 

N~(F(IJ)~o):= {X ~ II : Ad(~b)X - X ~ tlxo for all ~ ~ F(g)~ o }, 

~(xo) := Ndr(~)~0)/~x0.  

It is clear that IJ~o is an ideal in g~(F(9)~o) , thus ~(x0) is a Lie algebra. Clearly, if 
e F(IJ), then Ad(9~) : tJ ~ ~ induces an isomorphism g(9~(x0)) ---* ~(Xo). We can define 

a Lie algebra ant ihomomorphism 

~M : ~(Xo) = N d r ( ~ ) ~ o ) / ~ 0  -~ X(M), 
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as follows: Any point x • M is of the form x = qo(x0) for some element of the pseu- 
dogroup r (g) ,  and for X • N~(r(g)~o) we have a well defined vector field 

~M(x ~--- ~(X0)) : :  T ~ .  exM(xo) = ((~-l)*¢X)(~(Xo)) = ¢Ad(~)x(X). 

For all X • ~(Xo) and all Y • g we have 

((Fl~V)*(x)(x = ~(Xo)) :=  T(Fl¢_~).(x(Fl~Y(~(Xo))) 

= T ( r l ( ~ ) .  T(Fl~ Y o~) .  (x(Xo) 

= T ( v )  Cx(xo)  = ~ x ( x  = v(xo)), 

[~x,Cy] = 0, 

so that ~(i~(Xo)) C 3C(M) is contained in the centralizer Z~(M)(g ). On the other hand 
we have :  

L e m m a .  In this situation, Z~(M}(g ) = ~(~), and these are exactly the vector fields on 
M which are projections from all projectable vectorfields in (P(g)f i  X(P~o(0)) for  the 
principal fiber bundle projection ev~= o : P~:o(~) ~ M. The flow of ~x for X • ~(Xo) is 
given by 

F l ~ ( x  = ~(Xo))= ~(rl~X(x0)). 

P r o o f .  Let ~ E X(M)  be a vector field that commutes with the action of 9. Then 
for any ~ E F(9) we have c2" ~ = T ~ - 1 o ~ o ¢ 2  = ~. Then for ¢ E F(9)~ o we have 
Tzo~b. ~(Xo) = ~zo. If we choose any X e t~ with ~x(Xo) = ~(xo) we get by 2.4 for all 

¢ • r(g)~o 

(Ad(~-,)x(Xo) = (¢*(X)(Xo) = T~o~.~(x0) = ~(Xo) = ( x ( X o ) .  

so that X - A d ( ¢ - I ) X  • t~o and X • Ng(F(g),o). Moreover for x • M and ~ • r (9  ) 
with x = T(Xo) we have 

~x(x) = Txo~.¢x(Xo) = T~o~ ~(xo)  = ~(~(Xo)) = ¢(x). 

The statement  about the projectable vector fields on P~o(o) is easily checked, and the 

formula for the flow of (x  also follows by projecting it from P*o (9). [] 

6. Paral le l  t ransport  

6 .1 .  Local  descr ipt ion  o f  principal  connect ions .  Let M be a locally trivial l~- 
manifold with projection p : M --. N := M/g  and with standard fiber S. 

Let (Us, q0s: p-l (U~)-~ Us x S) be an atlas of bundle charts as specified in 2.1(7). 
Then we have (~ro/3o~1)(x, s) -~ (x,~lSs(X,8)) for (x,s)  E (VsNVl3) x S, where ~?sz(x,-) 
is a fl-equivariant diffeomorphism of S for each x E M. See also 5.9. 

Let • E ~ I ( M ;  TM)9 be a principal connection. Then we have 

( ( ~ ) )  ) ( ~ x , ~ / y ) = : - F ~ ( ~ x , Y ) + y y f o r ~ e T ~ U s  a n d u y e T y S ,  
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since it reproduces vertical vectors. The F ~ are given by 

(0~:, F ~ ( ~ ,  y)) := - T ( ~ )  - ( I ) -T(4~)-"  ' ((¢, 0v). 

