View metadata, citation and similar papers at core.ac.uk brought to you bnyORE

provided by Elsevier - Publisher Connector

H stochastic
@ processes

5
;zb and their

applications
ELSEVIER Stochastic Processes and their Applications 93 (2001) 87-107

www.elsevier.com/locate/spa

On the maximum of a subcritical branching process in a
random environment *

V.I. Afanasyev

Moscow Institute of Power Engineering, Krasnokazarmennaya St. 14, Moscow 105835, Russia

Received 24 November 1999; received in revised form 28 September 2000; accepted 12 October 2000

Abstract

Let {&,} be a subcritical branching process in random environment with independent identi-
cally distributed generating functions f,(s). It is shown that if there exists a positive number &
such that E(f;(1))* =1 then, for x — +oo,

P <sup En >x) ~ Kx7F,
where K is a positive constant. (©) 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction and main result

Let {&,,n €Ny} be a branching process in random environment {,,n € Ny}, where
I {nf,o),n,(ql),nff),...}, n,(f)ZO, > ) = 1, neNyg={0,1,2,...}, and besides the
sequences 7, are identically distributed and independent for different n. By definition
it means that &, are non-negative, integer-valued random variables and

éo - 17 E(Sénﬂ |§0>§17- . -,éna 71:0, ﬂ:la”‘anl’l) = (fn(S))fH:

where f,(s)=>"" s, se[— 1,1], n€N.
In Afanasyev (1999) for the critical case (that is when Eln fj(1) =0) it is shown
that, as x — +o0,

P(sup 5,1>x>~K1

b
n € Np Inx

where K is a positive constant (note, that one of the assumptions in Afanasyev (1999)
is that f,(s) are linear-fractional generating functions). The aim of the present paper is
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to find the asymptotics of P(sup, ., &» > X) as x — +oo in the subcritical case (i.e.,
when Eln fj(1) < 0). We assume that there exists a positive number @ such that

E(fy(1))*=1. (1)

Let us analyse this assumption in more details. Set X, =In f]_,(1), n€N, and
consider the function @(¢) = E exp(tX;), t € R. Assumption (1) is equivalent to the
following condition: there exists a positive number & such that

O(x) = 1. )

Since the sequences 7,, the components of environment, are identically distributed and
independent for different n, X, are also identically distributed and independent random
variables for different n. We consider the random walk Sy =0, S, = Z?:l)(f’ neN,
which is closely connected with {&,}. Since {&,} is a subcritical branching process in
random environment, EX; = E'ln fj(1) <0, i.e., {S,} is a random walk with negative
drift. Condition (2) is well known for random walks with negative drift and it allows
us to find the asymptotics of P(sup,cn,S: > x) (see [Feller, 1971, Chapter XII])
and of P(}_,°, expS, > x) (see Kesten, 1973), as x — +oo. Given this condition it is
convenient to pass from {S,} to the conjugate random walk So=0, 5,122?:1 X ;. These
random walks are connected by the relation P(X| <x)= ffoo exp(aeu) dP(X; <u). This
transformation allows us to reduce the respective problems for random walks with
negative drift to the problems for random walks with positive drift. Let us show why
the drift of {S,} is positive.

The function O(t) is convex on (0, ), since O”(t)=E(X2exp(tX;)) > 0, t € (0, ).
Moreover, lim, o @'(t) = lim, o E(X, exp(zX,)) = EX, < 0. Provided that

E(X," exp(2X))) < + o0 (3)

the limit lim, . ©'(¢+) = E(X, exp(aX))) exists. Since @(0)=O(a)=1, it follows from
the arguments above that E(X; exp(aX;)) > 0. Hence

EX, = E(X, exp(xX;)) > 0 (4)

as required.

In the present paper we use a modification of this method — the passage to the
“conjugate” random environment. The modified branching process in this environment
turns out to be supercritical (it means that Eln fj(1) > 0).

In connection with the problem under consideration, it is necessary to mention paper
(Kesten et al., 1975), the main part of which is, in essence, devoted to finding asymp-
totics of P(Z:joo n > X) as x — +oo for a subcritical branching process in random
environment. It is established in Kesten et al. (1975) that if conditions (2) and (3) are
valid and the distribution of X is non-lattice then, as x — +oo,

P <Z &y > x) ~ Kox7%,
n=0

where K, is a positive constant. One should note, however, that only the case when
& €(0,2] and f,(s) are linear-fractional generating functions was considered.
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The next important step in the investigation of probability P(>"° ¢, > x) was made
in paper (Dembo et al., 1996). It is shown there that if & > 1 and 0 <y < @, and
E& < + oo, then

P (Z En > x) <K(yw,

n=0
where K(y) is independent of x and K(y) > 0.

Problems of finding asymptotics P(sup, <y, £» > x) and P(>" 2, &y > x) are closely
connected. One can use the method from the present paper to find the asymptotic
P(>" %, &, > x) taking into account the relation P(Y_° &, > x)=P(sup, eNy on > X),
where (, =>"7 &

In the present paper we prove the following result (observe that we do not assume
that f,(s) are linear-fractional generating functions).

