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Abstract

We study the localized tachyon condensation in their mirror Landau—Ginzburg picture. We completely determine the decay
mode of an unstable orbifold” /Z,, r = 1, 2,3 under the condensation of a tachyon with definite R-charge and mass by
extending the Vafa's work hep-th/0111105. Here, we give a simple method that works uniformly @v/al,. For C2/Z,,
where method of toric geometry works, we give a proof of equivalence of our method with toric on€’ Foy cases, the
orbifolds decay into sum of far separated orbifolds.

0 2003 Elsevier B.VOpen access under CC BY license,

1. Introduction until the spacetime supersymmetry is restored. There-
fore the localized tachyon condensation has geometric
The study of open string tachyon condensation description as the resolution of the spacetime singular-
[1] has led to many interesting consequences includ- ities.
ing classification of the D-brane charge by K-theory. ~ Soon after, Vafa [3] considered the problem in the
While the closed string tachyon condensation involve Landau—Ginzburg (LG) formulation using the Mirror
the change of the background spacetime and muchsymmetry and confirmed the result of [2]. In [4],
more difficult, if we consider the case where tachyons the same problem is studied by using the RG flow
can be localized at the singularity, one may expect the as deformation of chiral ring and in term of toric
maximal analogy with the open string case. Along this geometry. In [3], Vafa showed that, as a consequence
direction, the study of localized tachyon condensation Of the tachyon condensation, the final point of the
was considered in [2] using the brane probe and renor- process is sum of two orbifold theories which are far
malization group flow and by many others [3-8]. The from each other but smoothly connected: one located
basic picture is that tachyon condensation induces cas-at north and the other at the south poles of blown up

cade of decays of the orbifolds to less singular ones P? singularity of the orbifold in the limit where the
radius of the sphere is infinite. Schematically, we can

- represent this transition by
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The purpose of this Letter is to determine the expressed ag—'° = ¢//"[]; uki. The periodicity of
decay mode of unstable orbifolds by working out the Y; imposes the identificationz; ~ eZri/ny. which
generators of orbifold action in daughter theories for necessitate modding out eaghby Z,. The result is
C’/Z, r=1,2,3. ForCl/z,, the transition modes usually described by
are described in earlier works [2—4]. FBF/Z i, k) .
case, some examples are worked out in [4] using _ n, t/n ki r—1
toric geometry and prescription in terms of continued |:W B ;ui te Uu i|//(Z”) ’ (2:4)
fraction is given. In principle, it can be worked out ) ) ) )
once numbers are given explicitly. However, that whlc_h desc.nbe the mirror Landau—Qm;burg model of
method does not work fo€3/Z,. Here, we give a the Ilne.arS|gma model. Asta— —oo limit, mirror of
simple method that works easily and uniformly for all  the orbifold is
C’/Z,. For C?/Z,, we give a proof of equivalence r
of our method with toric one. To do this we will [W=Zu?i|//(zn)rl- (2.5)
need to know how the spectrums of chiral primaries i=1

are transformed under the condensation of a specific Since it is not ordinary Landau—Ginzburg theory but
tachyon. an orbifolded version, the chiral ring structure of the
theory is very different from that of LG model. For
example, the dimension of the local ring of the super
2. Mirror symmetry and orbifolds potential is always — 1, regardless of.

We list some properties of orbifolded LG theory for
We begin by a summary of Vafa's work [3] on |ater use.

localized tachyon condensation. The orbifdld, Z, The true variable of the theory a¥g notu; related
is defined by theZ, action given by equivalence py,; —¢~Yi/". As a consequence, monomial basis of
relation the chiral ring is given by
k k

(X1 Xp) ~ (071X 07 X, (uf'ub? | (p1. p2) = (nljka/n}.nljka/n}).

wzletl/n. (2.1) j:l,...,n—l}, (26)
We call (k1, ..., k) as the generator of thH&, action. nd u”'u?? has weight and char
The orbifold can be embedded into the gauged linear pz/nu)l "2 ght(p1. p2) 9etpa/n.
sigma model (GLSM) [9]. The vacuum manifold of '
the latter is described by the D-term constraints
—n|X0|2+Zki|Xi|2=t. (2.2) 3. Fateof the spectrum