We may consider F ~ as an element of the space fll(U~; Zx(s)(g)),  i.e., as a 1-form 
on U ~ with values in the centralizer Z~(s)(g ) of i s ( 9 )  in the Lie algebra 3~(S) of all 
vector fields on the s tandard fiber. This space is finite dimensional by Lemma 5.9. This 
follows from the naturahty of the Frblicher-Nijenhuis bracket [9, 8.15] via the following 

computation,  with some abuse of notation: 

0 = [(x~,¢] = 4*[0 × ¢ ~ , p r : - r  ~] = 4~(0 × [ (xS , IdTs- r~] )  

= - 4 ; ( 0  × 

since Idzs  is in the center of the FrSlicher-Nijenhuis algebra. 
The F ~ are called the Christoffel forms of the connection • with respect to the 

bundle atlas (U~, 4~). 
From [9, 9.7] we get that the transformation law for the Christoffel forms is 

T (4 z(x, ) )  y) = y)) - 

The curvature R of • satisfies 

1 ~ ~ A d r  + , = F ]x(s)- 

Here dF ~ is the exterior derivative of the 1-form F ~ E f~l(U~; Zx(s)(g)) with values in 

the finite dimensional Lie algebra Zx(s)(9 ). 

6.2.  A s y s t a t i e  l oca l l y  t r iv ia l  t p m a n i f o l d s .  A locally trivial t~-manifold M is called 
asystatic if the normalizer Ng(~t~) = l~ for any isotropy subalgebra l~x of M.  From 6.1 

and 5.9 we have immediately: 

P r o p o s i t i o n .  An asystatic locally trivial tpmanifold admits a unique principal con- 
nt ction. This principal connection is flat. Its horizontal space at x E M is the subspace 
of T x M  on which the isotropy representation of 9~: vanishes. 

6.3.  H o r i z o n t a l  l i fts  on loca l ly  trivial  g-man i fo lds .  Let ~ be a connection on the 
locally trivial g-manifold ( M , p , N  = M / g , S ) .  Then the projection ( T r M , T p ) : T M  
M ×N T N  onto the fibered product restricts to an isomorphism ker(~)  ~ M ×N T N  
whose inverse will be denoted by C : M × N T N  ~ T M  and will be called the horizontal 
lift. If ( E X ( N )  is a vector field on the base then its horizontal lift C(~) is given 
by C(~)(y) = C(y,~(p(y))) .  In a bundle chart we have T ( 4 ~ ) '  C (~ ) (421(x , s ) )  = 
( ( (x) ,  F~(~(x))(s)) .  Thus we see from 6.1 that C(~) commutes with all fundamental  

vector fields: [(M, C(~)] = 0 for all X E g and ( E X(N).  
Note that the g-equivariant vector fields on M which are horizontal in the sense that 

they take values in the kernel of the connection • are exactly the horizontal lifts of 

vector fields on the base manifold N. 
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6.4.  T h e o r e m .  (Parallel t ransport) .  Let (I) be a connection on a locally trivial 9- 
manifold ( M , p , N  = M / g , S )  and let c :  (a,b) --* N be a smooth  curve with 0 E (a,b), 
e ( 0 )  = x .  

Then  there is a neighbourhood U of M~ × {0} in M~ × (a, b) and a smooth  mapping 
Ptc : U ~ M such that: 

(1) p (Pt (c ,  u~, t)) = c(t) if defined, and Pt(c ,  u~, 0) = us. 
(2) ¢ ( d / d t  Pt(c, ux, t) ) = 0 if defined. 
(3) Reparametr izat ion invariance: If f :  (a ~, b') --. (a, b) is smooth  with 0 E (a ~, b~), 

then Pt(c ,  us, f ( t ) )  = Pt(c  o f ,  Pt(c,  u~, f (O)), t)  if defined. 
(4) U is maximal  for properties (1) and (2). 
(5) If the curve c depends smoothly on further parameters  then Pt(c,  ux, t) depends 

also smoothly  on those parameters .  
(6) If ~ E X ( N ) i s  a vector field on the base and C(~) E X ( M ) i s  its horizontal lift, 

then Pt(Fl~(x) ,  us, t ) =  Fl~C(~)(u~). 
(7) For each X E 9 the restrictions of the fundamental  field ~x to M~ = p - l ( x )  and 

to M~( 0 are Pt(c , t ) - re la ted:  T ( r t ( c , t ) ) o  ~XIMx = (~X]Mc(t))o Pt(c , t ) .  

P r o o f .  All assertions but the last two of this theorem follow from the general result 
[9, 9.8]. The  assertion (6) is obvious and for (7) we first note that  it suffices to show it 
for curves of the form c( t ) - -  Fl~(x). But then by (6) and by 6.3 we have 

d p t ( c ,  t ) ' (  ~xiM¢(,)) = d(FltC(~')*((X),M~ = (FI~(~')*([C(~), ~x])IM~ 

= 0  
so that  Pt(c, t )*(~xiMc(o)  is constant  in t and thus equals (X]M~. [] 

6.5.  P a r a l l e l  t r a n s p o r t .  Now we consider a 9-manifold M which admits  a principal 
connection (I). Guided by the last remark in 6.3 we call parallel transport each local 
flow Fl~ along any horizontal 9-equivariant vector field on M.  