Theorem 1. Let {&,} be a subcritical branching process in random environment. Let
conditions (2) and (3) be satisfied for some positive & and let the distribution of X,
be non-lattice. In addition, let E(¢;In" &) exp((2 — 1)X,)) < + 0o and, if ®>1, there
exists a number p > & such that E(&} exp((e — p)X;)) < + oc. Then, as x — +o0,

P ( sup &, >x> ~Kx™®, ®)
n € Np
where K is a positive constant being independent of x.

2. Passage to a supercritical process

Consider the random sequence {Xl,ngo),n(()l),...}. Recall, that X; = In fj(1)=
Ind>=, ing). Let Fi(x1), Fa(x1,x2), F3(x1,x2,x3), ... be the distribution functions of
the random vectors X, (Xl,nf)o)), (Xl,néo),ng])),... respectively. Set

X1 X n
Fn(xl,...,xn):/ / e® dF,(uy,...,u,), neN.
—o0 —o0
In other words, for n € N

Fn(X1,X2, oo 3xn) = E(exp($Xl )X{Xl <x 7”BO)<X2,...,7ZE;‘72) <Xn} ),

where y4 is the indicator function of a set A. Note, that these functions are indeed
distribution functions. For example, by Lebesgue’s theorem and (2) we deduce that

lim  F,(x),...,x,) = Eexp(aX;) = 1.
X]—+00,...,
Xp—+00

These distribution functions are consistent, because

E}IEOO Fn(xla e axn) = E(exp(anl )X{X] <X|,7EBO) sz,...ﬁng"fs) <xn_i })

Xn
:anl(xla' . ~axn71)'

By Kolmogorov’s theorem there exists a random sequence X, ﬁgo), ﬁ(ol),... (may be,

on another probability space) such that
Fri(x) = PXy <x1), Fa(x,xn) = P(X ) <x1, 7y <x),
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The following statement is of importance in the subsequent arguments.

Lemma 1. For any measurable function g(xi,xa,...,x,2) defined for all (xi,x,,...,
Xni2) € R, the equalities

Eg(Xi,7",...,10") = E(exp(—aX1)g(X1, 7, ..., 75")),
Eg(X1,72y),...,75") = E(exp(eX,)g(Xi,my), ..., 7"))

are valid if at least one of the expectations exists in each equality.

Proof. Clearly,
E(exp(—&X 1)g(X 1, 7,..., 75"))

+oo +o0 R
:/ / exp(_£u1)g(ulsu2a---aun+2)an+2(ulsu2a"'aui’l+2)
— 00 — 00

+o00 +o0
:/ "'/ eXp(*&ul)g(ul,uz,...,un+2)exp(aﬂ/ll)an+2(u1,u2,...,M,H,z)
— 00 — 00

0
:Eg(Xl,nf) ),...,n(()")).

The remaining case is considered in a similar way. Lemma 1 is proved. [J
Put O(t) = Eexp(1X,), t€R.
Corollary 1. O(—=)=1 and O(t) < 1 for all t € (—=,0).

Proof. By Lemma 1
O(t) = E exp(tX,) = E exp((® + 1)X;) = O(& + t).
It remains to recall that &(¢) < 1 for t €(0,2) and ©(0)=1. [

Now we study some properties of {X 1,7%80),7%(()1) ,...}. First it is clear that ﬁg") >0 a.s.
for any n € Ny. Further, since >, , <1, it follows that >io <1 as. for any
n € Ny. Therefore, > .5 ﬁf)i) <1 a.s. Observe now that by the monotone convergence
theorem, Lemma 1, and condition (2)

+00 " .
ES A= i £ = i (o)

i=0 i=0 i=0

=E (eXP(anl > né”) — Eexp(eX;) = 1.
i=0
Therefore, Y°, 7 =1 a.s.
Thus, we have established that the sequence 7y = {ﬁgo),ﬁf)l),...} may be viewed as
the initial element of a random environment. Consider the generating function fo(s) =
> ﬁ(()l)si, s€[ —1,1]. We show that if, along with (2), condition (3) is valid then

Xi=Inj(1) as (6)
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Since X;=In )%, in!), it follows that >io in) <exp X, VneNy = >oo i) <exp X,
a.s. Vn € Ny. Therefore,

lnf(;(l)<)fl a.s. (7)
Now, by the monotone convergence theorem and Lemma 1, we obtain
Eln*jy()=Eln*" Y i = lim Eln* Y i)
i=0 i=0
= lim E (e"ex‘ In* Z iné”) =E (ean‘ In* Z inz)i))
i=0 i=0
= E(X,"e*"), (8)
Here the last expectation is finite by condition (3). Analogously we demonstrate that
Eln fi(1) = E(X] exp(eX)) < + oc. )

Conditions (7)—(9) imply (6).

Along with the initial element 7, of the environment we consider elements 7, 7, ...,
each of which is distributed the same as 7y and demand the independence of all
elements of the sequence 7y, %}, 72,... . It is this sequence we take as the environment
conjugate to {m,}. Now we consider a branching process in random environment {7,}.
We denote this process by {&,}. Put f,(s) = 305 2’ for n€N and X, = J?r:q(l)
for n=2,3,... . Taking into account (6) we conclude that §0:O, §,, :Z:’l:1 X, neN,
is a random walk. Since P(X, <x)= ffoo exp(aeu) dP(X; <u), it follows that {S,} is
conjugate to {S,}. In particular, relation (4) is valid. But this means that {&,} is a
supercritical process.