1

For C2/Z ., Case, if one consider the conden-
sation of tachyon in théth twisted sector that cor-
responds to chiral ring element*ub?, with p1 =
n{lk1/n} and p> = n{lkza/n}, the theory is given by
the super potential

Its t — —oo limit corresponds to the orbifold and the
t — oo limit is the O (—n) bundle over the weighted
projected spacé Py, . i . Xo direction corresponds
to the non-compact fiber of this bundle anglays role
of size of theW Py, ..

By duallzmg this GLSM, we get a LG model with [W=u} +ul + et/nui’lu?]//zn_ (3.1)
a superpotential [10]

. Consideruz ~ 0 and & ~ e'/"uf*ub? region,

W= Z exp—Y)), (2.3) which should be described by

i=0 [qu’i—i—e’/”uflugz]//zn. (3.2)
where twisted chiral field$; are periodicY; ~ Y; + ) ) _ 0/ p
27i and related toY; by ReY;] = |X;|2. Introducing By introducing the new variablag = u,’"* andvz =
the variableu; := ¢~Yi/", the D-term constraint is e’/”PZMfl/”zug. The single valuedness of induces
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the Z, but single valuedness af, andu}*u}? implies
thatvy, vo are orbifolded byZ,,. By substitution, we
can expressi'ul? in terms ofvy, vo:

u(ilugz = lelszz, (3.3)
where
(Ql’ Q2) = (_p X Q/n’ 612), (34)

with p x g = (p1g2 — p2q1). Notice that magl’, :
(g1, q2) — (Q1, Q>2) is linear map acting on the inte-
grally normalized weight space and can be described

by a matrix
p2/n —p1/ ﬂ)

(%" ™

It is working nearus ~ 0. It maps(n, 0) — (p2,0)
and(p1, p2) — (0, p2), or equivalentlyy — vi? and
uftub? — vl

One should notice thaf1, Q> are not integers
in general. However, when both and ¢ are weight
vectors of elements of orbifold chiral ring, generated
by (k1, k2), they are integers. This is becauseit=
(n{lk1/n}, n{lk2/n}), g = (n{jk1/n}, n{jki/n}), s :=
p x q/n, then

s =nf{lky/n}{jk2/n} — n{lk2/nH{jki/n} € Z  (3.6)

foranyintegers, k,1, j. Forky =1,s = —I[ jko/n]+
jllk2/n]. Especially interesting case will he=k =
(1, k2), in which case, we have= [lky/n] = (lk2 —
p2)/n. Geometrically,s is proportional to the area
spanned by two vectors andg. Therefore it is zero
if p andg are parallel.

The R-charges are determined by the marginality
condition. In the original theory;; has R-charge /ln
sinceu! has R-charge 1. We express thiskds!' ] = 1.
Therefore R[u{*ub?] = (p1 + p2)/n. charge space
is defined by the weight space scaled by 150
we use the same Fig. 1 to describe it. The diagonal
in charge space is the line connectidgl, 0) and
B(0,1). Any operator whose R-charge is on this
diagonal corresponds to the marginal operator. The
points below the diagonal correspond to the relevant

T =

P (3.5)

operators and tachyonic and those above it correspond0

to the irrelevant operators. When a tachysnis fully
condensed, the marginal line is changed from diagonal
line AB to line AP or BP. AP gives down-theory and
BP gives the up-theoryA ; is the cone spanned
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Fig. 1. Integrally normalized weight/charge space @?r/Z,,. It

can be considered as the space of power of local ring elements. It
is defined as a two-dimensional torus with sizeu}] andu is
located atA (n, 0) and B(0, n), respectively. Under the condensation

of tachyonP, the parallelogran® B D P is mapped to the up-theory
andOPEA is mapped to the down-theory. Translation parallel to OP
is mapped to horizontal in up theory and vertical in down theory.

andOP, and similarlyA_ is the cone spanned @\
andOP.