6.6 .  C o m p l e t e  c o n n e c t i o n s .  Let M be a locally trivial g-manifold with projection 
p : M ---, N := M / g  and with s tandard  fiber 5'. Following [9, 9.9] we call a principal 
connection (I) complete if for each curve c : (a,b) ~ N the parallel t ransport  Pt (c , - )  is 
defined on the whole of p-l(c(O))× (a, b). 

P r o p o s i t i o n .  In this situation, if  each vector field in the centralizer Zx(s)(g ) of the 
9-action on S is complete, then each principal connection on M is complete. 

P r o o f .  It suffices to show that for each curve c : (a, b) ~ U the parallel t ranspor t  
P t ( c , t )  is defined on the whole of Me(0) for each t E (a,b), where ( U , ~ : M I U  ~ U × S) 
is a bundle chart,  since we may piece together such local solutions. So we may  assume 
that  M = N × S is a trivial g-manifold. Then by 6.1 any principal connection is of 
the form (I)(~x, ys) = ~/3- F(~x)(s), where F E ~ I (N; [~ ) i s  the Christoffel form with 
values in the centralizer algebra b := Z~(s)(g), which is finite dimensional by 5.9. Since 
all vector fields in this Lie algebra are complete we may integrate its action on S to 
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a right action r : S × H ~ S of a connected Lie group H with Lie algebra [}. Then 
t ~ F(c'( t ))  is a smooth curve in [} which we may integrate to a smooth curve b(t) E H 
with b(0) = e and b'(t) = Lr(¢,(o)(b(t)) where L x  is the left invariant vector field on H 
generated by X E I~. It is an integral curve of a time dependent vector field on H which 
is, locally in time, bounded with respect to a left invariant Riemannian metric on H. 
So indeed b: ( a , b ) ~  H. But then P t ( c , t , u )  = (c ( t ) , r (u ,b ( t ) ) )  for each u E Me(0 ). [] 

6.7. T h e o r e m .  Let p : M ---* N := M / g  be a locally trivial g-manifold with standard 
fiber S. Let • be a complete principal connection on M.  Let us assume that the hold- 
nomy Lie algebra of • in the sense explained in the proof consists of complete vector 
fields on S. 

Then there exists a finite dimensional Lie group H with Lie algebra I}, a principal 
I t -bundle P ~ N ,  an irreducible principal connection form w on P, and a left action 

of H on the standard fiber S such that: 
(1) The fundamental  vector field mapping of the H-act ion on S is an injective Lie 

algebra ant ihomomorphism ~ ---, Zx(s)(g ). The H-act ion on S commutes pointwise 
with the g-action. 

(2) The associated bundle P[S] = P ×H S is isomorphic to the bundle M ~ N .  
(3) The g-principal connection ~) on M is induced by the principal connection form 

0.; on  P .  

P r o o f .  We suppose first that the base N is connected. Let x0 be a fixed point in N,  
and let us identify the s tandard fiber S with the fiber Mx0 of M over x0. Since (I) is 
a complete connection on the bundle M ~ N we may consider the holonomy group 
Hol(O, x0) consisting of all parallel transports with respect to (I) along closed loops in 
N through x0, and the holonomy Lie algebra hol((I),x0), which is defined as follows 
(see [9, 9.10]): 

Let C : T N  ×N M ~ T M  be the horizontal lift and let R be the curvature of 
the connection ~. For any x E N and X~ E TxN  the horizontal lift C ( X x )  :=: 
C(Xx, . )  : M~ -* T M  is a vector field along M~. For X~: and Yx E T~N we con-- 
sider R ( C X ~ , C Y ~ )  E X(M~). Now we choose any piecewise smooth curve c from Xo 
to x and consider the diffeomorphism Pt (c , t )  : S = M~ 0 ---* M~ and the pullback 
Pt(c,  1)*R(CXx ,  CY~) E X(S). Then hol(¢,  Xo) is the closed linear subspace, generated 
by all these vector fields (for all x E N,  X~, ]Ix E TxN  and curves c from Xo to x) in 
.~(S) with respect to the compact C°°-topology. 