Set 1, , = {nﬁ,?) ,nf,l),...,nf,:’)},m,n € Npy. Lemma 1 admits an obvious generalization.

Lemma 1. For any measurable function g defined on R™"™V. the equalities

Eg(ﬂo,n; Tnse--s Tcmfl,n) = E(exp(—aeSm)g(ﬁo,n; ﬁl,n; cees ﬁmfl,n))a
Eg(7to.; T ns -3 im—1,n) = E(eXp(@S)g(T0.3 Tins - -5 Tm—1,n))
are valid if at least one of the expectations exists in each equality.

As a corollary we have the following result. Let

T, =inf{n: &, >x}, T,=inf{n: é > x}.
Lemma 2. For all x €(0,+00)

P ( sup &, >x> :E(exp(faegfv); Ty < +00).
n € Np ’
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Proof. Since for x € (0, 1] both sides of this equality are equal to 1, it is sufficient to
consider the case x € (1,+00). Clearly,

P( sup &, >x> =P(T, < +00) =Y _P(T,=m), (10)
n € No m—1
P(T'c :m):P(él <x7---yém71 Sx)_P(él <x:~~~:§m71 <x,§m<x)~ (11)

Denote by E, and P, the expectation and probability under fixed environment. Then,
for all m €N,

P& <x,....¢n<x) = EPr(S1 <x,..., & <x).

Clearly, P,(& <x;...;&,<x) is a non-random function g of the random vector {ﬁo,[x];
...3Tm—1,x )}, Where [x] is the integer part of x. By Lemma 1’

P(Ci<x,.. ., Cn<x) = Eg(mo,1x); - -5 Tm—1,[x])
:E(eiaesmg(ﬁo,[x];--~;T~Cm—1,[x]))-
It is not difficult to see that g(o,x];...; Am—1,1x)) plays the same role for {7,} as
g(no,[x];...;nm,l,[x]) for {7‘[”}, i.€.

9(Ro,[x); -5 Fm—1,[x) = Pa(&1 <x, .., 8, <)),

Thus,

P(&1<x,..., En<x) = E(exp(—aS,)P:(, <x,...,E,, <x)). (12)
Similarly,

P(&1 <, <3) = E(exp(—aS,-)PA(& <., &y <))

= E(exp(—aS,)P+(& <x,..., &, <x)) (13)
since exp(—a&X,,) and Pﬁ(fl <x,..., Em_l <x) are independent and E exp(—&X,,) =1
by Corollary 1. Relations (11)—(13) imply

P(T, = m) = E(exp(—S,,)Pi(T, = m)).

Whence, taking into account (10), we obtain

n €Ny

P ( sup &, > x) =N E@e S Pl =m) =Y EExe5" 15 )
m=1

m=1

=EY ey 0 =E@e T, < 4 o00).
m=1

Lemma 2 is proved. [

To reformulate the hypotheses of Theorem 1 in terms of { fn} we need the following
statement.

Lemma 3. The following equalities:
E(&In" & exp((z — 1)X1)) = E(In" & exp(—X 1)),
E(&P exp((z — p)X1)) = E(& exp(— pX)))

hold if at least one of the expectations exists in each equality.
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Proof. It is clear that, for n€ N, E (& A n)?P = h(n(()o),n(()l), o )) where 4 is a
non-random function and, moreover, E;(&; A n)? = h(ﬁgo),ﬁf)l),.. ~(")) Hence by
Lemma 1

E((& An)Pexp((z — p)X1)) = E(exp((z — p)X1)E(& An)P)
= E(exp(((@ — p)X)h(ry’,n,...,7{"))
= Ee "D, 20, 20))
= E(exp(— pX 1)E#(&, An)P)
= E((§, An)Pexp(—pX1)).

Using the monotone convergence theorem as n — oo, we obtain the second statement
of Lemma 3. The first statement can be proved by similar arguments. Lemma 3 is
proved. [J

3. Properties of the natural martingale of the super-critical process

Below, to simplify presentation, we omit the symbol ~ in all notations connected
with the branching process in the conjugate random environment. By this reason from
now on we consider {£,} as a supercritical branching process in random environment
{m,}. In view of Lemma 2 it is necessary to investigate the asymptotic behavior of

. R éTx “ i ZE.
E(exp(~S7,): T, < + 00) =x E(<expsﬂ> (ﬁ) ,Tx<+oo> (14)

as x — oo. It is convenient to rewrite this expectation as

E (< <r, >£ <x>$;Tx <+ oo> = Mi(x, k) + Ma(x, k), (15)
exp S, ¢r,

where k£ € Ny is arbitrary and

Ml(x,k)—E<(eXi"Sk) (g;) ;Tx<+oo),
- N & VO [x \©
e = (((oosr) (o) ) (5) m=e).

In calculating the limits of M|(x,k) and M;(x,k) as k — oo, Lemma 7 below plays
an important role, the proof of which is based on Lemmas 4—6.

