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Abstract 

Lattice rules are equal weight numerical quadrature rules for the integration of periodic functions over the s- 
dimensional unit hypercube U ~ = [0, 1) s. For  a given lattice rule, say QL, a set of points L (the integration lattice), 
regularly spaced in all of g~s, is generated by a finite number of rational vectors. The abscissa set for QL is then 
P(Q~,) = L c~ U s. It is known that P(QD is a finite Abelian group under addition modulo the integer lattice 7/", and that 
QL(f) may be written in the form of a nonrepetitive multiple sum, 

1 Z "'" E f " / lZ1+  "'" + zm , 
QL(f) nl - n,, i,=i .i~=I \ n l  

known as a canonical form, in which + denotes addition modulo Z s. In this form, zi ~ 7/5, m is called the rank and 
n l, n2 . . . . .  n,, are called the invariants of QL, and ni÷llnl for i =  1, 2 . . . . .  m -  1. The rank and invariants are uniquely 
determined for a given lattice rule. In this paper we provide a construction of a canonical form for a lattice rule QL, given 
a generator set for the lattice L. We then show how the rank and invariants of QL may be determined directly from the 
generators of the dual lattice L z . 
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I .  I n t r o d u c t i o n  

Lattice rules are numerical quadrature rules for the integration of periodic functions over the 
unit hypercube U s = [0, 1)L They are generalisations, introduced in [10, 113, of the trapezoidal rule 
in one dimension, and of number theoretic rules in higher dimensions. 

D e f i n i t i o n  I . I .  L e t  s t> 1. 

(a) A n  in tegrat ion lat t ice in s d imens ions  is a s u b s e t  L o f  R s s u c h  t h a t :  

(i) L ~ 7/~, 

(ii) x l , x 2  ~ L ~ X l  ___ x2 ~ L,  a n d  

(iii) i n f ( f l x l  - x2 [ 1 : x l , x 2  ~ L ,  x l  ~ x2} > O. 
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(b) The lattice rule QL corresponding to the integration lattice L is the rule defined by 

1 
- -  Z f (x ) ,  

QL( f )  - N(QL)x~t.~vs 

where N(QL) is the cardinality of the set L ~ U s. 
(c) The abscissa set of the lattice rule QL is the set P(Q~.) = Lc~ U s. 

Sloan and Lyness [12, Theorem 2.3] have shown that  P(QL) is an Abelian group under  addi t ion 
modulo  7/~ and, in particular, that  P(QD ~- L~ 7/s. Further ,  P(QD is finite and so the basis theorem 
[12, Theorem 3.1] for finite Abelian groups holds. For  ease of reference, we restate this theorem 
here. 

Theorem 1.2 (Basis theorem for finite Abelian groups). A nontrivialfinite Abelian group P may be 
expressed as a direct sum 

P ~ Dx O D2 0 ... G D,,, 

where Di is a cyclic subgroup of  P of  order n~ > 1, and 

ni+l[ni for i = l , . . . , m - 1 .  

The numbers m and n~, n2 , . . . ,  nm are uniquely determined. 

Since P(QL) is a finite Abelian group,  it follows [12, Theorem 4.1] that  a lattice rule QL is 
expressible in a form 

/ I  1 n m 

- -  ~ "'" ~ f ( j l g l  + "'" + jmgm), (1.1) 
QL( f )  - N(QL) j, = x jm = x 

where + denotes addi t ion modu lo  7/S, gi e P(QL) for each i = 1,... ,m, andg i  = (1/ni)z~, with n ie  Z 
and zi e 7/s. The implication of Theorem 1.2 is that  there exists an expression for Q L ( f )  in the form 
of (1.1) in which each element of P(QL) is generated only once during the summation.  Such a form is 
said to be nonrepetitive. Using this terminology, the application of Theorem 1.2 to P(QL), together 
with the observation that  an integration lattice L in s dimensions is generated by s linearly 
independent  vectors, yields the following result [12, Theorem 4.5]. 

Theorem 1.3 (Sloan-Lyness).  
form 

1 
F, "'" 2 f J l z l  + "'" +Jmzm 

Q L ( f )  - n l  . . .  j , =  l j o =  n l  n--£ ' 

where m and n~ . . . . .  n,, are uniquely determined natural numbers satisfying 1 <~ m <~ s and 

ni+llni, i = 1 . . . . .  m - 1; nm > 1. 