Let P be the point(p1/n, p2/n) in charge space
that corresponds to a chiral primary that is undergoing
condensation, an@ be any charge poiriyy1/n, g2/n)
and A, B now corresponds t¢l, 0) and (0, 1). One
can work out the action of’,” from other point of
view. If P represent the chiral primary éth twisted
sector(pi/n, p2/n) .= ({lk1/n}, {lk1/n}). Nearup ~
0 region, the marginality condition is changed to
Ruf*ub?] =1, R[u}] = 1. In terms of new variable
R[v; 21 =1. The linear transformation

T, :(q1/n.q2/n) — (Q1/p2. Q2/p2). (3.7)

can be determined by its action ¢hand(1, 0). Once
T, is decided, we gef,” from the relation,7, =
isz—. The result of course agrees with the one given
gy Eqg. (3.5). Under this mapping, the lower triangle
APOAIn Fig. 1 in charge space is mapped to the entire
ABOA, which defines one of theory in the final stage

f the tachyon condensation. We call it down-thebry.

2 Conversely, if we require thal, maps APOA to ABOA,

le is completely determined. The mappidg™ in the i~ntegrally
normalized weight space is induced W~ = (po/n)T~. The
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Fig. 2. Charges of 11, 3) (left) and 1@1, 3) (right) in Weight space.

Similarly, by considering; ~ O region, we getthe  line AP is mapped to that of down-theory. Therefore

mappingfljr that maps the upper triangleBOP to the emerging picture is following: the parallelogram
ABOA. By the relation; = (p1/n)T; we canobtain ~ OBDP spanned b@ and OP is mapped to the
the mapping in weight space: up-theory whose weight space sizegig. Similarly,
the parallelogranrOPEA spanned by@ and OA is
THg = ( 1 0 ) <‘11) _ ( q1 ) mapped to the down-theory whose weight space size
P —p2/n pi/n) \q2 pxq/n is p2. See Fig. 2. From Eq. (3.6), it is easy to see that
(3.8) chiral ring elements of Mother theory are mapped to

Notice thatTI;F leaves all the vertical lines in weight chiral ring elements of the daughter theories, under the
space fixed whil@",” leaves horizontal lines invariant. condensation of a chiral ring element. Any operator
Now we ask: given an operator with= (g1, ¢2) g’ outside these two parallelograms can be parallel
should we map with'+ or 72 The answer is that we translated to inside one of above two parallelograms
should use the mappthat gﬁves smaller R-charge. The bY the vectolOP a few times if necessary. In daughter

. MR ieg | +
difference of the R-charge after the mapping is given theories, if¢’ € A, then 7)7¢" can be translated
by horizontally by p1 a few times to a point in the

up-theory. Similarly, ifg" € A_, thenT;¢q" can be
8:=R[TSq]—R[T,q] translated vertically by, a few times to a point in
; the up-theory.
AY <0 ifgeAy,
where A is the cone spanned Hﬁ and OP, and 4. Fateof unstable orbifolds
similarly A_ is the cone spanned b®A and OP.
Notice that we are condensing relevant opergior  4.1. C2/z,

so thatp; + p2 < n. The line BP is mapped to the

marginal line of a final theory, the up-theory, and the e now can answer to our main question: what are
the generators of final theories? We noticed that there

normalization is dictated from the condition th@t maps from are two theories in the final stage. These two theories

integer vectors to integer vectors. Finall§, (n,0) = (p,0) are described by the difference of the marginal lines

and T, (p1. p2) = (0, p2) so that the identification: = vP2, in the weight space: extension 8P or that of AP.

uitub? = vP2 is dictated. We call the former as the up-theory, describing~ 0
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region, and the latter as down-theory, describing the (j,an — 3j), so thats = —a. « = 1 case is Ex-
uz ~ 0 region. In terms of the charge space, up-theory ample 4.3.3 of HKMM.
is obtained by mapping’,f : ABOP — ABOA and

down-theory is obtained by mappir@ : ABOP > Now, what about the generic case where neilfier