Lemma 4. Let o, be the number of direct descendant of a particle from the (n—1)th
generation and C,(f") = E (o, exp(—X,,))",n,m €N. Then, for ne N, m=2,3,..., the
following inequality holds:

& \' _(m!y
ET[ (CXpSn) < 2m Gm(n)s

where

ky—1 kr—1
3 ) s _s,
= S & (...(Zgggﬂ <Zg}q}rle ) ))
k=0

km—1=0
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Proof. Denote by oc,ﬁl),ochz), ..,ocifj"“) the numbers of direct descendants of the 1th,
2th, ...,(£,—1)th particle from the (n — 1)th generation, respectively. Let E,: , be
the conditional expectation given that the random environment and the number of
particles in the (n — 1)th generation are fixed. Then, on account of

(&) ()
Evoo [ % ) L0 for it Bl
= exp X, exp X, expSy—1

we see that

2 2
E( £ ):E<E( £ ))
exp S, expsS,

OB RANRN CRY 2
exp X,

=E; | exp(—2S,-1)Er¢, , (

e (,) 2 & Oé’i) o{}(1.1‘)
=E; | exp(—2S,-1)Er ¢, , exp X, Z exp X, exp X,
by’ n n

i=1

@#))

2
<En(exp(—28,- (D¢, 1 + &) = (Pe™5 1 E, <£l> '
expS,—1

From this it follows that:

(2) .—S;
E <expS ) Zgﬂrle

proving the statement of the lemma for m = 2.
Now we use the induction method. Suppose that the statement of the lemma is valid
for some m =2,3,... Let us prove its validity for m + 1. We have

in m+1 én m+1
ET[ = ETI ETI En—1
(exp Sy e expsS,

=E; [ exp(—(m+ 1)S,—1)E ¢, |

e e\
(ocn +oy A Aoy > (16)

exp X,

By Lyapunov’s inequality, for ky +---+ki=m+ 1, ky,..., kb eEN, I<ii < <--- <
ii<n, i1,ip,....,i;€N, [N

. NORN 20\
" exp X, T\ exp X,
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k . ky
(11) (ir)
exp X, exp Xy

ki /(m+1)

e oggli') m+1 . o(ﬁli’) m+1
ST Lexp, "\ expX,

o m+1
_E n — mt1).
" (eprn> &

For k€N and ay,...,a; € R we write the following obvious identity:

m+1 __
(g + - F+a)"" = g a, i, ... qj,,,

1<ii2pimil <k

ki/(m+1)

First we consider the summands in the last sum, whose indices iy,1,...,i,; are dif-
ferent. The number of such summands is k(k —1)...(k —m)<k™"'. Now we consider
the remaining summands, the number of which is k”*' — k(k — 1)...(k — m) and, as
it is not difficult to show, is not greater than £”m(m + 1)/2. Hence we conclude that

ORI C) -\
+oy 4 Fo m(m+ 1)
En - ( n ) <C£}m+l)ém_17 5m+1

exp X, 2
Applying this equality to (16) we obtain

m+1
n _ 1
E, <é) < E, (e (m=+1)S, 1 <C£zm+l)§rr7—lm(m+) + ém+1>)

exp S, 2
m m1
_ m(m + 1)C§,m+l)En Cn—t e S+ E, Cnl .
2 exp Sy_1 expS, 1
Hence it follows that:
& \"" m(m+ 1) 1) &\ s
E, < E, g ., 17
By the induction assumption
m m 2
E e ) < k) (18)
exp Sk,
Relations (17) and (18) imply
m n—1
&\ m(m + 1) (M) & -
Ex <ex S S o > G o e St
Pon kn=0
m+ 1)1)?
SRE) N,

Lemma 4 is proved. [

By the assumption of Theorem 1 and Lemma 3, for &>1 there exists p > & such
that E((¢1exp(—X1))? < + oo. Clearly, for all n€N,

P P p
E <1 _p(. g% '
exp X exp X exp X,
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Thus, there exists p > @ such that for all n€ N

o P
E( . > =L <+ 00, (19)
exp Xy

where L) is a positive constant being independent of n. Without loss of generality we
may assume that

e<p<le]+]1, (20)
where [2] is the integer part of @. Hence by Corollary 1

g =max(Ee~ (=DM Ee=(r=2N1 pe=(r=l=DXiy o (21)
Lemma 5. Let =2 and conditions (19), (20) be valid. Then, for n€ N and m =
2,3,...,[&] the inequality

E(O_m(n)ef(pfm)S,, ) <(L1n)m71qn7m+l

holds.

Proof. First we consider the case m = 2. Obviously,

n—1 n—1
(Z Cl(czzrle_sh> e (P—2)S, — Z(glizile_(p_z))(kl+l )e—(P—l)Sk, e~ (P=2)(Si =Sk 1)
1 1
k=0 k=0

and all three factors on the right-hand side of this equality are independent random
variables. Hence, taking into account (21), we obtain

n—1
(S o)
k=0
n—1

n—1
<D OEQGLe g <Y g = Ling" .
k=0 k1=0

The validity of last inequality can be explained in the following manner:

2
o
E(ngllei(piz)xk' "Y=F (En ( ki +1 > e~ (P=2)Xy 41)

eprle

2
o
_ CEE < O 41 ) _1.
exp( pXi+1) exp Xi, +1
Thus, the statement of the lemma is proved for m =2. Now we use induction. Assume

that the statement of the lemma is true for a natural number m — 1, where m <a, and
prove its validity for m. It is clear that

n—1 ]((m) .
op(n)e™P=mMS = mo1t
" k,,;o exp((p — m)Xy,_,+1)

" ( Om—1(km—1) ) o= (P=m(S:=St,_41)
exp((p — (m —1))S,_,)
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where all three factors on the right-hand side of this equality are independent random
variables. Hence, taking into account the validity of the lemma for the second factor,
we obtain

n—1 (m)
—(p—m km—1+1 m—2
E(a,(n)e”(P~m5) < E : (Likn—1)
" ,g::() exp((p — m)X, _,+1) '

n—1
fom—1—m~+2 _ n—ky_1—1 —1 E =2 _n—m+1
Xq n—1—m qn m—1 <Lrln k::_lqn m
fin—1=0

< (Lln)mflqnfmﬁ*l.