The vectors Z~,...,Zm are linearly independent and have integer components. 

An s-dimensional lattice rule QL can be expressed as a nonrepetitive 

(1.2) 
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Definition 1.4 (Sloan-Lyness). Using the terminology of Theorem 1.3, 
(a) the number m is called the rank of QL, 
(b) the numbers n l . . . . .  nm are called the invariants of QL, and 
(c) the expression for QL given in (1.2) is called a canonical form for the lattice rule. 

In investigating the properties of lattice rules it is of interest to be able to compute a canonical 
form for a given lattice rule. Usually a rule QL is defined by a set of generating vectors for P(QL), 
with no guarantee that the form (1.1) corresponding to this set is either canonical or nonrepetitive. 
Also, the proof in [-12] that a canonical form of the rule exists is nonconstructive, leaving open the 
question of how to compute such a form for QL- This is the primary question that we shall address 
in this paper. 

The approach which we shall follow is based on a constructive proof of Theorem 1.2. In 
Section 2 we show how the construction may be adapted to provide an algorithm for computing 
a canonical form for a lattice rule, given a generator set for the rule. This section contains the 
principal results of the paper. In Section 3 we present a simple example to illustrate the use of the 
algorithm, and in Section 4 we consider the significance of our results in the context of the dual of 
the integration lattice, a definition of which will be given in that section. Some concluding remarks 
are presented in Section 5. 

2. Construction of a canonical form 

We consider now the problem of constructing a canonical form for a lattice quadrature rule QL. 
Before proceeding with the development of the construction, we recall that the algebraic structure 
of the abscissa set P(QL) is that of an Abelian group. The algebraic structure of the corresponding 
integration lattice L is that of a particular type of Abelian group, namely a free Abelian group, 
which term we define below. Loosely speaking, the axioms obeyed by a free Abelian group are 
those obeyed by a vector space in which the underlying field has been replaced by the ring of 
integers. Consequently, many of the techniques of linear algebra may be drawn upon, with some 
modification, in the study of free Abelian groups and related structures. In particular, we shall 
require the following definitions and results from Abelian group theory for the construction of 
a canonical form for a lattice rule. A more complete discussion of them may be found in standard 
texts such as [3, 6]. Note that we shall use additive notation for the group operation, but we shall 
denote quotient groups using the notation F/K. 

Definition 2.1. Let F be an Abelian group and G = { g l , g 2  . . . . .  gv} c_ F. 
(a) An element f e  F is a linear combination (over 7') of the elements g l , . . . ,  g~ of G if there exist 

integers 21, . . . ,  2v such that E~'= 1 2igi = f  The set of all such linear combinations is denoted by 
span(G). 

(b) A relation on G is a linear combination over Z of the elements of G satisfying ZT= 1 ,l,g, = o. 
The tuple (21,22,. . . ,  2v) e 7/v is called a relator on G. 

(c) G is called a generator set for F if every f e  F can be written as a linear combination over Z of 
elements of G. 
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(d) The set G is linearly independent over 7/if the equation E~:= x 2igi = 0 has the unique solution 
21 . . . . .  2, = 0, where 2i e 7/. 

(e) A presentation o f F  is a pair ( G : R )  such that G is a generator set for F and R is a defining set 
of relators on G, that is, a set {rl, r2 . . . .  , rt} of relators on G such that 

~ 2 i g i  = 0 if and only if (21, ~'2, "",'~v) (~ span(R). 
i=1 

(f) The set G is said to generate F freely if 
(i) G generates F, and 

(ii) G is linearly independent over 7/. 
In this case G is called a basis of F, and F is said to be free. 

Theorem 2.2. Let  F be an Abelian group and G = { g l , g 2 ,  . . . ,gv} ~ F. Then the following are 
equivalent: 

(a) G generates F freely, 
(b) every map G ~ P, where P is an Abelian group, extends to a homomorphism F ~ P, 
(c) every f e F is uniquely expressible in the form f =  ~ =  1 2igi' where 2i ~ 77, and 
(d) every gi ~ G is aperiodic, and F ~- 77gl O) 7/g2 • "'" O) 77gv. 