ABOA. nork; is equal to 1? We first discuss the non-reducible
The up-theory is a orbifol€?/Z,, and the down  cases wher@k;/n}#0foranyl=1,...,n—1.This

theory is another orbifoldC?/Z,,. Let k = (k1, k2) is the case ik; andn are relatively prime. Then we

be the generator of the original theory. Then the C€an choose a new generatark) such that
f the up-theory is gi +(k) =

generator of the up-t eory s given by, (k) LB =L n—1)

(k1, p x k/n) and that of thel’, (k) = (—p x k/n, ko).

Since (k1, k2) ~ (—k1, —k2) as a generator, one can = {l(k1,k2) [I=1,...,n -1}, (4.4)

also usel"(—k) = (p x k/n, —k) instead ofl " (k). pacayse we can findsuch that for any giveh ik =
Therefore we can describe the process of condensation

. Jjmodn andlk; = jkmodn for somej. In factk is
of tachyon with charge = (p1, p») as follows: given by
2
C /Zn(kl,kz) k = kz/k1 modn. (4.5)

C?/z C?/Z . (41 _ . .
> O/ st pim) & C/ Lo pkjni- (41) Thereforegeneric caseisisomorphicto n(1, k) type.2

To simplify the notation, we use(ky, ko) for C2/ For example, 1@, 3) is identical to 111, 7) and also
Ziy k, @nds = p x k/n. Then, to 11(8, 1), since 32=7, 2/3=8mod 11.

Sometimes we meet situation where= 0, where
n(ka, k2) e pilky, s) @ pa(=s. k2). (4.2) we need more care. For example, if we condensate the

. . . eneratoK1, k) itself, Eq. (4.3) predict that
Especially interesting cases are those when orle of g Lo a. (4.3) predi

is 1. n(1, k) — 1(1,0) @ k(0, k). (4.6)
n(l, k) — p1(L,s)® pa(—s,k), For the first element 1(D), it is correct since the
. (1.p2) upper triangle does not contain any tachyon operator.
if ki =1 ka=k. (4.3) However, for the second element, this cannot be

In order to check the validity of our method, we true since we have non-trivial operator in the lower
check that all of examples studied in APS and HKMM,  friangle. This is clear from 1(1, 3) model described
where some Ok]_: 1 case is considered. in F|g 2, where all twisted taChyonS Coming from

chiral primaries are given in Fig. 2.= 0 is caused
(1) 2(1, —1) — I(1, 1) ® I(1, —1), with s = —1. by the fact thatp and (1, k) are parallel. So we need
@n to choose a generator of the lower triangle other than
APS Example 5.2. _ (1, k). Assumingk andn are relatively primek has
(2) 2.3 ml(l’ D&, -3, withs =1. APS 1 iplicative inverse module, which we denote by
Example 5.3. k~1. We also introduce’ = p x (k~1,1)/n. Then we
3) 51,3 —2(L, ) & C2, with s = 1. A generic haven(l, k) = n(k~1,1). Now the image of the new
2,1) generator undef, is (—s’, 1). It is easy to show that
ks' = s — ap, wherea is defined byk~1k = na + 1.
Thereforepa(—s, k) = pa2(—s’, 1) if s is not 0. So we
the diagonaly; = ¢2 line, sos = 0. This is two get

copies ofC!/Z, x C.

(5) n(1,-1) (l—>l)l(1, -1 &@'n—1'(1,-1): all char- n(l, k) (n)pl(l, $) @ pa(—s',1). 4.7
SN— 1, P2

ges are on the marginal lirg + g2 =n. s = —1.