Here we make use of the relationship

(m)

m
E o —1+1 —E <En < Ol +1 ) e(pm)Xk’"_lJr])
exp((p — m)Xy,_,+1) exp X, +1

o P
—F fom—1+1 < ( km—1+1 ) :L1~
exp( pX,_,+1) exp Xi, i+1

Lemma 5 is proved. [

Lemma 6. Let &>1 and conditions (19), (20) be satisfied. Then, for n € Ny,

£n+l _ in
exp Sn+1 eXp Sn

P
<G, n[ae]flqn,

where C, is a positive constant which is independent of n.

Proof. Using the notation of Lemma 4 we write

£n+l _ én
expS,+1 expSy

P

n

(1) &)

RS I 5 S
n
expXn+1 exp X1

o
—PS
=E, (e PnEr e,

p)
(1) (€n) p
ﬂ_l L ﬂ—l ) (22)
exp X, 41 exp Xyt

The summands under the module sign in the last expectations are independent identi-
cally distributed random variables with zero mean.

First we consider the case &>2. By the Dharmadhikary—Jogdeo equality (see, for
example, [Petrov, 1975, chapter III, Section 5])

) D)
& 1)+ + a”i*l -1
exp Xyt exp X1

=E, (e—f’SnEmé"

P

2 Olp+1 r
<c(p)PE, | ——) .
exp Xy+1

T,Cn

(23)
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where ¢(p) > 0 depends on p only. Thus,

én+l _ én P < c(p)E 041 pe—pSnE ép/Z
"lexpS,1 expS,| "\ exp X, 41 TN
Oln4-1 ’ én L]
<c(p)E, | ——— e—(p—[ae])SnE7T , (24)
exp X, expS,

where the last inequality follows from (20). The random variables

On+1 ? S, én L]
E, <> and e (PTEDSE (>
expX,i1 expsS,

are independent. Using this fact and taking into account (19) and Lemma 4 we deduce
from (24) that

p 12
énJrl _ én <C(p)Ll ([&])
expSy,+1 expSy 2lz]

E E(e—(p—[ae])Sna[ae](n))'

Hence by Lemma 5 we conclude that

Cntl & |” (2] w] fe)—1 n—
E n _ n < L [e]—1 _n [ae]-H.
expS,.1  expS, <p) o 1

Letting C,=c( p)([as]!)22_[*’E]L[fe]q_[z’c]+1 we obtain the statement of Lemma 6 for & >2.
Using the Bahr—Esseen inequality (see, for example, [Petrov, 1975, chapter III,
Section 6]) for the case & €[1,2), we obtain instead of (23) the inequality

(1) (&n) P
o o .
<n+ll>+...+(n+ll> <4ann<a+l) .
eprn+1 eXp)(nJrl

eprn+l
This inequality and relation (22) imply

Ent &y — S Olp+1 ’
- < 4E7T (éne p ”) ETE
exp Sy+1 exp S, exp Xp+1

p
=4e(p1)S”En( -t )
exp Xn+1

Hence, taking into account independence of the random variables

1S, %1 ’
e P~ DS and E, | —2—) ,
exp Xn+1

P

7,¢n

p

T

condition (19) and relation (21), we have

én-ﬁ-] _ én
expSy+1 expSy

P
<2Lig".

Lemma 6 is proved. [

We assume that, for 7, = +00

ér, i Sk

= 25
expSr,  k—oo expSik (25)

(this limit exists a.s. for any branching process in random environment).
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Lemma 7. The sets

A= k) keNyb and B= 7, , x€[0,400)
exp Sk expSr,

of random variables are uniformly integrable for & € (0,1). This is true for €>=1 as
well, if condition (19) is satisfied.

Proof. First we consider the case @< (0,1). Set A is uniformly integrable since, for
all keNy E(&exp(—Sk)) = 1. Fix a positive number ¢ such that & + ¢ < 1. For
any fixed environment {r,} the sequence {(&/expS;)**, k€ Ny} is a uniformly in-
tegrable supermartingale in view of E(&rexp(—Sk)) =1 for all £ € Ny. Since T, is a
stopping time for x € [0, +00), we conclude that for fixed environment {7, } the process
{(&r,[exp Sr,)*te, x€[0,+00)} is a supermartingale (see, for example, [Elliott, 1982,
chapter 3]). Therefore

é &+e 5 &te
E, _ S <E, LY -1
exp Sr, exp St,

It is not difficult to show that

&+e &+e
E(_n —EE, (-
exp S, " \expSr, ’

where for 7, = +o0o the ratio on the left-hand side is defined by (25) and the same
value on the right-hand side is defined as the limit of &;/exp Sy as k — oo provided
the environment is fixed. Hence, for all &€ (0,1),

i &+
E (T> <1
exp S,

implying the uniform integrability of B.
Let now & >1 and condition (19) be satisfied. Without loss of generality we suppose
that condition (20) is satisfied too. By Lemma 6, for & € N,