Corollary 2.3. An Abelian group F is freely generated by v elements if  and o n l y / f F  -~ Z • -.. ~) Z, 
with the direct sum containing v terms. 

Theorem 2.4. Let F be a free Abelian group. Then every basis o f F  has the same number o f  elements. 

Definition 2.5. Let F be an Abelian group freely generated by v elements. Then v is called the rank 
of F. 

The terminology introduced in these definitions may be applied to both the integration lattice 
L and the abscissa set P(QL) of a given rule QL, since both are finitely generated Abelian groups. 
The following result establishes that L is free. 

Theorem 2.6. Let  L be an s-dimensional integration lattice. Then L is a finitely generated free 
Abelian group of  rank s. 

Proof. Since L is closed under addition in ~s it follows that L is an Abelian group. We show firstly 
that it is finitely generated. F rom part (a) (iii) of Definition 1.1 it follows that P(QL) is finite. Further,  
G = {el . . . .  ,es}wP(Qz) ,  where {el, . . . ,es} is the standard Cartesian basis for Z s, is a (finite) 
generator set for L. To establish this we may use the following argument  by contradiction. Assume 
that there is some x ~ L such that x is not expressible as a linear combination over 7/of the elements 
of G, and let I x ]  = ~ =  1Lxi_]ei denote the integer part ofx .  Then l-xJ ~ L and x' --- x - / x J  ~ L 
by the closure of L under addition, and clearly x ' e  U s. Hence x ' ~ P ( Q L ) ~  G. But 
x = x ' +  l_x] = Z~=I [_xi_]ei + x', which contradicts our assumption. 
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To establish that L is free and of rank s we note that G consists of v = s + N elements, where N is 
the order of P(QD. It is known [11, Lemma 1] that the quadrature  points of QL are rational 
vectors, from which it now follows that the elements of L are rational vectors. Thus we may  denote 
the elements of G by p l / q l , . . .  ,p~/q~, where these are rational vectors in their lowest terms, that is, 
where qi > 0,pi = (pl ~) . . . . .  p~)) ~ Z s and gcd(pl 1), ... ,pJS),qi) = 1. Let M = LCM(q~ . . . . .  q~), where 
LCM denotes the least common multiple of its arguments, and define by M L  the set {Mx: x ~ L}. 
Then clearly M L  is an Abelian group under the operation of addition in R ~ and, furthermore, it is 
isomorphic to L. But the elements of M L  are integer vectors, so M L  is also a subgroup of 77 ~ and 
thus is free and of rank at most s (see, for example, [3, Theorem 7.8]). Consequently, L is also free 
and of rank at most s. Finally we observe that 7/~ ~ L and hence that L must be of rank at least s. 
The result now follows. []  

Both L and P(QL) may be specified by presentations. Since L is free it has no nontrivial relators 
and so is completely specified by a generator set G = {gl, .-. ,gv}, say. On the other hand, P(QL) is 
isomorphic to the quotient group L/Z  ~, with the group operation being addition modulo 7/~ in L. 
Thus a presentation of P(QL) is ( G : R } ,  where R spans the set of tuples (21, ...,2v) such that 
E v= 1 •igi ~ Zs" 

Before stating our main results we note that a set of v generators for an s-dimensional integration 
lattice L (with, necessarily, v/> s), represented by an s x v matrix of column vectors, can always be 
reduced to a basis of L by a finite sequence of elementary integer column operations. The execution 
of such a sequence of operations reduces the complexity of subsequent calculations. In particular, if 
G ---- { g l , g 2 ,  . - - , gv}  is a generator set for L then it is straightforward to show that the following 
algorithm provides one method for computing a basis A = {al, a2 ,  . . . ,  as} of L. Note  that a multi- 
plicative factor # is used to transform the problem into one whose solution requires only integer 
arithmetic. 