(6) n(1, -3 — jl,~a) & o'n — 3j'(a, =3), —
(j,—3)) 3 S0 far we proved this fact in the conformal filed theory level
wherea = [3j/n] + 1. Notice p = (j, —3j) = before GSO projection.

tachyon condensation. APS Example 5.4.
4) n(1,1) (—))p(l, 0) ® p(0, 1): all charges are on
p,p
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Table 1

All possible tachyon condensation process in11 8§ model. We should consider only the processes given by relevant operators, namely those

578 (2004) 215222

with n — (p1 + p2) > 0, otherwise it is a process by an irrelevant operator which disappears in the infrared limit

J (p1, p2) G =[3j/11] n—(p1+p2) Process
1 1,3 0 7 11(1,3) ~ 1(1,0) & 3(1, 1)
2 (2,6) 0 3 11(1,3) — 2(1,0) d6(2,1)
3 3,9 0 -1 irrelevant process
4 4,1 1 6 11(1, 3) — 4(1,1) & 1(0, 1)
5 5,4 1 2 1(1,3) > 5(1,1) ® 4L, 1)
6 (6,7) 1 -2 irrelevant process
7 (7,10) 1 -6 irrelevant process
8 8,2 2 1 11(1, 3) ~ 8(1,2) @ 2(0, 1)
9 (9,5) 2 -3 irrelevant process
10 (10,8 2 -7 irrelevant process

Egs. (4.3), (4.7) are the main formula of this section.
When one ofs,s” is 0 and the other is not, we
should use the non-zero one. For example, when the
condensing operator is of the forjtk—1,1), s’ =0
and it is better to use2(—s, k) for the exactly same
reason as we uge(—s’, 1) whens = 0. Whenss’ # 0
two are equivalent in conformal field theory level.
We give a few examples below. If we condensate
an operator withp = j (1, k), its band numbeG :=
[j/nl+[jk/n]=0ands=0.Howevers’ = j(1, k) A
(k~1,1) = —aj # 0 unlessk =1 ( or, a = 0). The
transition is described as

n(l,k) — j(1,0) @ jk(ja, ). (4.8)
J(Lk)

More explicitly, for p = (2,6) in 11(1,3), j = 2,

s=0,k=3,k1=4,4.3=11-1+1 henceu =1

ands’ = —2 so that

11(1 3) Y 2(1,0)® 6(2, 1). (4.9)
Notice that 62, 1) contains an operatdf, 3) so that
this is a reducible orbifold. Even in the case we
start with irreducible orbifold, we can get reducible
orbifold as a result of tachyon condensation. This
happen if and only if there is an operator sitting on
the line which conneat0, 0) and the condensing one,
p. We tabulated all possible tachyon condensation
processes for model 11,3) and 1Q1, 3) in Tables 1
and 2, respectively.

4 For string theory level, two prescriptions are different &ind
s’ does not have the sandeparity (even or oddness). we need to use
the one that has the same parity as that.ofhis will be discussed
further in later section.

4.2. Equivalence of LG and toric method in C2/Z,

Here we show the equivalence of our description of
tachyon decay in mirror LG model with that in toric
geometry [11] for the case df?/Z,. We will show
that the transition in LG picture

n(la k) - Pl(laS)GBPZ(_S/»l)» (410)
(p1.p2)

with s = p A (1,k)/n, s’ = p A (k~1, 1)/n has corre-
sponding description in toric picture

ntk) — n'(&)en" k", (4.11)
(n',—k")

where

n' =kn' —nk' and —k"=cn’ —dk (4.12)

with integerc, d satisfyingen — dk = 1.5 Notice that
it is assumed that, n is relatively prime.

The data of weight diagram of LG model can be
related to that of toric geometry by a linear map
U :LG — Toric and its invers&/ ~1:

~(p ) (22

—k/n 1/n k n) (4.13)

The weight (p1, p2) of the condensing tachyon is
related to the corresponding toric datgk’) by

( ):U_1< )= (knrink>

51f (¢, d) is a solution of this equationc + k'm,d + n'm) is
also a solution. The result is th@”, —k”) — (", —k"" + n"'m)

which is just anSLo,Z transformation(’i 2) which corresponds

to a holomorphic coordinate transformation of a toric variety.