IR
E < Lo, (26)
exp Sk

where L, is a positive constant independent of k. This provides the uniformly integra-
bility of 4. Finally, for a fixed environment, {(&;/expSi), k € No} is a non-negative
martingale and the Doob inequality gives, for all k£ € Ny,

P p P
E; ( sup < < P E, Sk .
n<k €XpSy p—1 exp Sk
Therefore, for k € Ny
P P P
E | sup < <(-L2-)E S )
n<k EXPS, p—1 exp Sk

Whence, passing to the limit as £ — oo and taking into account relation (26), we
obtain

o\ r Y
E( sup —— ) < () L,. 27)
n €Ny eXpSn P~ 1
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Observe that for all x € [0, +00)

67' é n
- < ) 28
exp S, nseu EO exp S, (28)

Relations (27) and (28) imply that, for all x € [0, +00),

p P
E & < L L2-
exp Sr, p—1
This gives the desired uniform integrability of B. Lemma 7 is proved. [

4. Representation of the event {7, <+ oo}

Since {&,} is a supercritical branching process in random environment

lim —" W <400 (29)

n=00 exp S,

exists a.s. Taking into account the assumption of Theorem 1 and Lemma 3 we have

E(&EInTE exp(—X))) < + oo. (30)
It means (see [Tanny, 1988, Theorem 2]) that
P(lim cn :0):P(3n€N:£n:0)<1. (31)
n—oo exp S,

Relations (29) and (31) yield

P(+oo> lim —" :W>O):P(lim En=to0)

n—00 expSn n—00
= lim P(& > 0)>0. (32)

Consider the random event

D={lim & =+oo}.

Clearly, the inequality lim,_. o, (£, exp(—S,)) > 0 implies lim,_, £,=+0o0 a.s. Hence,
by relation (32)

P (+oo > lim < =W >0, D) =P(D)>0. (33)
n—oo exp Sy
Fix an arbitrary ¢ € (0,1) and, for £ € N, consider the event
S, S S
D(k) = { lim &, =400, sup |opon  SXPOK|  OXPOK }
n—0o0 n:n=k 61’: ék Sk

Lemma 8. Let condition (30) hold. Then
klim P(D(k)) = P(D).

Proof. Let § be positive and less than P(D). By (33) there exists ¢ > 0 such that
P(1/W =c, D)=P(D) — §. (34)
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Applying (33) once again we obtain

&c

3 D) = P(D).

S

lim P( sup CXPSy _ eXp Sk
k—o0 n: n=k ‘/;:n ék

By (34) and (35) we conclude that

lim P( sup
k—o0 n: n=k

expS, expSk €

<——, W >0, D) >P(D) - 6.

én ék 2w
But if
exp S, _exp Sk &
n: n=k én fk = 2w
then
i — exl?Sk <i a.s. = L{psk >i (1 — E) a.s.
w Ck 2w Ex w 2
Relations (36) and (37) imply
. expS, expSi e exp Sy )
lim P su — — — < , D) =P(D)—0.
. ( P I I T ) I )

101

(35)

(36)

(37)

Since e€(0,1), we obtain lim, , P(D(k))=P(D) — 6. On the other hand,

lim; oo P(D(k)) < P(D). Since § is arbitrary, Lemma 8 follows. [J

For x € (0,+00), k €Ny and ¢ € (0, 1) consider the event
expS, expSk

X

Dy = {k <Ti <+o00, lim &, =+00, sup

n: n=k

én ‘fk
Lemma 9. If condition (30) holds, then
lim Iim |P(& > 0)— P(Dyx)| =0.

k—o00 x—+o00

Proof. It is obviously that for all fixed & € Ny

lirll P(T.<k)= liT P (max & >x> =0.

n<k
Therefore
1ir+n Pk <T, <+ o0, D)=P(D)

and in view of Lemma 8

lim Tim |P(k < T, < + o0, D) — P(Dy;)| =0.

k—o0 x—+00

Since

[P(&k > 0) = P(Dy )| <|P(Sk > 0) — P(D)|

+|P(D) — P(k < Ty < + 00, D)|+ |P(k < T, < + 00, D) — P(Dyy)|,

relations (32), (39) and (40) imply the statement of Lemma 9. [J

For x €(0,+400) consider the event

D, ={T, < + o}

b

(38)
(39)

(40)
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Lemma 10. If condition (30) is valid, then
lir+n P(D,)= P(D).

Proof. It is clear that, for all £k € N,
P(Dy)=P(T, < +00, & > 0)+ P(T: < + o0, ¢ =0),
P(D)=P (Tx < 400, lim &, = +oo) .