Algorithm 2.7. 
Notation: The jth column of  a matrix X is denoted by x i. The symbol I qJ denotes the greatest 
integer z less than or equal to q. 
Input: An s x v matrix G with nonzero columns which generate the s-dimensional integration 
lattice L. 
Output:  An s x v matrix G = (,4 10) such that A is lower triangular and has linearly independent 
columns which form a basis for L. 
Begin 

For j = 1,2, . . . ,v  do 
mj ~- least m ~ [~ such that mgj ~ 77 ~ 

Endfor 
# ~- LCM(ml ,  m E , . . . ,  my) 
H ~  ~G 
For k = 1 ,2 , . . . , s  do 

For j = k ,k  + 1 . . . . .  v do 
I f  hkj < 0 then h) ~- - lhj  

Endfor 
While 3j ~ {k + 1,. . . ,  v} such that hkj -7 6 0 do 
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p *-- m e { k , . . . ,  v} such that Vj  e { k , . . . ,  v}, (hkj = 0 or 0 < hkm <. hkj) 

m* *-- hkp 
hp ~ hk 
F o r j  = k + 1, k + 2 , . . . , v  do 

hj hj - I (hkdm*) dhk 
End for  

Endwhile 

Endfor 
G ~ (1/p)H 

Stop 

Remark. Algorithm 2.7 is included for completeness, and has not been designed with efficiency in 
mind. The basic idea of the algorithm is to compute a lower triangular matrix H whose columns 
span the integer lattice generated by the columns of #G. Further reduction of the nonzero elements 
of H leads to a Hermite  normal form ofl~G, as described in [1], which has the same property. More 
sophisticated algorithms which produce the Hermite normal form of a matrix are described in 
[5, 7]. 

Definition 2.8. A nonsingular matrix A is a generator matrix  for an integration lattice L if the 
columns of A form a basis for L. 

Algorithm 2.7 and Definition 2.8 allow us to restate our problem as follows: given a generator 
matrix A for the s-dimensional integration lattice L, find a canonical form for QL. 

Theorem 2.9. Let  L be an s-dimensional integration lattice with generator matrix  A and let R = A - 1 
Then there exist  s x s integer matrices X and Y, invertible over 7/, such that 

D = XRY = diag(dl, d2, . . . ,  ds) 

and dl [ d2 [ "'" [ ds, that is, D is the Smith normal form o f  A - 1. Also, let m = s - u, where u denotes the 
number o f  unit entries in D, and, for i = 1, 2 . . . .  , s, let ni = ds + 1 - i and zi = y~ + 1 - i. Then, for  f :  R ~ ~ R, 

Q L ( f ) - n l  n~ j ,=l Jm=l \ n l  nr, 

is a canonical form o f  the lattice rule QL. 

Remark. The proof of Theorem 2.9 relies on the fact that P(QL) is a finite Abelian group [12, 
Theorem 2.3] and that therefore Theorem 1.2 applies. A constructive proof of Theorem 1.2 has long 
been known. The earliest version of which we are aware is due to van der Waerden [15] in the more 
general context of finitely generated modules over principal ideal domains. More recent treatments 
appear in [3, 6]. We shall restrict our consideration to the class of finite Abelian groups. 

Constructive proofs of Theorem 1.2 rely on the existence of a homomorphism from a finitely 
generated free Abelian group onto the group P. That homomorphism is determined by an explicit 
presentation of P and gives rise to an integer matrix R from which may be deduced, using a result of 
Smith [14, Article 14], a direct sum decomposition of P into cyclic subgroups. The essential step is 
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the reduction of R to Smith normal form, that is, the construction of integer matrices D , X  and 
Y such that D = XRY is diagonal and each diagonal entry divides the succeeding ones. The matrix 
D may be constructed by integer elementary row and column operations with greatest common 
divisor calculations replacing the division operations used in linear spaces over a field. The 
matrices X and Y are products of the elementary matrices which correspond respectively to the row 
and column operations and are therefore invertible over 7/. From here it may be shown (see, for 
example, [3, Ch. 10]) that, if ri is the ith column of R and ( g l , g 2 , . . . , g v :  rl,rz,. . . ,rv) is 
a presentation of P, then the group elements g~ defined by 

g~ = ~ xjigj, 
j = l  

where ~ii denotes the entry in row j and column i of X - l ,  are generators of P with orders 
dl I d21 "'" I dv satisfying the requirements of Theorem 1.2. Note that, in general, some of these 
generators may be the identity element, with order 1. 

Computer  programs which implement the construction of a Smith normal form have been 
published by a number  of authors, the first to our knowledge being Smith [13]. More  recently, 
a variation of the algorithm due to Havas and Sterling [4] has been included in the standard 
function library of the group theoretic programming language Cayley [2]. Other  relevant vari- 
ations are described in [1, 5, 7]. 