In each local chart ( U ~ , ~  : MIU -* U × S)  the curvature is expressed by the 
c~ A Christoffel form via (~2~1)*R = d P ~ +  ½[F ~, F ]x(s), see 6.1, and since F a takes values 

in Zx(s)(g),  the local expression of the curvature (~I)*R does it also. The parallel 
t ransport  Pt '~(c, t)  along any curves relates g-fundamental vector fields to itself by 
6.4(7). Thus the holonomy Lie algebra hol(¢,  x0) is contained in the centralizer algebra 
Z~(s)(g),  so it is finite dimensional. 

By assumption hol (¢ ,x0)  C X(S) consists of complete vector fields. Thus all condi- 
tions of Theorem [9, 9.11] are satisfied and all conclusions follow from it. [] 
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6.8. R e m a r k .  In the situation of Theorem 6.7 let us suppose that the centralizer 
algebra Z~(s)(g ) consists of complete vector fields. Then the each principal connection 

is complete by 6.6 and the holonomy Lie algebra hol(~,x0) C Z~(s)(g ) is also 
complete, see the Proof of 6.7. Thus the conclusions of Theorem 6.7 hold. 

7. C h a r a c t e r i s t i c  c lasses  for g -mani fo lds  

7.1. Bas ic  c o h o m o l o g y .  Let M be a g-manifold. Following 4.2, by ~ o r ( M )  g we 
denote the space of all real valued horizontal forms on M which are 9-invariant: £(x ~ = 
0 for all X E it. These forms are called basic forms of the g-manifold M. 

L e m m a .  In this situation the exterior derivative restricts to a mapping 

d:  ~ , o r ( i  )g ~ f~+r 1 ( i ) a  

P roof .  Let ~2 E ~ o r ( / )  ~ then for X E g we have 

i(x d~ = i~x d~ + di~x ~ = £~x ~ = 0 

£~xdq~ = d£(x ~ = O. [] 

The cohomology of the resulting differential complex will be called the basic coho- 
mology of the 9-manifold M: 

H~(M) := ker(d : fl~or(M) g -~ ~o+rl(M) ~) 

In the case of a 9-manifold M of constant rank this cohomology is exactly the basic 
cohomology of the orbit foliation of M, defined by Reinhard [17] and intensively stud- 
ied in the theory of foliations, see [13], appendix B by V. Sergiescu. Note that this 
cohomology may be of infinite dimension, see [18] and [6]. 

If f : M ~ N is a smooth g-equivariant mapping between g-manifolds M and N,  
then the pullback operator induces a mapping f* : ~ o r ( N )  ~ ---* ~ o r ( M ) ~  which in turn 
induces a linear mapping in basic cohomology f * :  H ~ ( N ) ~  H~(M).  If f , g :  M ---. N 
are smoothly homotopic through g-equivariant mappings then they induce the same 
mapping in basic cohomology. 

7.2. C h e r n - W e i l  fo rms .  If f E Lk(9) := ( ~ k  g.) is a k-linear function on 0 and if 
~bi E ~m(M;  9) we can construct the following differential forms (see 4.1): 

¢1 ®^--. ®^ Ck c ~p,+'"+pk(M; g ®.. .  ® g), 

f¢ '  ..... ¢k := f o (¢1 ® ^ ' " ® ^  Ck) e aPl+'"+Pk(M). 

The exterior derivative of the latter one is clearly given by 

d( f  o (¢1 @ ^ ' " ® ^  ¢k) ) f  o d(~bl@^...@^ ¢k) 

= f o (--1)Pl+'"+P'-I~bl ® ^ " "  ®n d~bi ®^ . . -®^  ~bk • 
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Note that  the form f¢~ ..... Ck is basic, i.e., g-invariant and horizontal,  if all ~; E 
F/p' CM-g)g and f is invariant under the adjoint action of g on g ( f  E Lk(g) ~) in hor~ ' 
the following sense: 

7.3.  D e f i n i t i o n .  Let p : g --, gt(V) be a representation of g. f E Lk(V) is called g- 
invariant if ~--~=1 f ( v l , . . .  , p (X )v i , . . . ,  vk) = 0 for each X E g. If f is g-invariant then 
we have for ~/~i E ftP'(M; V) and any ~ E tiP(M; g), by applying alternation: 

(£, ) f o --1)(pl"4-'"'4-pI--1)P~)I CA' ' "  e ^  PA((t~)~-Zi CA' ' "  e ^  ~)k = 0. 