Therefore,
0 < P(Dy)— PD)SP(T < +00, §=0)
+P(T, < + oo, 5k>0)—P(TX<+oo, lim én:+oo). (41)
Since P(T, < + o0, & =0)<P(max,<; &, > x), it follows from relation (38) that
XETFOO P(Ty < + 00, &=0)=0. (42)

Further we have
0 < P(T, < +00, & >0)—P(Tx < 400, lim 5,,:+oo)
< P(& >0)—P(lim §n=+oo).
n—oo
Hence, using relation (32), we obtain
im Tim ’P(TX < too, & >O)—P(Tx <+ o0, lim én:—koo)’:O.

k—o00 xX—+00 n—oo
(43)

Relations (41)—(43) imply Lemma 10. [

Lemma 11. If condition (30) holds, then
lim lim |P(Dy)— P(Dy;)| =0.

k—o00 x—4o00

Proof. It is clear that
|P(Dy) — P(Dyx)| < |P(Dy) — P(D)| + |P(D) — P(& > 0)
+P(& > 0) — P(Dy ).

Combining Lemmas 9, 10 and relation (32) gives Lemma 11. O
5. Accomplishment of the proof of Theorem 1
First we consider
My(x,k) = E e Y (Y (2 o
S exp St, exp Sk ér,) 7
(recall (15)) and show that
lim lim |[My(x,k)| = 0. (44)

k—o0 x—+00
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By the definition of 7,
CVT\/ > X (45)

if T, <+o00. On the other hand, if lim,_,, £,=400, then T, <+o0 and lim,_, | o, Tx=
+00. Hence in virtue of (29)
¢r,

li =W as. 46
x—too exp St, s (46)

This relation remains true if £, =0 for some n € N, since in this case T, = +oco for
large x and by definition &7, /exp Sy, = limg_,o & /exp Sy =0 given T, = +o0.
Observe, that by Lemma 7 and relation (29)

EW® < + 0. (47)
It follows from (45) that:

e \© & \°
< : -
Wo(x. ] <E ‘ (expSr) (expSk>

Passing to limit first as x — +o0 and then as £ — oo in the right-hand side, and taking
into account Lemma 7 and relations (29), (46) and (47), we obtain 0, that proves (44).
Now we consider the term

() (2] 2)
M(x,k)=E SN (=Y. p
’ exp Sk ér) vk )

Obviously,

Put

P ®
0<M1(x,k)—M(x,k)<E<( Sk ) ;Dx\Dx,k).
exp Sk

Whence, taking into account Lemmas 7 and 12, we see that

im Tm |M(xk)— M(xk) =0. (48)

k—o00 x—+o00

Denote by E; and P; the conditional expectation and conditional probability given
0> 715+« Ty S05 1s- -5 Sk Then

_ &Y x \"
vt =+ () 8 ((5) 2)) ®

It is clear that

x 1 x
E; ((é) ; Dx,k) :/o (Pk(Dx,k) - P ((é) <z; Dx,k)> dz

1
_ / (Pu(Dss) — Pe(ér. > xz V% D4))dz
0

aeaedy (50)

+o0
=/ (Pr(Dx) = Pie(Sr, > xy; Dek))—7-
1 Y
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If D, occurs, then k < Ty < + oo and, therefore,

oo
Pi(ér, > xy; Do)=Y, P& >xy, To=1; Dyy). (51)
I=k+1

Observe now that by the definition of Dy, for y>1, =k +2,k+3,...,
P (& >xy, To=1; Dey)

=Pi(&pr1 <x,.., &1 <, & > x5 Dey)

eSk+1 eSi—1 S
=P, <es/‘“ <x ,o e <x , e >XxXy—; Dx,k)
Kt &1y 9]
Sk eSk Sk
< Py <eS"+‘ S(T+e—,...,e5 <1 +e)x—, 5 > (1 —e)xy—:; Dx,k) )
Ek Ek Ek
Put S{=0, S|=Sk+1—Sk, S§=Sk12—Sk,... Clearly, {S,} generates a random walk which
has the same distribution as {S,} but is independent of mg,7i,..., 7, &o,&1,-..sEx

Thus, we have established that, for y>1/=k+2,k+3,...,
Pk(él > XY, Tx = l; Dx,k)

1 1 -
Arek o amdE o o Dx,k>
Ck Ck Ck

<P (S{ <In
(52)

(for I =k + 1 we have to replace the right-hand side of relation (52) with Pi(S] >
In((1 — &)xy/&); Dyy)). It follows from (51) and (52) that, for y>1,

P (Cr, > xy; Dix)

<P, (3 JeN: s <m T o
k
1 1-—
<In 28)’“, S| > In (L= 8%y, Dx,k). (53)
k Sk
If y> (1+¢)/(1—¢), then the event
146 146 | — &
{EI [eN: S{gln( +8)x,...,S,’_1<ln( +8)x5 S; >1n(a)xy}
Ck Sk Ck

means that the first overshoot of the random walk {S/} over the level In((1 + &)x/&;)
is greater than
L—awy  (eer  (I—o)y
Sk Ck 1+e
Let y(¢) be the first overshoot of {S/} over the level 7. It follows from (53) that, for
y>+e)/(1—e),
Pi(ér, > xy, Doy) <P (x (m a +8)") > =9y ka). (54)
* ’ Ex 1+e¢ ’
It is known (see, for example, [Feller, 1971, chapter XI]), that if the distribution of S|
is non-lattice (it is provided by the assumption of Theorem 1) and E|S]| < 4 oo (it
holds in view of condition (3) and Lemma 1), then for any u € (0, 400) there exists