In order to prove Theorem 2.9, then, we must derive an explicit presentation of P(QL) by 
establishing that the columns of R = A -  1 constitute a defining set of relators on the generators 
al ,a2 , . . . , a~  given by the columns of A. Van der Waerden's construction then yields a set of 
nontrivial generators {(1/n1)zl, (1/n2)z2, . . . ,  (1/n,,)Zm} which satisfies the requirements of a ca- 
nonical form of QL. 

Proof of Theorem 2.9. Since A is a generator matrix for L it is nonsingular, that is, R = A - 1 exists. 
Let a~ denote the ith column of A. We must show that R = {rl, r2 . . . .  , r~}, the set of columns of R, is 
a defining set of relators on the set A = {al,a2,  ... ,a~} for the group P(QL). Now P(QL) -~ L /Z  ~, so 
a defining set of relators must span the solutions of the system of congruences 

~ ¢jaj =-- 0 modulo 7/~, 
j=l 

that is, the set S _ 7/~ defined by 

S = {c ~ Zs: Ac  = 0 modulo Zs}. 

Let {el, e2 , . . . ,  e~} be the standard Cartesian basis for 7/~. Now A is a basis for L and L _~ 7/s, so for 
each i = 1, 2 , . . . ,  s there exists a unique linear combination of the elements of A such that 

r j a j  ~ e i .  
j = l  

That is, there is a unique r e 7/~ such that Ar  = el. Clearly, these solution vectors are the elements 
of R and, therefore, R ~ S _ 7/~. Next we show that span(R) = S. We have: Ar  = 0 modulo Z ' 

s if and only if A r = c  =y~i=lc~e~ for some c e2~ ~. This is the case if and only if 
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r = ~ i :  1 c i A -  1el = ~ =  1 ciri. Thus S = span(R) and R is a defining set of relators on A. We may 
now construct a decomposit ion of P(QL) into direct sum of cyclic subgroups via the reduction of 
R to Smith normal form as described in the preceding remark. For  further details, the interested 
reader is referred to I-3, 6-1. In particular we obtain by this construction the required matrices X, 
Y and D. Now D = XA - 1y and hence A X -  1 D  = Y. For  i = 1, . . . ,  s let 

Zi : Ys+ l - i  : ni Xj, s+ l - i a j ,  
j = l  

where X - ~ = ( 2 j k ) ,  then by construction n~+llni for i = l , 2 , . . . , m - 1 ,  with P(QL)-~  
( ( 1 / n l ) z l )  G "" ~ ((1/nm)Zm). Thus (2.1) is a canonical form of QL. [ ]  

In practice, the method implied by Theorem 2.9 for computing a canonical form of a given lattice 
rule consists of finding a generator matrix A for the integration lattice, inverting this matrix and 
then reducing the inverse to Smith normal form. We may improve upon this method by avoiding 
the computa t ion  of A-1  and instead reducing an appropriately scaled multiple of A directly to 
Smith normal form. 

Theorem 2.10. Let  L be an s-dimensional integration lattice with generator matr ix  A. Then  there 
exist  s x s integer matrices U and V, invertible over 7/, and an s x s  integer matr ix  D * =  
diag(nl, n 2 ,  . . . ,  ns) such that ns [ns- 11"" [ nl and 

U - 1 D  * - I  = A V .  

Also, let m = s - u, where u is the number o f  unit entries in D*, let Z = U -  ~ and let the ith column o f  
Z be denoted by zi. Then,  f o r  f :  R s -~ R, (2.1) is a canonical f o rm  o f  the lattice rule QL. 

Proof. Let ai denote the ith column of A. As we have noted previously, the elements of ai are 
rational since A is a generator matrix for L. Hence, for each i = 1, 2 , . . . ,  s there exists a positive 
integer m~ such that miai ~ 7/s and kai¢7/s for 0 < k < m~. Let # = LCM(ml ,  m2, . . . ,  ms). Then/~A is 
an integer matrix and so there exist s x s matrices U and V, invertible over 7/, and a diagonal matrix 
T = diag(tl ,  t2 . . . .  ,ts), the Smith normal form of #A, such that tilt~+ 1 for i = 1,2, . . . ,  s - 1 and 

U( A)V =/ UAV = T. 