n/

-k

pP1
D2

(4.14)
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Table 2
All possible localized tachyon condensation in model118§
J (p1, P2) =[3,/10] n—(p1+p2) Process
1 1,3 0 6 10(1,3) — 1(1,0) & 3(0, 1)
2 (2,6) 0 2 10(1, 3) — 2(1,0) ® 6(0, 1)
3 3,9 0 -2 irrelevant process
4 4,2 1 4 10(1,3) — 4(1,1) @ 2(1, 1)
5 (5,5) 1 0 10(1,3) — 5(1,1) ® 5(1, 2)
6 (6, 8) 1 -4 irrelevant process
7 (7.1 2 2 10(1,3) — 7(1,2) & 1(0, 1)
8 (8,4) 2 -2 irrelevant process
9 9,7 2 —6 irrelevant process
which givesp1, p2: with weight vector(p1, p2, p3)/n, the mirror LG is

, , , described by the superpotential

p1=n, p2 =kn' —nk', (4.15)

from whichs can calculated in terms of toric data:

s=pAQ,k)/n

=W kn' —nkhYA L k)/n=k. (4.16)

Now, since p1(1,s) is trivially equal ton'(k"), we
only need to show the equivalence gf(—s’, 1) with
n”(k"). The question is whethd’’ = —s’modp2 or
equivalently,

(cn' — dk') = (pr— k™~ p2)/nmodps (4.17)

is true or not. Multiplying both sides by, (cn’ —
dikk = (kp1 — k~kpo)/nmodp,. Using cn —
dk =1, s = (kpr — p2)/n andk Yk = 1 + an, left-
hand side is equal t& and right-hand side is— ap2.
Froms = k’, we now have proved Eq. (4.17). Now
—kk"” = ks'modp, implies k" = —s’modp,, pro-
videdk andp; are relatively prime to each other, com-
pleting the proof of our desired result.

Remark. It is interesting to observe that for a general
chiral ring elemeny = (j,n{jk/n}), Uq = (j, k x
q/n) =T, (q/n) = (j, —[jk/n]), which means for-
mally, U coincide with tachyon condensation mapping
for generator condensation. This fact directly general-
izes to the generak1, k2).

4.3. C3/7,

We now describe what happens @’/Z, case.

Our method is especially useful in the present case k(’)

since it applies in this case without any difficulty while
toric method does not work here [7]. When a tachyon

[W=u]+uf+uf+en u{lugzu?]//(zn)?. (4.18)

By considering:; ~ 0 region forj = 1, 2, 3, we get
the tachyon map’s?,ﬁ’ )'s [12] given by

1 0 0
ngl)=<—l72/ﬂ pi/n O )
—-p3/n 0  pi/n
p2/n —pi/n 0
TP=( 0 1 o).
0 —p3/n p2/n
p3/n 0  —pi/n
T¥=( 0 pa/n —pa/n], (4.19)
0 0 1

which play similar role opri in C?/Z,. Let k =
(k1, k2, k3) be the generator of mother theory. Then the
generator of the daughter theories are give ¥y:=
T,E-/)k, Jj =1,2,3. Namely the orbifold transition rule
is given by

n(ky, k2, k3) —>  pi(ki, s12,513)

(p1.p2,P3)
@ pa(s21, k2, 523)

& p3(s31, 532, k3), (4.20)
wheres;; = pjk; — pik;. Notice that there exists a
simple formula

kidji +sji. (4.21)

This is one of the main result of this Letter.
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5. Conclusion

In this Letter, we determined the decay mode of
unstable orbifolds by working out the generators of
orbifold action in daughter theories fa@"/Z, r =
1,2,3. We gave a simple method that works easily
and uniformly for allC” /Z,. For C?/Z,, we give a
proof of equivalence of our method with toric one. Our
method trivially reproduced all of known cases worked
out by brane probe [2] or toric method [4]. F68/Z,,

cases, the unstable orbifolds decay into sum of three

orbifolds.

Our discussion usesV = 2 worldsheet SUSY
essentially. It would be very interesting if we can get
the same result without using it.
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