Aim P(y(t) > u) = G(u), (55)
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where 1 — G(u) is the distribution function of an absolutely continuous probability

measure. Since {S!} is independent of np, 71, .., 7w, &o,&,-..,E,, relation (55) implies,
for y > (1+¢)/(1 —¢), & >0,
: (I+e)x (1—-¢)y (1—-¢)y
lim P 1 In— | = In—=— ).
XlewEloo k<X<n Er - I+e¢ G\ I+e¢ (56)

It follows from (50) and (54) that:

z & +oo
M(x,k>>E<( Sk ) / (Pk(Dx,m
expSk ) Jiveyi—e)
(I4e)x (I —¢)y edy
.y ! In——2Y. p
k(x(n Sk T T ) ) e
& \° [ (1+ex
>E 1—P (4(1
((expsk> /g;( "(‘(“ &
(I1—¢)y xdy
> In e )) S

Sk )ae/ﬂo - a&dy
E(( PB) 2L, (57)
exp Sk (1+2)/(1—2) yEt

where [_)X,k is the complementary event to D, ;. In virtue of Lemmas 7 and 10

— - ék ® oo — ?Edy
lim lim E (( ) / Pk(Dx,k) ,+1)
k—o0 x—+00 exp Sk (148)/(1—2) ye
I & \° -
< Iim  Tim E<< k ) ;ka>
k—o00 x—+o0 expSk ’

= lim Iim E(( S ) ;{§k>0}me,k)=0. (58)

k—o00 x—+00 eXp Sk

Applying Lemma 7 and recalling relations (29) and (56) we obtain

x +0o0o 1
lim lim E(( Sk ) / (I—Pk (X(ln( +8)x)
k—o00 x—+00 eXpSk (14€)/(1—¢) ék
- In (1—e)y edy
1 + ¢ yae+1
:EW"S/%O (1—G<ln(l_8)y>) = dy
(14)/(1—2) I+e yert
It follows from (57)—(59) that

+o00 1—
lim lim M(x,k)?EW*E/ (1 e (111( 8”)) = (60
k— 00 X—+00 (1+e)/(1—¢) l+¢ y

(59)
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Now we establish an upper bound for M(x,k). Similarly to (52) we find that, for
vzl I=k+2,k+3,...,
Pk(él > XY, Tx = ls Dx,k)
(I —e)x
Sk

1 —¢ 146
=Py < 1 <In T Y <ln( - g)x, S|4 >In %; Dx,k>
(61)

(for I =k + 1 we have to replace on right-hand side of relation (61) with Py(S| >
In((1 + &)xy/Ek; Dyi)). It is clear from (51) and (61) that, for y>1,

- |-
Pi(ér, > xy; Dig)=Py (3 JeN:si<in U= o o : ex
k k
1 1 —¢ 1 +e
s! >1n(+€ﬁ; Dx,k> _p, (x (m( gf)x> > 1n 1+ £)y. Dx,k>. (62)
k k — &

Relations (49), (50) and (62) imply

M(x,k)<E (( 5k )ae /M (P(Dx)
1

exp Sk

1— 1 d
(e () = O ) ) )
G N[, (1 —e)x
<E<<ﬂp&)(z O I“(XO“ Sk )

>1n(1+8)y)> aedy). (63)

1—c¢ yae+1

Using Lemma 7 and relations (29) and (55) we obtain

~ - G\ [ ) (1 —ex
klggo XLHJPOOE ((exp Sk [ L=P X n Er
+0o0o
> 1p (LTEYY) ) &2dy :EW*’B/ -G (1nLT97)) =2dy
l—c¢ yetl | 1—¢ yetl
It follows from (63) and (64) that:

fim Tim M(x,k)<EW“’/+OO <1 —G<ln(1+8)y>) 2dy (65)
1

k—o00 x—+00 1—¢ y&—o—l :

(64)

Passing to the limit as ¢ | 0 in (60) and (65) we have

xedy
yze-H )

400
lim lim M(x,k)= lim Tim M(x,k):EWae/ (1 - G(In y))
f— 00 X—+00 k—o00 x—+00 1

(66)
Relations (15), (44), (48) and (66) imply

e wdy & ®\®
EW&/ 1 -G(ny)—=< lim E(< S > <> ;Dx>
1 ( ( J/))yze+1 oo exp St, <r,

— Er N/ x \* /+°° edy
< Tim E : X)) . D) <Ew® 1-Ga .
x—lI-Poo (<€XPSTX> étx ’ 1 ( (ny))y$+1
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Thus, we have

im E((—2 ) (). 1< 4o —EW@/m(l _ G(in y)) &Y

x—-+00 eXpSTX éTx P N 1 Y yae+1 '

(67)

Recall that EW*® is finite (see (47)). We consider the second factor on the right-hand

side of (67). Let y be a random variable to which y(z) converges in distribution as
t — 400 (see (55)). Then P(y > u) = G(u) and

+oo &dy oo ®dy
/1 (1= Gny)) 5 Z/1 PG<lny) 7
+o0
:/ P(y<u)ee * du
0

+oo
= / e ®dP(y<u) = Ee % (68)
0

Combining (14), (67), and (68) we see that, as x — 400,
E(exp(—&St,); Ty < +00) ~ EW*Ee™®x™%.

Thus, Theorem 1 is proved and the constant in (5) has the form
K=EWZ*Ee™ ™,

where W and y are the random variables defined by the branching process in the

N

conjugate random environment.
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