Inverting both  sides of this equation and multiplying by #, we obtain 

V- 1A- 1 U -  1 = / i T -  1 = diag ' t2 . . . .  ' " 

But, by the argument of Theorem 2.9, the columns of A-1  are relators on the generator set 
A = {a l ,a2 ,  ... ,as} of the Abelian group P(QL) formed by the abscissae of QL, and so A-1  is an 
integer matrix. F rom this it follows that #T-1  is an integer matrix and, in particular, that 
/~/tl,/~/t2, ...,/~/ts ~ 7/. Let ni = #/ti and let D* = diag(nl, nz, . . . ,  ns). Then, for i = 1, 2, . . . ,  s - 1, we 
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have ni + 1 [ n i ,  since ti I ti + 1, and 

D * -  1 = UAV. 

Now, the columns of A form a basis for L, and U and V are invertible over 7/, and so the columns of 
ZD* - 1 = U-  1D* - 1 = A V, that is, the vectors (1/n~)z~, form a basis for L. Hence, again as described 
in the preceding remark, we have P(QL) ~- ( ( 1 / n l ) z l )  O) ... @ ((1/n, , )z , , )  and thus 

n l  

Q L ( f ) - - - -  Y'. ' 
n 1 " ' "  nm J l  = 1 

E f ~ z l +  ... + 
jm = 1 nm .] 

is a canonical form for QL. [] 

The method of construction of a canonical form for a lattice rule QL described in the proof of 
Theorem 2.10 is summarised in Algorithm 2.11 below. This algorithm incorporates the use of 
Algorithm 2.7 to determine a basis of L. Also, we assume the availability of a procedure S N F  for 
determining the Smith normal form T of a square matrix C, along with the inverse Z of the 
associated pre-multiplier matrix. As we have already noted, a number of such procedures have been 
described by other authors [1, 3-5, 7, 13]. The matrix Z may be calculated simultaneously with 
T by performing the inverses of the row operations required to compute T on an s x s identity 
matrix. For further details, the reader is referred to [3, Ch. 10]. 

Algorithm 2.11. 
Notation: The j th  column of  a matrix X is denoted by x i. 
Input: An s x v matrix G whose columns the s-dimensional integration lattice L. 
Output: Integers m, n l , . . . ,  nm and integer vectors Z l , . . .  ,Zm such that 

1 E "'" • f z l + " "  + z,. 
QL( f )  - -  nx "" n-~ ~,= x j~= l n,,, / 

is in canonical form. 
Interface with procedure SNF: 

Input: s (a positive integer) and C (an s x s integer matrix). 
Output: T = diag(tl,  . . . ,  t~) (the Smith normal form of  C) and Z (an integer matrix, invertible 
over 77, such that Z -  1CV = T for  some integer matrix V which is also invertible over Z). 

Begin 
/~ *-- LCM(ml,  .. . ,  my) where mi is the least positive integer m such that mg~ ~ 7/s. 
C *-- # A ,  where A is determined by Algorithm 2.7. 
S N F  (Z, T, C, s) 
m *-- s - u, where u is the number o f  unit entries in laT- 1 
For i = 1 , . . . , m  do 

ni *-- #/tl 
Endfor 

Stop 



1 3 8  T.N. Langtry /Journal of Computational and Applied Mathematics 59 (1995) 129-143 

3. Example 

As an illustration of Algorithm 2.11, we compute a canonical form for the lattice rule in three 
dimensions whose abscissa group P(QL) has generator set G = {gl,g2,g3}, where (2 

1 1 1 1 
g ~ = g  - , g 2 = ~  = g  , g 3 = ~  2 

1 

= ~  

The set G generates P(QL) under the operation of addition modulo 7/~, but is not sufficient to 
generate L under addition in ~ .  For example, we observe that G is linearly independent over R ~, 
and hence over 7/s, and that 

e I ~-- 
i )  4 11 2 = - 

Since the coefficients in this expression are unique, due to the linear independence of G in R s, it 
follows that el is not expressible as a linear combination over 7/of the elements of G. Since e~ ~ L 
this implies that G is not a generator set for L. To recover a generator set for L from the generator 
set G for P(QD -~ L~ y-s we must include elements which span 7/s, such as the standard Cartesian 
basis vectors 

g 4  = el = , g 5  = e 2  = , g 6  = e 3  = 

We begin by reducing the augmented linearly dependent initial generator set to a basis for 
L, via suitable elementary column operations. Note that the multiplicative factor 
# = LCM(ml, m2, ...,  m6), where gi = (1/mi)z~ with zi ~ Z s, is used to convert the problem into an 
equivalent one whose solution requires only integer arithmetic. 