\ i = 1  

7.4.  L e m m a .  Let M be a g-manifold with a principal connection form w and let 
be its curvature form. Let f E Lk(g) ~ be g-invariant under the adjoint action then the 
differential form f a  := ff2 ..... f~ E ~2k(M)~ is a closed g-invariant form. 

If moreover M is a free g-manifold, then ~ and consequently f~  are horizontal, so 
ff~ E ~2Pr(M)8 is a closed basic form. 

P r o o f i  We have in turn  by 7.2 and the Bianchi identity 4.6 

df f~ = d ( f  o (fl ®^ . . .@^ ~)) 

: o(S 
which is 0 by 7.3. The  second s ta tement  is obvious. 

f~®^..'@^ [~,fl]^ O^ " O^ fl) 

x 

@^ . . .@^ ad^(c~)~®^ . . .®^  f l )  

[] 

7.5.  P r o p o s i t i o n .  Let ~o and O) 1 be two principal connection forms on the g-manifold 
M with curvature forms ~0, ~1 E ~2(M;  g)g, and let f E Lk(g) ~. Then the cohomology 
(:lasses of the two closed forms f~o and f~l in H2k(M) coincide. 

If M is a free g-manifold then the curvature forms rio, ~ are horizontal and define 
the same basic cohomology classes in U 2 k ( i ) =  H2k(f l~or ( / )g ) .  

Thus  for f E Lk(g) g the cohomology class [fa] E H2p(M) depends only on f and 
the g-action and we call it a characteristic class for the g-action. 

If M ~ M / G  is a principal G-bundle, thus M a free g-manifold, we have just  
reconst ructed the usual Chern-Weil  characteristic classes. 

If M is a homogeneous  g-manifold (e.g., a homogeneous G-manifold H\G) ,  by The- 
orem 5.8 these characteristic classes in H2m(M) are usual characteristic classes of the 
principal F(g)x0-bundle Pxo(g) -~ M, but possibly not all of them: only those arising 
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from invariant polynomials on gx0 which are restrictions of invariant polynomials on g 

appear. 

P r o o f .  For each t E I~ we have a principal connection form wt := (1 - t ) w o  + twl ,  and 
also consider its curvature f t  := dwt + ½[wt,wt] A. Since Otwt = ~1 - Wo we get 

Otf/t = dOtwt + [wt, Otwt] A 

= d(w,  - W o )  + [wt,w, - w 0 ]  A = d~t(w,  - W o ) .  

Note  tha t  dojt(wl - W o )  makes  sense since wl - w 0  e f ~ o r ( M ; g )  ~. We will also need  
the  Bianchi  iden t i ty  d~tf/ t  = df/t  + [wt, f t ]  A = 0, see 4.6. Since f/t is a 2-form we m a y  

assume tha t  f is symmet r i c .  Then  we have in turn:  

Otf  fh = O t f ( f t , . . . , f t )  = P" f ( O t f t , f t , . . . , f t )  

= p .  f ( d ~ , ( w l  - wo), f i t , . . . ,  f t )  
p 

= p.  f ( d ~ , ( w l  -wo), f , . . . , f , ) -  P Z f ( w l  -wo ,  f t , . . .  , d ~ , f t , . . .  ,f/t) 
i=2 
P 

= p .  f ( d ( w l  -wo), f/t,...,ft) - p Z f ( w l  - w o , f ~ t , . . . , d f t , . . .  ,-f/t) 
i=2 

+ p .  f([~zt,wl - ~.,o] ̂ , f t , . . . ,  f t )  
p 

- p ~ f (wl  - w o ,  f / t , . . . ,  [a;t, f t ] A , - . . , f t )  
i=2 

= p" df(Wl - Wo, f t , .  • . ,  f i t) ,  

where  we again used 7.3 in the form 

0 = f ( [wt ,Wl  - Wo] A, f / t , . . . ,  f t )  - 
P 

f ( w l  - - W O , f t , . . . , [ W t ,  f / t ] A , . . . , f / t ) .  
i+2 

Since T ( f , f / t )  := f ( ~ l  - w0 , f / t , . . . , f / t )  E f~Vo~-'(M)~, the following form is exact in 
(f~* ( M ~  d~" hork ] ~ ]" 

/0' /0' (/o I ) f a ,  _ fno = Ot fn td t  = p d T ( f ,  f t ) d t  = d p .  T ( f ,  f t ) d t  . [] 
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