Step 1. Let # = LCM(6, 3, 3, 1, 1, 1) = 6. 
Step 2. Let 

/~G= 
2 2  - - 4 6 0  i )  

- 5 4  4 0 6  . 

3 0 2 0 0  
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Reduce/~G to 

2 

# G ~  -- 5 

3 

a nonsingular generator matrix #A for/~L. We have 

0 0 0 0 0 2 0 0 0 0 

9 - 6  15 6 0 ,-~ - 5  3 0 0 0 

- 3  8 - 9  0 6 3 - 3  2 0 0 
!) 

2 0 0 0 0 0 

- 2  3 0 0 0 0  

0 - 1 2 0 0 0  

and we choose 

Step 3. 

2 0i) 
C = # A  = - 2  3 . 

0 - 1  

Reduce/~A to Smith normal form, yielding 

1 0 0 / 0 1 0 

T =  0 2 06) and Z =  3 - 1  1 

0 0 - 1  0 0 

Let m = 3 - 1 = 2, n: = ~ = 6, n 2  = 62 ---- 3 and n 3 = 6 ~ _  . 6  1. Step 4. 
The rule 

j , : l  1 f j2 
j = 

with the summation being performed modulo 7/s, is in canonical form. 

(3.1) 

Remark. In step 3 of the example, the author used the algorithm of Bradley [1] to compute the 
matrices T and Z. Such calculations are prone to a number of computational difficulties (see, for 
example, [4]) and the reader is referred to [5, 7] for a discussion of these problems and of the space 
and time complexities of related algorithms. 

We may verify that the right-hand side of (3.1) is indeed a canonical form for QL as follows. By 
[12, Corollary 4.6] the expression is a canonical form for some lattice rule provided only that it is 
nonrepetitive, that is, that no element x of the abscissa set of the rule is expressible in more than one 
way in the form 

x =  ~ jiz~ m o d u l o Z  s, 
i =  1 ?/i 
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where 0 ~< jl < n~ for i = 1, . . . ,  m. Clearly this is the case if {Zl/n~,..., Zm/nm} is linearly independent 
over 7/. The interested reader may verify that this is so in the present case. To establish that the 
expression in (3.1) is a canonical form for the rule QL in particular, it now suffices to show that the 
integration lattices LG and Lz  with generator sets G = {g~ . . . .  , g 6 }  and { z l / n l , z 2 / n 2 , e l , e 2 , e 3 }  
coincide. In fact, we have # -  IZT  = ZD* - 1 and, as noted in Section 2, the columns ofZD* - 1 form 
a basis for Lz. Also, by construction the columns of A form a basis for LG. It is known (see, for 
example, 1-3, Ch. 7-1) that under these conditions LG and Lz  coincide if and only if there exists an 
integer matrix V, invertible over 7/, such that Z D * -  ~ = A V. This is the case if and only if 

Idet(A - 1ZD* - 1)l  = Idet(p-  1h - 'ZT)I  = 1. 

The interested reader may verify that this is indeed the case in the present example. 

4. Determination of rank and invariants in the dual lattice 

In Section 2 we developed a procedure for the calculation of the rank, the invariants and 
a canonical form of a lattice rule, given a generator set for the lattice. However, much of the 
investigation of lattice rules is conducted by examining the dual of an integration lattice, rather 
than the lattice itself. (See, for example, I-1 1].) 

Definition 4.1. The dual lattice L 1 of a lattice L is given by 

L ± = {h e Rs: h - x e  77 for a l l x e  L}. 

Hence there arises the problem of determining the rank and invariants of a lattice rule directly 
from a generator set of the dual of the corresponding lattice. The techniques used in the preceding 
sections may be adapted in a straightforward fashion which enables us to solve this problem. We 
begin by recalling the following results, the first of which is essentially a restatement of l-8, 
Theorem 5.1]. 

Lemma 4.2. Let L be an s-dimensional integration lattice with basis A = { a l , a 2 , . . . , a s } .  Define 
A =(ali), where aij denotes the ith component ofaj. Then A is invertible and L ± is a free Abelian group 
of  rank s with basis B = {bl,b2, ... ,b~}, where bj is the jth column of  B = (At) - 1 

Proof. The invertibility of A follows from the fact that A is a basis of L. The relationship between 
the generator sets A and B was established by I-8, Theorem 5.1] and implies that B is linearly 
independent over 2r. Hence the Abelian group 

L ± = ( b l , b 2  . . . . .  bs)  

is free and of rank s. [ ]  
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Definition 4.3. The matr ix  B defined in L e m m a  4.2 is called a generator matrix of the 
lattice L ±. 

L e m m a  4.4 (Lyness [8, Theorem 5.2]). A nonsingular s x s matrix A is the generator matrix of  an 
integration lattice L if and only i f B  = (AT) - 1 has only integer elements. 

L e m m a s  4.2 and  4.4 al low us to restate our  problem as follows: given a nons ingula r  s x s integer 
matr ix  B, determine the rank  and  invariants  of the lattice rule whose dual  lattice has genera tor  
matr ix  B. 

Theorem 4.5. Let B be a nonsingular s x s integer matrix. Then 
(a) B is the generator matrix of  the dual L ± of  an integration lattice L, 
(b) the columns a l , a 2 ,  . . . , a s  of  A = (B-l)T form a basis of  L, 
(c) the set G = {gi:gi - ai modu lo  7/S, gi ~ U s, i = 1, 2, ... ,s}, where U s = [0, 1) 2, is a generator set 

for the abscissa group P(QL) of  the lattice rule QL, and 
(d) a defining set of  relators on G for P(QL) is given by R = {rl,r2, ... ,rs}, where ri is the ith row 

of  B. 
Also, let D = diag(dl ,  d2,...,ds), where di ~ 2~, be the Smith normal form of  B T, that is, let X 

and Y be matrices, invertible over Z, such that D = X B T Y  and dildi+l for i =  1 . . . . .  s -  1. Let m 
denote the number of  nonunit elements of  {dl ,dz,  ...,d~} and let ni = ds+~-i for i = 1,2 . . . . .  m. 
Then 

(e) m is the rank and nl ,n2, . . . ,nm are the invariants of  QL, ordered so that n~+llni for 
i = 1 , 2 , . . . , m  - 1, and 

(f) a canonical form for QL is given by 

1 y...y f z l + ' - - +  z m ,  QL(f)  = ~ J,=l Jm=l 

where N = I]iml hi, f :  ff~s _~ ~ and zi is the (s + 1 - i)-th column of  Y. 

Proof.  Assertions (a) and  (b) follow immedia te ly  from Le mma s  4.2 and  4.4, whilst (c) is little more  
than  a res ta tement  of Theorem 2.3 of [12-1. To establish (d) we let R = A - 1 = B a- and  observe tha t  
R is a defining set of relators on  P(QL) as a consequence of the a rgument  of  Theorem 2.9. We then 
obta in  (e) and  (f) directly from Theorem 2.9. []  

Example  4.6. We consider  again the example of Section 3. In tha t  case, we had  

A = 

2 
1 

3 t 3 . 

- 3  
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Consequently, 

B T = A - 1  

0 0 1 0 0 

= 2 ~ 3 

3 0 

and hence QL is of rank 2 with invariants nl = 6 and n 2 = 3. 

5. Concluding remarks 

In this paper we have established procedures for the determination of the rank, the invariants 
and a canonical form for a lattice quadrature rule, given a generator set for either the integration 
lattice or its dual. These procedures have been implemented by the author  as For t ran subroutines. 
At the present time, the subroutines which compute  Smith and Hermite normal forms are based on 
the algorithms described in [1]. However,  as noted in [4], subroutines based on these algorithms 
are susceptible to integer overflow when dealing with matrices of even moderate  size. Thus, when 
dealing with lattice rules of large order the use of more robust  algorithms such as those described in 
[5] should be considered. 

Note. After the author  had finished this work he learnt from Prof. I.H. Sloan that Dr. J.N. Lyness 
and Dr. P. Keast  had recently submitted for publication a paper [9] in which the Smith normal 
form of a matrix is employed to obtain similar results to those contained in this paper. 
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